1
|
Gerasimova EV, Tabakov DV, Gerasimova DA, Popkova TV. Activation Markers on B and T Cells and Immune Checkpoints in Autoimmune Rheumatic Diseases. Int J Mol Sci 2022; 23:ijms23158656. [PMID: 35955790 PMCID: PMC9368764 DOI: 10.3390/ijms23158656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to identifying the major B- and T-cell subpopulations involved in autoimmune rheumatic diseases (ARDs), in recent years special attention has been paid to studying the expression of their activation markers and immune checkpoints (ICPs). The activation markers on B and T cells are a consequence of the immune response, and these molecules are considered as sensitive specific markers of ARD activity and as promising targets for immunotherapy. ICPs regulate the activation of the immune response by preventing the initiation of autoimmune processes, and they modulate it by reducing immune cell-induced organ and tissue damage. The article considers the possible correlation of ICPs with the activity of ARDs, the efficacy of specific ARD treatments, and the prospects for the use of activation molecules and activation/blocking ICPs for the treatment of ARDs.
Collapse
Affiliation(s)
- Elena V. Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
- Correspondence: ; Tel.: +7-905-538-0399
| | - Dmitry V. Tabakov
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| | - Daria A. Gerasimova
- Department of Organization and Economy of Pharmacy, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2, Trubetskaya St., 119526 Moscow, Russia
| | - Tatiana V. Popkova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| |
Collapse
|
3
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Guan X, He Y, Wei Z, Shi C, Li Y, Zhao R, Pan L, Han Y, Hou T, Yang J. Crosstalk between Wnt/β-catenin signaling and NF-κB signaling contributes to apical periodontitis. Int Immunopharmacol 2021; 98:107843. [PMID: 34153668 DOI: 10.1016/j.intimp.2021.107843] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
In physiology conditions, the crosstalk of signaling pathways has been considered to extend the functions of individual pathways and results in a more complex regulatory network. The Wnt3a/β-catenin and NF-κB signaling pathways have been demonstrated involving in apical periodontitis (AP). As AP progresses, ultimately causes tooth loss. In the present study, we investigate the contribution of the crosstalk between the Wnt3a/β-catenin and NF-κB signaling pathways to the development of AP. Clinically, utilizing 60 human AP and healthy tissues (30 samples for each group), we found that the expression levels of Wnt3a/β-catenin and NF-κB were elevated in the Ap tissues compared to that in the healthy group. To further study the roles of Wnt3a/β-catenin and NF-κB signaling pathways in the development of AP, and the contribution of the crosstalk between these two signaling pathways to AP, we established the AP animal model and observed that, first, both pathways are activated in the AP group compared to the control group. Interestingly, by immunoprecipitation and western blot experiments, we revealed that there is greater interaction between NF-κB (phorspho-p65) and β-catenin in AP tissues compared to the control tissues. Importantly, when the NF-κB signaling pathway was blocked by its inhibitor, pyrrolidine dithiocarbamate (PDTC), the activity of the Wnt3a/β-catenin signaling pathway was abolished, and consequently led to the attenuation of the inflammation response in LPS-induced human periodontal ligament cells (hPDLCs). Thus, our data indicate that the crosstalk between Wnt3a/β-catenin and NF-κB signaling pathway contributes to the development of AP, and provide a therapeutic strategy for the treatment of AP as well.
Collapse
Affiliation(s)
- Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Rui Zhao
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Lifei Pan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yue Han
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Tiezhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
5
|
Gudjonsson JE, Kabashima K, Eyerich K. Mechanisms of skin autoimmunity: Cellular and soluble immune components of the skin. J Allergy Clin Immunol 2020; 146:8-16. [PMID: 32631499 DOI: 10.1016/j.jaci.2020.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases are driven by either T cells or antibodies reacting specifically to 1 or more self-antigens. Although a number of self-antigens associated with skin diseases have been identified, the causative antigen(s) remains unknown in the great majority of skin diseases suspected to be autoimmune driven. Model diseases such as pemphigus, dermatitis herpetiformis, and more recently psoriasis have added greatly to our understanding of skin autoimmunity. Depending on the dominant T- or B-cell phenotype, skin autoimmune diseases usually follow 1 of 6 immune response patterns: lichenoid, eczematous, bullous, psoriatic, fibrogenic, or granulomatous. Usually, skin autoimmunity develops as a consequence of several events-an altered microbiome, inherited dysfunctional immunity, antigens activating innate immunity, epigenetic modifications, sex predisposition, and impact of antigens either as neoantigen or through molecular mimicry. This review summarizes currently known antigens of skin autoimmune diseases and discusses mechanisms of skin autoimmunity.
Collapse
Affiliation(s)
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Department of Dermatology and Venereology, Stockholm, Sweden; Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Bellanti JA. Epigenetic studies and pediatric research. Pediatr Res 2020; 87:378-384. [PMID: 31731288 DOI: 10.1038/s41390-019-0644-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
The 2020 Annual Review Issue, "Preventing Disease in the 21st Century" was selected by the Editors-in-Chief of Pediatric Research to include a variety of disease entities that confront health-care practitioners entrusted to the care of infants and children. In keeping with this mandate, this article reviews the subject of epigenetics, which impacts pediatric research from bench to bedside. Epigenetic mechanisms exert their effects through the interaction of environment, various susceptibility genes, and immunologic development and include: (1) DNA methylation; (2) posttranslational modifications of histone proteins through acetylation and methylation, and (3) RNA-mediated gene silencing by microRNA (miRNA) regulation. The effects of epigenetics during fetal life and early periods of development are first reviewed together with clinical applications of cardiovascular and metabolic disorders in later life. The relationships of epigenetics to the allergic and autoimmune diseases and cancer are next reviewed. A specific focus of the article is directed to the recent recognition that many of these disorders are driven by aberrant immune responses in which immunoregulatory events are often poorly functioning and where through interventive epigenetic measures prevention may be possible by alterations in programming of DNA during fetal and early periods as well as in later life.
Collapse
Affiliation(s)
- Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA. .,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
7
|
Jimi E, Takakura N, Hiura F, Nakamura I, Hirata-Tsuchiya S. The Role of NF-κB in Physiological Bone Development and Inflammatory Bone Diseases: Is NF-κB Inhibition "Killing Two Birds with One Stone"? Cells 2019; 8:cells8121636. [PMID: 31847314 PMCID: PMC6952937 DOI: 10.3390/cells8121636] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that regulates the expression of various genes involved in inflammation and the immune response. The activation of NF-κB occurs via two pathways: inflammatory cytokines, such as TNF-α and IL-1β, activate the "classical pathway", and cytokines involved in lymph node formation, such as CD40L, activate the "alternative pathway". NF-κB1 (p50) and NF-κB2 (p52) double-knockout mice exhibited severe osteopetrosis due to the total lack of osteoclasts, suggesting that NF-κB activation is required for osteoclast differentiation. These results indicate that NF-κB may be a therapeutic target for inflammatory bone diseases, such as rheumatoid arthritis and periodontal disease. On the other hand, mice that express the dominant negative form of IκB kinase (IKK)-β specifically in osteoblasts exhibited increased bone mass, but there was no change in osteoclast numbers. Therefore, inhibition of NF-κB is thought to promote bone formation. Taken together, the inhibition of NF-κB leads to "killing two birds with one stone": it suppresses bone resorption and promotes bone formation. This review describes the role of NF-κB in physiological bone metabolism, pathologic bone destruction, and bone regeneration.
Collapse
Affiliation(s)
- Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
- Correspondence: ; Tel.: 81-92-642-6332
| | - Nana Takakura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
| | - Fumitaka Hiura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.T.); (F.H.)
| | - Ichiro Nakamura
- Faculty of Health and Medical Science, Teikyo Heisei University, 2-51-4 Higashi-Ikebukuro, Toshima, Tokyo 170-8445, Japan;
| | - Shizu Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| |
Collapse
|
8
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|