1
|
Sheng Z, Song H, Gao X, Shu B, You Y, Liu Z. Exosomal miR-146a-5p Derived from HSCs Accelerates Sepsis-induced Liver Injury by Suppressing KLF-4. Inflammation 2024:10.1007/s10753-024-02172-6. [PMID: 39589633 DOI: 10.1007/s10753-024-02172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
This study aimed to investigate whether and how lipopolysaccharide (LPS) activated hepatic stellate cells (HSCs) regulate macrophage activity and to explore the impact of microRNAs (miRNAs) in exosomes from HSCs on this process. Mice subjected to LPS or cecal ligation and puncture (CLP) were used to explore sepsis-induced liver injury. Liver injury was evaluated using HE staining, and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured. LPS-Exo or N-LPS-Exo from HSCs were added to hepatic macrophages, and iNOS, IL-1β, and TNF-α expression was detected via Western blotting. miRNA microarray analysis and PCR were used to evaluate differentially expressed miRNAs between LPS-Exo and N-LPS-Exo. Target genes were screened using the TargetScan database and verified with luciferase assays and WB. Inflammation and macrophage activity were observed in vivo using HE and CD86 staining in mice injected with PKH67-labeled LPS-Exo or N-LPS-Exo. Sepsis-related liver injury activates hepatic stellate cells, which regulate macrophage activity through exosomes. Specifically, exosomal miR-146a-5p secreted by hepatic stellate cells targets KLF-4, regulating the macrophage inflammatory response through the JNK signaling pathway. Exosomes containing miRNA-146a-5p released from HSCs following LPS treatment may increase macrophage sensitivity to LPS and trigger an inflammatory response. Exosomal miR-146a-5p derived from HSCs accelerates sepsis-induced liver injury by suppressing KLF-4 expression.
Collapse
Affiliation(s)
- Ziyi Sheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Hua Song
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Xianzhi Gao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Bian Shu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Yu You
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China.
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China.
| |
Collapse
|
2
|
Lin L, Wei J, Xue J, Fan G, Zhu W, Zhu Y, Wu R. Drp1 Promotes Macrophage M1 Polarization and Inflammatory Response in Autoimmune Myocarditis by Driving Mitochondrial Fission. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10570-2. [PMID: 39388091 DOI: 10.1007/s12265-024-10570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Autoimmune myocarditis (AM) is characterized by an intricate inflammatory response within the myocardium. Dynamin-related protein 1 (Drp1), a pivotal modulator of mitochondrial fission, plays a role in the pathogenesis of various diseases. A myosin-induced experimental autoimmune myocarditis (EAM) mouse model was successfully established. Flow cytometry was employed to detect M1/M2-like macrophages. Mitochondrial fragmentation was assessed using Mito-Tracker Red CMXRos. Drp1 was upregulated and activated in EAM mice. Depletion of Drp1 was observed to mitigate inflammation, macrophage infiltration and M1 polarization within the cardiac tissue of EAM mice. In M1-like macrophages derived from the hearts of EAM mice, Drp1 was found to promote mitochondrial fission and diminish mitochondrial fusion. Furthermore, the depletion of Drp1 reduced the NF-κB-related pro-inflammatory response in EAM-associated M1-like macrophages. Drp1 drives mitochondrial fission in macrophages, driving their M1 polarization and the subsequent inflammatory response. Drp1 may represent an effective target for the prevention and treatment of AM.
Collapse
Affiliation(s)
- Lin Lin
- Department of Cardiovascular Medicine, Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Daminggong Campus, No. 5 Jianqiang Road, Xi'an, 710016, Weiyang District, China.
| | - Jin Wei
- Department of Cardiovascular Medicine, Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Daminggong Campus, No. 5 Jianqiang Road, Xi'an, 710016, Weiyang District, China
| | - Jiahong Xue
- Department of Cardiovascular Medicine, Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Daminggong Campus, No. 5 Jianqiang Road, Xi'an, 710016, Weiyang District, China
| | - Gang Fan
- Second Department of Cardiology, Xianyang First People's Hospital, Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Wenjing Zhu
- Department of Cardiovascular Medicine, Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Daminggong Campus, No. 5 Jianqiang Road, Xi'an, 710016, Weiyang District, China
| | - Yanhe Zhu
- Institute of Endiquidiopathies, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruiyun Wu
- Department of Internal Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| |
Collapse
|
3
|
Wen F, Yang G, Yu S, Liu H, Liao N, Liu Z. Mesenchymal stem cell therapy for liver transplantation: clinical progress and immunomodulatory properties. Stem Cell Res Ther 2024; 15:320. [PMID: 39334441 PMCID: PMC11438256 DOI: 10.1186/s13287-024-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.
Collapse
Affiliation(s)
- Fuli Wen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guokai Yang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| | - Zhengfang Liu
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| |
Collapse
|
4
|
Kong E, Zhang Y, Geng X, Zhao Y, Yue W, Feng X. Inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage in hepatic ischemia-reperfusion injury mice. Int Immunopharmacol 2024; 128:111474. [PMID: 38185036 DOI: 10.1016/j.intimp.2023.111474] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) typically manifests during subtotal hepatectomy and inflicts substantial damage to liver function in the perioperative period. Although the central role of cGAS-STING-mediated immune inflammation in hepatocyte damage during hepatic IRI is acknowledged, the precise regulatory mechanisms remain elusive. The current study aims to elucidate how Sirt3 inhibition activates the cGAS-STING pathway and exacerbates hepatocyte damage in hepatic IRI. We established both in vivo and in vitro models by creating hepatic IRI mice model and subjecting AML-12 hepatocyte cell lines to oxygen-glucose deprivation/reperfusion (OGD/R). Hepatic IRI compromised liver and mitochondrial function while elevating cytosolic mitochondrial DNA (mtDNA) levels in hepatocytes. Additionally, both in vivo hepatic IRI and in vitro OGD/R induced increased phosphorylation and activation of cGAS, STING, and IRF3, accompanied by heightened levels of pro-inflammatory factors, including TNF-α, IL-1β, and type I interferon (IFN-β). Importantly, knockdown of cGAS or STING through siRNA effectively attenuated hepatic IRI-induced inflammation and ameliorated liver function in both experimental settings, underscoring the dynamic involvement of the cGAS-STING pathway in hepatic IRI-induced inflammation. Furthermore, we observed a significant reduction in Sirt3 expression following hepatic IRI, both in vivo and in vitro. Then we generated Sirt3-deficient mice and applied Sirt3 knockdown in AML-12 hepatocytes. Notably, Sirt3 deficiency led to increased phosphorylation and activation of cGAS, STING, and IRF3, coupled with elevated TNF-α, IL-1β, and IFN-β levels in both in vivo and in vitro conditions. Moreover, upon silencing various downstream targets of Sirt3, such as transcription factors Sp1, Pu1, and p65, we observed that specifically knocking down p65 in AML-12 hepatocytes reduced cGAS mRNA levels. Co-immunoprecipitation assays confirmed a direct interaction between Sirt3 and p65. The absence of Sirt3 significantly increased nuclear translocation of p65 in mice, whereas Sirt3 knockdown in AML-12 hepatocytes heightened nuclear translocation of p65. ChIP-PCR assays demonstrated that Sirt3 deficiency notably enhanced the binding of p65 to two cGAS promoters, ultimately promoting cGAS transcription. Collectively, our results underscored that inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage by increasing cytosolic mtDNA and promoting nuclear translocation of p65 to promote cGAS transcription in hepatic IRI. These findings hold promise for potential therapeutic interventions in hepatic IRI by targeting the Sirt3-cGAS-STING axis, offering new avenues for the development of clinical strategies to mitigate liver damage during the perioperative period.
Collapse
Affiliation(s)
- Erliang Kong
- Department of Anesthesiology, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Yang Zhang
- Department of Anesthesiology, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Xuqiang Geng
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yuanyuan Zhao
- Department of Medical Service, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Wei Yue
- Department of Medical Service, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China.
| | - Xudong Feng
- Department of Anesthesiology, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China.
| |
Collapse
|
5
|
Kholodenko IV, Yarygin KN. Hepatic Macrophages as Targets for the MSC-Based Cell Therapy in Non-Alcoholic Steatohepatitis. Biomedicines 2023; 11:3056. [PMID: 38002056 PMCID: PMC10669188 DOI: 10.3390/biomedicines11113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a serious public health issue associated with the obesity pandemic. Obesity is the main risk factor for the non-alcoholic fatty liver disease (NAFLD), which progresses to NASH and then to end-stage liver disease. Currently, there are no specific pharmacotherapies of NAFLD/NASH approved by the FDA or other national regulatory bodies and the treatment includes lifestyle adjustment and medicines for improving lipid metabolism, enhancing sensitivity to insulin, balancing oxidation, and counteracting fibrosis. Accordingly, further basic research and development of new therapeutic approaches are greatly needed. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles prevent induced hepatocyte death in vitro and attenuate NASH symptoms in animal models of the disease. They interact with hepatocytes directly, but also target other liver cells, including Kupffer cells and macrophages recruited from the blood flow. This review provides an update on the pathogenesis of NAFLD/NASH and the key role of macrophages in the development of the disease. We examine in detail the mechanisms of the cross-talk between the MSCs and the macrophages, which are likely to be among the key targets of MSCs and their derivatives in the course of NAFLD/NASH cell therapy.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | | |
Collapse
|
6
|
Heo MJ, Suh JH, Poulsen KL, Ju C, Kim KH. Updates on the Immune Cell Basis of Hepatic Ischemia-Reperfusion Injury. Mol Cells 2023; 46:527-534. [PMID: 37691258 PMCID: PMC10495686 DOI: 10.14348/molcells.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is the main cause of organ dysfunction and failure after liver surgeries including organ transplantation. The mechanism of liver IRI is complex and numerous signals are involved but cellular metabolic disturbances, oxidative stress, and inflammation are considered the major contributors to liver IRI. In addition, the activation of inflammatory signals exacerbates liver IRI by recruiting macrophages, dendritic cells, and neutrophils, and activating NK cells, NKT cells, and cytotoxic T cells. Technological advances enable us to understand the role of specific immune cells during liver IRI. Accordingly, therapeutic strategies to prevent or treat liver IRI have been proposed but no definitive and effective therapies exist yet. This review summarizes the current update on the immune cell functions and discusses therapeutic potentials in liver IRI. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.
Collapse
Affiliation(s)
- Mi Jeong Heo
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kyle L. Poulsen
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|