1
|
Abduh MS, Saghir SAM, Al-Gabri NA, Ahmeda AF, Abdelkarim M, Aldaqal SM, Alshawsh MA. Interleukin-35 and Thymoquinone nanoparticle-based intervention for liver protection against paracetamol-induced liver injury in rats. Saudi J Biol Sci 2023; 30:103806. [PMID: 37766887 PMCID: PMC10519855 DOI: 10.1016/j.sjbs.2023.103806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Paracetamol (PAR) is a commonly used antipyretic and analgesic agent, but its excessive usage can induce liver damage and major health consequences. Interleukin-35 (IL-35) is utilized to treat immunological disorders, intestinal illness, arthritis, allergic disease, hepatitis, and cancer. Thymoquinone (THYO) is also effective against a wide range of disorders. Consequently, this study sought out to explore the ameliorative effects of IL-35 and THYO against PAR-induced hepatotoxicity in rats. Sixty male rats were separated into six groups (10 rats/group): I control (0.5 mL NaCl, 0.9%/rat via oral gavage); II (IL-35), and III (TYHO) received intraperitoneal (i.p) injection of IL-35 (200 ng/kg) or THYO (0.5 mg/kg), respectively. Group IV (PAR) received 600 mg/kg of PAR orally; V (PAR + IL-35) and VI (PAR + TYHO); rats received 600 mg/kg of PAR orally and i.p injection of IL-35 (200 ng/kg) or THYO (0.5 mg/kg), respectively. Administration of IL-35 or THYO markedly mitigated the increasing in the levels of liver parameters triggered by PAR and noticeable enhancement of antioxidant and immunological markers were observed. Additionally, IL-35 or THYO decreased TNF-α, NF-κB, IL-10, IL-6 and IFN-γ in contrast to the PAR control group. Moreover, levels of Capase-3, and cytochrome C were significantly reduced by THYO or IL35, while, levels of Bcl-2 were markedly increased. Furthermore, significant downregulation of IL1-β, TNF-α, TGF-β, and Caspas-3 genes, as well as significant upregulation of Bcl-2 and IL-10 expression were detected. In conclusion, IL-35 and THYO insulated liver from PAR toxicity by mitigating oxidative stress, tissue damage, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sultan Ayesh Mohammed Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Naif Ahmed Al-Gabri
- Laboratory of Salam Veterinary Group, Burydha 51911, Saudi Arabia
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Thamar 124401, Yemen
| | - Ahmad Faheem Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Mouaadh Abdelkarim
- College of General Education, University of Doha for Science and Technology, Jelaiah Street, Duhail North, 24449 Doha, Qatar
| | - Saleh Mohammad Aldaqal
- Immune Responses in Different Diseases Research Group, Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Abdullah Alshawsh
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Khokhar M, Purohit P, Gadwal A, Tomo S, Bajpai NK, Shukla R. The Differentially Expressed Genes Responsible for the Development of T Helper 9 Cells From T Helper 2 Cells in Various Disease States: Immuno-Interactomics Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2023; 4:e42421. [PMID: 38935935 PMCID: PMC11135241 DOI: 10.2196/42421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 06/29/2024]
Abstract
BACKGROUND T helper (Th) 9 cells are a novel subset of Th cells that develop independently from Th2 cells and are characterized by the secretion of interleukin (IL)-9. Studies have suggested the involvement of Th9 cells in variable diseases such as allergic and pulmonary diseases (eg, asthma, chronic obstructive airway disease, chronic rhinosinusitis, nasal polyps, and pulmonary hypoplasia), metabolic diseases (eg, acute leukemia, myelocytic leukemia, breast cancer, lung cancer, melanoma, pancreatic cancer), neuropsychiatric disorders (eg, Alzheimer disease), autoimmune diseases (eg, Graves disease, Crohn disease, colitis, psoriasis, systemic lupus erythematosus, systemic scleroderma, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, atopic dermatitis, eczema), and infectious diseases (eg, tuberculosis, hepatitis). However, there is a dearth of information on its involvement in other metabolic, neuropsychiatric, and infectious diseases. OBJECTIVE This study aims to identify significant differentially altered genes in the conversion of Th2 to Th9 cells, and their regulating microRNAs (miRs) from publicly available Gene Expression Omnibus data sets of the mouse model using in silico analysis to unravel various pathogenic pathways involved in disease processes. METHODS Using differentially expressed genes (DEGs) identified from 2 publicly available data sets (GSE99166 and GSE123501) we performed functional enrichment and network analyses to identify pathways, protein-protein interactions, miR-messenger RNA associations, and disease-gene associations related to significant differentially altered genes implicated in the conversion of Th2 to Th9 cells. RESULTS We extracted 260 common downregulated, 236 common upregulated, and 634 common DEGs from the expression profiles of data sets GSE99166 and GSE123501. Codifferentially expressed ILs, cytokines, receptors, and transcription factors (TFs) were enriched in 7 crucial Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology. We constructed the protein-protein interaction network and predicted the top regulatory miRs involved in the Th2 to Th9 differentiation pathways. We also identified various metabolic, allergic and pulmonary, neuropsychiatric, autoimmune, and infectious diseases as well as carcinomas where the differentiation of Th2 to Th9 may play a crucial role. CONCLUSIONS This study identified hitherto unexplored possible associations between Th9 and disease states. Some important ILs, including CCL1 (chemokine [C-C motif] ligand 1), CCL20 (chemokine [C-C motif] ligand 20), IL-13, IL-4, IL-12A, and IL-9; receptors, including IL-12RB1, IL-4RA (interleukin 9 receptor alpha), CD53 (cluster of differentiation 53), CD6 (cluster of differentiation 6), CD5 (cluster of differentiation 5), CD83 (cluster of differentiation 83), CD197 (cluster of differentiation 197), IL-1RL1 (interleukin 1 receptor-like 1), CD101 (cluster of differentiation 101), CD96 (cluster of differentiation 96), CD72 (cluster of differentiation 72), CD7 (cluster of differentiation 7), CD152 (cytotoxic T lymphocyte-associated protein 4), CD38 (cluster of differentiation 38), CX3CR1 (chemokine [C-X3-C motif] receptor 1), CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha), CTLA28, and CD196 (cluster of differentiation 196); and TFs, including FOXP3 (forkhead box P3), IRF8 (interferon regulatory factor 8), FOXP2 (forkhead box P2), RORA (RAR-related orphan receptor alpha), AHR (aryl-hydrocarbon receptor), MAF (avian musculoaponeurotic fibrosarcoma oncogene homolog), SMAD6 (SMAD family member 6), JUN (Jun proto-oncogene), JAK2 (Janus kinase 2), EP300 (E1A binding protein p300), ATF6 (activating transcription factor 6), BTAF1 (B-TFIID TATA-box binding protein associated factor 1), BAFT (basic leucine zipper transcription factor), NOTCH1 (neurogenic locus notch homolog protein 1), GATA3 (GATA binding protein 3), SATB1 (special AT-rich sequence binding protein 1), BMP7 (bone morphogenetic protein 7), and PPARG (peroxisome proliferator-activated receptor gamma, were able to identify significant differentially altered genes in the conversion of Th2 to Th9 cells. We identified some common miRs that could target the DEGs. The scarcity of studies on the role of Th9 in metabolic diseases highlights the lacunae in this field. Our study provides the rationale for exploring the role of Th9 in various metabolic disorders such as diabetes mellitus, diabetic nephropathy, hypertensive disease, ischemic stroke, steatohepatitis, liver fibrosis, obesity, adenocarcinoma, glioblastoma and glioma, malignant neoplasm of stomach, melanoma, neuroblastoma, osteosarcoma, pancreatic carcinoma, prostate carcinoma, and stomach carcinoma.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Nitin Kumar Bajpai
- Department of Nephrology, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Ravindra Shukla
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| |
Collapse
|
3
|
Abstract
The tumor microenvironment (TME) is a heterogeneous, complex organization composed of tumor, stroma, and endothelial cells that is characterized by cross talk between tumor and innate and adaptive immune cells. Over the last decade, it has become increasingly clear that the immune cells in the TME play a critical role in controlling or promoting tumor growth. The function of T lymphocytes in this process has been well characterized. On the other hand, the function of B lymphocytes is less clear, although recent data from our group and others have strongly indicated a critical role for B cells in antitumor immunity. There are, however, a multitude of populations of B cells found within the TME, ranging from naive B cells all the way to terminally differentiated plasma cells and memory B cells. Here, we characterize the role of B cells in the TME in both animal models and patients, with an emphasis on dissecting how B cell heterogeneity contributes to the immune response to cancer.
Collapse
Affiliation(s)
- Stephanie M Downs-Canner
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jeremy Meier
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA;
| | - Benjamin G Vincent
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; .,Bioinformatics and Computational Biology Program, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan S Serody
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; .,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Yang L, Liu S, Zhang Q, Jia S, Qiu C, Jin Z. Overexpression of ascitic interleukin-35 induces CD8 + T cell exhaustion in liver cirrhotic patients with spontaneous bacterial peritonitis. Int Immunopharmacol 2022; 108:108729. [PMID: 35349961 DOI: 10.1016/j.intimp.2022.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 03/20/2022] [Indexed: 11/15/2022]
Abstract
Interleukin (IL) -35 induces immunotolerance by suppression of CD8+ T cells during chronic infections and cancers. In the present study, we amined to investigate the role of IL-35-mediated regulation of CD8+ T cells in patients with liver cirrhosis. Seventy-one patients with liver cirrhosis (46 patients with untainted ascites and 25 patients with spontaneous bacterial peritonitis [SBP]) and 22 controls were enrolled. Plasma and ascitic IL-35 levels were measured using ELISA. Peripheral and ascitic CD4+ and CD8+ T cells were purified to investigate their functional phenotypes. IL-35-stimulated CD8+ T cells were cultured with HepG2 cells in direct and indirect contact systems. Lactate dehydrogenase expression and cytokine secretion were measured to determine the cytotoxicity of CD8+ T cells. Plasma IL-35 was elevated in patients with liver cirrhosis, and ascitic IL-35 levels were higher in the SBP group than in the untainted ascites group. No significant differences in transcription factor expression or cytokine production in peripheral and ascitic CD4+ T cells were observed among groups. In the SBP group, ascitic CD8+ T cells expressed decreased cytotoxic molecules, along with the reduced secretion of interferon-γ and tumor necrosis factor-α when compared with the untainted ascites group. IL-35 stimulation suppressed ascitic CD8+ T cell cytotoxicity and cytokine production in both direct and indirect contact culture systems. This process was accompanied by decreased cytotoxic molecule expression and increased immune-checkpoint molecules in ascitic CD8+ T cells. The present findings revealed that overexpression of ascitic IL-35 dampened the cytotoxicity of CD8+ T cells in liver cirrhotic patients with SBP.
Collapse
Affiliation(s)
- Lanlan Yang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Siqi Liu
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Qian Zhang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Shengnan Jia
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Chen Qiu
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Zhenjing Jin
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China.
| |
Collapse
|
5
|
Abstract
IgG4-related conditions affecting the digestive tract are part of a multi-organ fibro-inflammatory disorder termed IgG4-related disease (IgG4-RD), with autoimmune pancreatitis and IgG4-related cholangitis being the most prominent manifestations. Gastrointestinal symptoms include jaundice, weight loss, abdominal pain, biliary strictures, and pancreatic and hepatic masses that mimic malignant diseases. IgG4-RD manifestations occur less frequently elsewhere in the digestive tract, namely in the oesophagus, retroperitoneum or intestine. Evidence-based European guidelines frame the current state-of-the-art in the diagnosis and management of IgG4-related digestive tract disease. Diagnosis is based on histology (if available), imaging, serology, other organ involvement and response to therapy (HISORt criteria). Few biomarkers beyond serum IgG4 concentrations are reliable. The first-line therapy (glucocorticoids) is swiftly effective but disease flares are common at low doses or after tapering. Second-line therapy might consist of other immunosuppressive drugs such as thiopurines or rituximab. Further trials, for example, of anti-CD19 drugs, are ongoing. Although an association between IgG4-RD and the development of malignancies has been postulated, the true nature of this relationship remains uncertain at this time.
Collapse
|
6
|
Michailidou D, Schwartz DM, Mustelin T, Hughes GC. Allergic Aspects of IgG4-Related Disease: Implications for Pathogenesis and Therapy. Front Immunol 2021; 12:693192. [PMID: 34305927 PMCID: PMC8292787 DOI: 10.3389/fimmu.2021.693192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
IgG4-related disease (IgG4-RD) is a rare systemic fibroinflammatory disease frequently associated with allergy. The pathogenesis of IgG4-RD is poorly understood, and effective therapies are limited. However, IgG4-RD appears to involve some of the same pathogenic mechanisms observed in allergic disease, such as T helper 2 (Th2) and regulatory T cell (Treg) activation, IgG4 and IgE hypersecretion, and blood/tissue eosinophilia. In addition, IgG4-RD tissue fibrosis appears to involve activation of basophils and mast cells and their release of alarmins and cytokines. In this article, we review allergy-like features of IgG4-RD and highlight targeted therapies for allergy that have potential in treating patients with IgG4-RD.
Collapse
Affiliation(s)
- Despina Michailidou
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Daniella Muallem Schwartz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tomas Mustelin
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Grant C. Hughes
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Zhang Q, Yang L, Liu S, Zhang M, Jin Z. Interleukin-35 Suppresses Interleukin-9-Secreting CD4 + T Cell Activity in Patients With Hepatitis B-Related Hepatocellular Carcinoma. Front Immunol 2021; 12:645835. [PMID: 34177894 PMCID: PMC8222719 DOI: 10.3389/fimmu.2021.645835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection induces dysfunction of immune response and chronic liver damage. However, the mechanisms that account for HBV-related hepatocellular carcinoma (HCC) are poorly understood. The aim of present study was to investigate the modulatory role of interleukin (IL)-35, an immunosuppressive cytokine, to IL-9-secreting T cells in hepatitis B-related HCC. Twenty-two HBV-related HCC patients, twenty-seven chronic hepatitis B (CHB) patients, and eleven controls were enrolled. Serum IL-35 and IL-9 concentration was measured by ELISA. Peripheral and liver-infiltrating non-specific and HBV-specific Th9 and Tc9 cells were assessed by flow cytometry. The regulatory activity of IL-35 to peripheral and liver-infiltrating Th9 cells was assessed in co-culture system between CD8+ T cells and HepG2.2.15 cells. Serum IL-35 was up-regulated, while IL-9 was down-regulated in HBV-related HCC patients compared with in CHB patients and controls. Peripheral non-specific and HBV-specific Th9 cells, but not Tc9 cells, were decreased in HBV-related HCC patients. Liver-infiltrating non-specific and HBV-specific Th9 cells were also reduced in HCC tumor sites. CD8+ T cells from CHB and HBV-related HCC patients revealed decreased cytotoxicity compared with those from controls. Autologous Th9 cells mediated the elevation of CD8+ T cell cytotoxicity, and this process was depending on IL-9 secretion. Recombinant IL-35 stimulation inhibited IL-9 secretion and PU.1 mRNA expression in non-specific and HBV-specific Th9 cells, leading to the suppression of Th9-mediated CD8+ T cell cytotoxicity in CHB and HBV-related HCC patients. Our current data indicated that IL-35 might dampen non-specific and HBV-specific Th9 cells activity in HBV-related HCC patients.
Collapse
Affiliation(s)
- Qian Zhang
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Lanlan Yang
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Siqi Liu
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Mengyao Zhang
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Zhenjing Jin
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
8
|
Hu S, Lian PP, Hu Y, Zhu XY, Jiang SW, Ma Q, Li LY, Yang JF, Yang L, Guo HY, Zhou H, Yang CC, Meng XM, Li J, Li HW, Xu T, Zhou H. The Role of IL-35 in the Pathophysiological Processes of Liver Disease. Front Pharmacol 2021; 11:569575. [PMID: 33584256 PMCID: PMC7873894 DOI: 10.3389/fphar.2020.569575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
It is known that liver diseases have several characteristics of massive lipid accumulation and lipid metabolic disorder, and are divided into liver inflammation, liver fibrosis, liver cirrhosis (LC), and hepatocellular carcinoma (HCC) in patients. Interleukin (IL)-35, a new-discovered cytokine, can protect the liver from the environmental attack by increasing the ratio of Tregs (T regulatory cells) which can increase the anti-inflammatory cytokines and inhibit the proliferation of immune cellular. Interestingly, two opposite mechanisms (pro-inflammatory and anti-inflammatory) have connection with the ultimate formation of liver diseases, which suggest that IL-35 may play crucial function in the process of liver diseases through immunosuppressive regulation. Besides, some obvious advantages also imply that IL-35 can be considered as a new therapeutic target to control the progression of liver diseases, while its mechanism of function still needs further research.
Collapse
Affiliation(s)
- Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Pan-Pan Lian
- School of Pharmacy, NanJing University, NanJing, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xing-Yu Zhu
- National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shao-Wei Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Ma
- Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun-Fa Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Li Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hai-Yue Guo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Chen-Chen Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hai-Wen Li
- The Third Affiliated Hospital of Anhui Medical University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Huan Zhou
- National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
9
|
Xie Q, Xu WD, Pan M, Lan YY, Liu XY, Su LC, Huang AF. Association of IL-35 expression and gene polymorphisms in rheumatoid arthritis. Int Immunopharmacol 2020; 90:107231. [PMID: 33307515 DOI: 10.1016/j.intimp.2020.107231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-35 is the newest member of the IL-12 family. It is expressed in many immune cells and has been recognized as a novel inflammatory cytokine that may have bifunctional properties. Recent findings have indicated that the expression of IL-35 is abnormal in rheumatoid arthritis (RA) patients. However, the results were inconsistent. In this study, 400 RA patients were recruited to evaluate serum levels of IL-35 in a Chinese Han population by enzyme-linked immunosorbent assay. The association of IL-35 gene polymorphisms and RA genetic susceptibility was investigated in 400 RA patients and 612 healthy controls. The results showed that serum levels of IL-35 were elevated in 100 RA patients compared to 51 healthy controls, relating to disease activity and synovial fluid IL-35 expression in the training cohort. Another independent 300 RA patients and 369 other rheumatic disease patients (98 lupus, 95 osteoarthritis, 95 gout, 42 Sjogren's syndrome and 39 ankylosing spondylitis patients) confirmed that serum levels of IL-35 were elevated in RA patients, and serum IL-35 has good diagnostic ability for differentiating RA from the other rheumatic diseases. The genotyping of 10 IL-35 polymorphisms, including rs2227314, rs2243115, rs2243123, rs2243131, rs568408, rs583911, rs428253, rs4740, rs9807813 and rs4905, revealed that rs2227314, rs2243131, rs9807813, and rs583911 were correlated with RA risk. Different genotypes (rs2227314, rs583911, and rs9807813) exhibited different expression of IL-35. These findings demonstrate that serum levels of IL-35 are increased in RA patients and that IL-35 polymorphisms are correlated with RA risk.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Min Pan
- Jiangyang Zone for Disease Prevention and Control, 34 Jiangyang south road, Luzhou 646000, Sichuan, China
| | - You-Yu Lan
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, Hubei Minzu University, Enshi 445000, Hubei, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|