1
|
Wang Y, Ruf S, Wang L, Heimerl T, Bange G, Groeger S. The Dual Roles of Lamin A/C in Macrophage Mechanotransduction. Cell Prolif 2024:e13794. [PMID: 39710429 DOI: 10.1111/cpr.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force. We discovered that hydrostatic compressive force induces heterochromatin formation, decreases SUN1/SUN2 levels, and transiently downregulates lamin A/C. Notably, downregulated lamin A/C increased nuclear permeability to yes-associated protein 1 (YAP1), thereby amplifying certain effects of force, such as inflammation induction and proliferation inhibition. Additionally, lamin A/C deficiency detached the linker of nucleoskeleton and cytoskeleton (LINC) complex from nuclear envelope, consequently reducing force-induced DNA damage and IRF4 expression. In summary, lamin A/C exerted dual effects on macrophage responses to mechanical compression, promoting certain outcomes while inhibiting others. It operated through two distinct mechanisms: enhancing nuclear permeability and impairing intracellular mechanotransmission. The results of this study support the understanding of the mechanisms of intracellular mechanotransduction and may assist in identifying potential therapeutic targets for mechanotransduction-related diseases.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Lei Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Sabine Groeger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
2
|
Rolfe RA, Bastürkmen ET, Sliney L, Hayden G, Dunne N, Buckley N, McCarthy H, Szczesny SE, Murphy P. Embryo movement is required for limb tendon maturation. Front Cell Dev Biol 2024; 12:1466872. [PMID: 39574785 PMCID: PMC11579356 DOI: 10.3389/fcell.2024.1466872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Following early cell specification and tenocyte differentiation at the sites of future tendons, very little is known about how tendon maturation into robust load-bearing tissue is regulated. Between embryonic day (E)16 and E18 in the chick, there is a rapid change in mechanical properties which is dependent on normal embryo movement. However, the tissue, cellular and molecular changes that contribute to this transition are not well defined. Methods Here we profiled aspects of late tendon development (collagen fibre alignment, cell organisation and Yap pathway activity), describing changes that coincide with tissue maturation. We compared effects of rigid (constant static loading) and flaccid (no loading) immobilisation to gain insight into developmental steps influenced by mechanical cues. Results We show that YAP signalling is active and responsive to movement in late tendon. Collagen fibre alignment increased over time and under static loading. Cells organise into end-to-end stacked columns with increased distance between adjacent columns, where collagen fibres are deposited; this organisation was lost following both types of immobilisation. Discussion We conclude that specific aspects of tendon maturation require controlled levels of dynamic muscle-generated stimulation. Such a developmental approach to understanding how tendons are constructed will inform future work to engineer improved tensile load-bearing tissues.
Collapse
Affiliation(s)
- Rebecca A. Rolfe
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Ebru Talak Bastürkmen
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Lauren Sliney
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Grace Hayden
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin College University, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, University of Dublin, Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Niamh Buckley
- School of Pharmacy, Queens University Belfast, Belfast, United Kingdom
| | - Helen McCarthy
- School of Pharmacy, Queens University Belfast, Belfast, United Kingdom
| | - Spencer E. Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, United States
| | - Paula Murphy
- Zoology, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Moro-López M, Farré R, Otero J, Sunyer R. Trusting the forces of our cell lines. Cells Dev 2024; 179:203931. [PMID: 38852676 DOI: 10.1016/j.cdev.2024.203931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Cells isolated from their native tissues and cultured in vitro face different selection pressures than those cultured in vivo. These pressures induce a profound transformation that reshapes the cell, alters its genome, and transforms the way it senses and generates forces. In this perspective, we focus on the evidence that cells cultured on conventional polystyrene substrates display a fundamentally different mechanobiology than their in vivo counterparts. We explore the role of adhesion reinforcement in this transformation and to what extent it is reversible. We argue that this mechanoadaptation is often understood as a mechanical memory. We propose some strategies to mitigate the effects of on-plastic culture on mechanobiology, such as organoid-inspired protocols or mechanical priming. While isolating cells from their native tissues and culturing them on artificial substrates has revolutionized biomedical research, it has also transformed cellular forces. Only by understanding and controlling them, we can improve their truthfulness and validity.
Collapse
Affiliation(s)
- Marina Moro-López
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Barcelona, Spain; Institut Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
4
|
Huang P, Jiang RX, Wang F, Qiao WW, Ji YT, Meng LY, Bian Z. PIEZO1 Promotes Odontoblast-Mediated Reactionary Dentinogenesis via SEMA3A. J Dent Res 2024; 103:889-898. [PMID: 38910430 DOI: 10.1177/00220345241257866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Located at the interface of the dentin-pulp complex, the odontoblasts are specialized cells responsible for dentin synthesis and nociceptive signal detection in response to external stimuli. Recent studies have shown that the mechanosensitive ion channel PIEZO1 is involved in bone formation and remodeling through the influx of calcium ions, and it is abundantly expressed in odontoblasts. However, the specific role of PIEZO1 in reactionary dentinogenesis and the underlying mechanisms remain elusive. In this study, we found intense PIEZO1 expression in the plasma membrane and cytoplasm of odontoblasts in healthy human third molars, mouse mandibular molars, and human odontoblast-like cells (hOBLCs). In hOBLCs, PIEZO1 positively regulated DSPP, DMP1, and COL1A1 expression through the Ca2+/PI3K-Akt/SEMA3A signaling pathway. In addition, exogenous SEMA3A supplementation effectively reversed reduced mineralization capacity in PIEZO1-knockdown hOBLCs. In vivo, Piezo1 expression peaked at day 7 and returned to baseline at day 21 in a wild-type mice dentin injury model, with Sema3a presenting a similar expression pattern. To investigate the specific role of PIEZO1 in odontoblast-mediated reactionary dentinogenesis, mice with a conditional knockout of Piezo1 in odontoblasts were generated, and no significant differences in teeth phenotypes were observed between the control and conditional knockout (cKO) mice. Nevertheless, cKO mice exhibited reduced reactionary dentin formation and decreased Sema3a and Dsp positive staining after dentin injury, indicating impaired dental pulp repair by odontoblasts. In summary, these findings suggest that PIEZO1 enhances the mineralization capacity of hOBLCs in vitro via the Ca2+/PI3K-Akt/SEMA3A signaling pathway and contributes to reactionary dentinogenesis in vivo.
Collapse
Affiliation(s)
- P Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - R X Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - F Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - W W Qiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y T Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - L Y Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Bian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Ma J, Fan H, Geng H. Distinct and overlapping functions of YAP and TAZ in tooth development and periodontal homeostasis. Front Cell Dev Biol 2024; 11:1281250. [PMID: 38259513 PMCID: PMC10800899 DOI: 10.3389/fcell.2023.1281250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Orthodontic tooth movement (OTM) involves mechanical-biochemical signal transduction, which results in tissue remodeling of the tooth-periodontium complex and the movement of orthodontic teeth. The dynamic regulation of osteogenesis and osteoclastogenesis serves as the biological basis for remodeling of the periodontium, and more importantly, the prerequisite for establishing periodontal homeostasis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo signaling pathway, which actively respond to mechanical stimuli during tooth movement. Specifically, they participate in translating mechanical into biochemical signals, thereby regulating periodontal homeostasis, periodontal remodeling, and tooth development. YAP and TAZ have widely been considered as key factors to prevent dental dysplasia, accelerate orthodontic tooth movement, and shorten treatment time. In this review, we summarize the functions of YAP and TAZ in regulating tooth development and periodontal remodeling, with the aim to gain a better understanding of their mechanisms of action and provide insights into maintaining proper tooth development and establishing a healthy periodontal and alveolar bone environment. Our findings offer novel perspectives and directions for targeted clinical treatments. Moreover, considering the similarities and differences in the development, structure, and physiology between YAP and TAZ, these molecules may exhibit functional variations in specific regulatory processes. Hence, we pay special attention to their distinct roles in specific regulatory functions to gain a comprehensive and profound understanding of their contributions.
Collapse
Affiliation(s)
- Jing Ma
- Department of Oral Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Haixia Fan
- Department of Oral Medicine, Jining Medical University, Jining, Shandong, China
| | - Haixia Geng
- Department of Orthodontics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|