1
|
Lampl C, Versijpt J, Amin FM, Deligianni CI, Gil-Gouveia R, Jassal T, MaassenVanDenBrink A, Ornello R, Paungarttner J, Sanchez-Del-Rio M, Reuter U, Uluduz D, de Vries T, Zeraatkar D, Sacco S. European Headache Federation (EHF) critical re-appraisal and meta-analysis of oral drugs in migraine prevention-part 1: amitriptyline. J Headache Pain 2023; 24:39. [PMID: 37038134 PMCID: PMC10088191 DOI: 10.1186/s10194-023-01573-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
OBJECTIVE The aim of this paper is to critically re-appraise the published trials assessing amitriptyline for migraine prophylaxis. METHODS We report our methods and results following the Preferred Reporting Items for Systematic Reviews (PRISMA), by searching MEDLINE, EMBASE, Cochrane CENTRAL, and ClinicalTrials.gov for randomized trials of pharmacologic treatments for migraine prophylaxis. We included randomized trials that compared amitriptyline with placebo for migraine prophylaxis in adults. Our outcomes of interest were informed by the Outcome Set for preventive intervention trials in chronic and episodic migraine (COSMIG) and include the proportion of patients who experience a 50% or more reduction in migraine days per month, migraine days per month, and adverse events leading to discontinuation. We assessed risk of bias by using a modified Cochrane RoB 2.0 tool and the certainty of evidence by using the GRADE approach. RESULTS Our search yielded 10.826 unique records, of which three trials (n = 622) were eligible for data synthesis and analysis. We found moderate certainty evidence that amitriptyline increases the proportion of patients who experience a 50% or more reduction in monthly migraine days, compared to placebo (relative risk: 1.60 (95% CI 1.17 to 2.19); absolute risk difference: 165 more per 1,000 (95% CI 47 more to 327 more). We found moderate certainty evidence that amitriptyline increases the proportion of patients who discontinue due to adverse events compared to placebo (risk difference: 0.05 (95% CI 0.01 to 0.10); absolute risk difference: 50 more per 1,000 (95% CI 10 more to 100 more). CONCLUSIONS Our meta-analysis showed that amitriptyline may have a prophylactic role in migraine patients, however these results are far from robust. This warrants further large-scale research to evaluate the role of amitriptyline in migraine prevention.
Collapse
Affiliation(s)
- Christian Lampl
- Department of Neurology and Stroke Unit, Konventhospital Barmherzige Brüder Linz, Linz, Austria.
- Headache Medical Center Linz, Linz, Austria.
| | - Jan Versijpt
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | | | - Raquel Gil-Gouveia
- Hospital da Luz Headache Center, Neurology Department, Hospital da Luz Lisboa, Lisbon, Portugal
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Tanvir Jassal
- Department of Anesthesia and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | | | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Derya Uluduz
- Department of Neurology Istanbul Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Tessa de Vries
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, The Netherlands
| | - Dena Zeraatkar
- Department of Anesthesia and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Ambroxol for neuropathic pain: hiding in plain sight? Pain 2023; 164:3-13. [PMID: 35580314 DOI: 10.1097/j.pain.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Ambroxol is a multifaceted drug with primarily mucoactive and secretolytic actions, along with anti-inflammatory, antioxidant, and local anaesthetic properties. It has a long history of use in the treatment of respiratory tract diseases and has shown to be efficacious in relieving sore throat. In more recent years, ambroxol has gained interest for its potential usefulness in treating neuropathic pain. Research into this area has been slow, despite clear preclinical evidence to support its primary analgesic mechanism of action-blockade of voltage-gated sodium (Na v ) channels in sensory neurons. Ambroxol is a commercially available inhibitor of Na v 1.8, a crucial player in the pathophysiology of neuropathic pain, and Na v 1.7, a particularly exciting target for the treatment of chronic pain. In this review, we discuss the analgesic mechanisms of action of ambroxol, as well as proposed synergistic properties, followed by the preclinical and clinical results of its use in the treatment of persistent pain and neuropathic pain symptoms, including trigeminal neuralgia, fibromyalgia, and complex regional pain syndrome. With its well-established safety profile, extensive preclinical and clinical drug data, and early evidence of clinical effectiveness, ambroxol is an old drug worthy of further investigation for repurposing. As a patent-expired drug, a push is needed to progress the drug to clinical trials for neuropathic pain. We encourage the pharmaceutical industry to look at patented drug formulations and take an active role in bringing an optimized version for neuropathic pain to market.
Collapse
|
3
|
Scorpion Neurotoxin Syb-prII-1 Exerts Analgesic Effect through Nav1.8 Channel and MAPKs Pathway. Int J Mol Sci 2022; 23:ijms23137065. [PMID: 35806068 PMCID: PMC9266357 DOI: 10.3390/ijms23137065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Trigeminal neuralgia (TN) is a common type of peripheral neuralgia in clinical practice, which is usually difficult to cure. Common analgesic drugs are difficult for achieving the desired analgesic effect. Syb-prII-1 is a β-type scorpion neurotoxin isolated from the scorpion venom of Buthus martensi Karsch (BmK). It has an important influence on the voltage-gated sodium channel (VGSCs), especially closely related to Nav1.8 and Nav1.9. To explore whether Syb-prII-1 has a good analgesic effect on TN, we established the Sprague Dawley (SD) rats’ chronic constriction injury of the infraorbital nerve (IoN-CCI) model. Behavioral, electrophysiological, Western blot, and other methods were used to verify the model. It was found that Syb-prII-1 could significantly relieve the pain behavior of IoN-CCI rats. After Syb-prII-1 was given, the phosphorylation level of the mitogen-activated protein kinases (MAPKs) pathway showed a dose-dependent decrease after IoN-CCI injury. Moreover, Syb-prII-1(4.0 mg/kg) could significantly change the steady-state activation and inactivation curves of Nav1.8. The steady-state activation and inactivation curves of Nav1.9 were similar to those of Nav1.8, but there was no significant difference. It was speculated that it might play an auxiliary role. The binding mode, critical residues, and specific interaction type of Syb-prII-1 and VSD2rNav1.8 were clarified with computational simulation methods. Our results indicated that Syb-prII-1 could provide a potential treatment for TN by acting on the Nav1.8 target.
Collapse
|
4
|
Fan Z, Zheng X, Li D, Chen H, Li L. Comparison of lidocaine and ropivacaine stellate ganglion blockade in treating upper limb postherpetic neuralgia. Medicine (Baltimore) 2022; 101:e29394. [PMID: 35687777 PMCID: PMC9276270 DOI: 10.1097/md.0000000000029394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 01/04/2023] Open
Abstract
To provide a basis for treating postherpetic neuralgia (PHN), we compared the efficacy of lidocaine and ropivacaine stellate ganglion block (SGB) in PHN treatment in the upper limbs.Data from 252 patients with upper-limb PHN were retrospectively analyzed. The lidocaine group (n = 118) was treated with oral pregabalin capsules 75 mg twice a day, tramadol hydrochloride sustained release tablets 100 mg twice a day, and amitriptyline 25 mg once at night combined with ultrasound-guided lidocaine SGB; the ropivacaine group (n = 134) was orally administered the same medicines combined with ultrasound-guided ropivacaine SGB. The visual analog scale (VAS), self-rating anxiety scale (SAS), and adverse reactions were compared between the groups before treatment and at 1 week, 1 month, and 3 months after treatment.There were no significant differences between the lidocaine and ropivacaine groups in terms of sex, age, height, weight, and pain duration (P > .05). There was no significant difference between the groups in VAS and SAS scores before treatment (P > .05). At 1 week, 1 month, and 3 months after ultrasound-guided SGB treatment, the VAS and SAS scores were significantly lower in the ropivacaine group than in the lidocaine group (P < .05). There were no significant differences between the groups in terms of adverse reactions (P > .05).For ultrasound-guided SGB treatment of upper limb PHN, ropivacaine is superior to lidocaine. Ultrasound-guided ropivacaine SGB is safe and effective for the treatment of upper limb PHN.
Collapse
Affiliation(s)
- Zhouhong Fan
- Department of Pain, Yichun People's Hospital, Yichun, Jiangxi Province, PR China
| | - Xin Zheng
- Department of Pain, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Dongbai Li
- Department of Pain, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Haopeng Chen
- Department of Pain, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Lingchao Li
- Department of Pain, The Second Hospital of Dalian Medical University, Dalian, PR China
| |
Collapse
|
5
|
Zhang M, Liu Y, Hu G, Kang L, Ran Y, Su M, Yu S. Cognitive impairment in a classical rat model of chronic migraine may be due to alterations in hippocampal synaptic plasticity and N-methyl-D-aspartate receptor subunits. Mol Pain 2021; 16:1744806920959582. [PMID: 32869707 PMCID: PMC7517984 DOI: 10.1177/1744806920959582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although migraine is a major global public health problem, its impact on cognitive abilities remains controversial. Thus, the present study investigated the effects of repeated administration of inflammatory soup to the dura of rats, over three weeks, on spatial cognition, hippocampal synaptic plasticity, and the expression of N-methyl-D-aspartate receptor subunits. Additionally, low doses of amitriptyline (5 mg/kg) were applied to assess its therapeutic effects. The inflammatory soup group exhibited significant reductions in the cutaneous stimulation threshold, presence of mild cognitive impairment, and decreased long-term potentiation in right hippocampus. However, amitriptyline improved pain behaviors, enhanced cognitive function, and increased synaptic plasticity in the inflammatory soup rats. On the other hand, the administration of amitriptyline to normal rats negatively influenced synaptic plasticity and reduced the expression of N-methyl-D-aspartate receptor subunits. The present results indicate that inflammatory soup-induced dural nociception led to impairments in spatial cognition that could be attributed to reductions in hippocampal long-term potentiation and the decreased expression of N-methyl-D-aspartate receptor subunits.
Collapse
Affiliation(s)
- Mingjie Zhang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| | - Yufei Liu
- Department of Neurology, Tianjin Third Central Hospital, PR China
| | - Guanqun Hu
- Department of Neurology, Tianjin Union Medicine Center, PR China
| | - Li Kang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| | - Ye Ran
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| | - Min Su
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| |
Collapse
|
6
|
Lin W, Zhang WW, Lyu N, Cao H, Xu WD, Zhang YQ. Growth Differentiation Factor-15 Produces Analgesia by Inhibiting Tetrodotoxin-Resistant Nav1.8 Sodium Channel Activity in Rat Primary Sensory Neurons. Neurosci Bull 2021; 37:1289-1302. [PMID: 34076854 PMCID: PMC8423960 DOI: 10.1007/s12264-021-00709-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a member of the transforming growth factor-β superfamily. It is widely distributed in the central and peripheral nervous systems. Whether and how GDF-15 modulates nociceptive signaling remains unclear. Behaviorally, we found that peripheral GDF-15 significantly elevated nociceptive response thresholds to mechanical and thermal stimuli in naïve and arthritic rats. Electrophysiologically, we demonstrated that GDF-15 decreased the excitability of small-diameter dorsal root ganglia (DRG) neurons. Furthermore, GDF-15 concentration-dependently suppressed tetrodotoxin-resistant sodium channel Nav1.8 currents, and shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction. GDF-15 also reduced window currents and slowed down the recovery rate of Nav1.8 channels, suggesting that GDF-15 accelerated inactivation and slowed recovery of the channel. Immunohistochemistry results showed that activin receptor-like kinase-2 (ALK2) was widely expressed in DRG medium- and small-diameter neurons, and some of them were Nav1.8-positive. Blockade of ALK2 prevented the GDF-15-induced inhibition of Nav1.8 currents and nociceptive behaviors. Inhibition of PKA and ERK, but not PKC, blocked the inhibitory effect of GDF-15 on Nav1.8 currents. These results suggest a functional link between GDF-15 and Nav1.8 in DRG neurons via ALK2 receptors and PKA associated with MEK/ERK, which mediate the peripheral analgesia of GDF-15.
Collapse
Affiliation(s)
- Wei Lin
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Wen Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning Lyu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Hong Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Dong Xu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Quitadamo P, Isoldi S, Mallardo S, Zenzeri L, Di Nardo G. Scientific Evidence for the Treatment of Children with Irritable Bowel Syndrome. Curr Pediatr Rev 2021; 17:92-102. [PMID: 33504308 DOI: 10.2174/1573396317666210127123330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022]
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastro-intestinal disorders which significantly impacts the quality of life of affected children. Abdominal pain improved by defecation, associated with a change in stool form and frequency, represents its specific clinical marker. Even if a number of potential patho-physiological mechanisms have been described, the exact underlying etiology of IBS is so far unclear. Likewise, no optimal treatment has ever been found neither for adult nor for pediatric patients. Current therapeutic options include drugs, dietary interventions and biopsychosocial therapies. The present review aims at evaluating the scientific evidence supporting the efficacy of these treatments for children with IBS.
Collapse
Affiliation(s)
- Paolo Quitadamo
- Department of Pediatrics, A.O.R.N. Santobono-Pausilipon, Naples, Italy
| | - Sara Isoldi
- Maternal and Child Health Department, Sapienza - University of Rome, Santa Maria Goretti Hospital, Polo Pontino, Latina, Italy
| | - Saverio Mallardo
- Maternal and Child Health Department, Sapienza - University of Rome, Santa Maria Goretti Hospital, Polo Pontino, Latina, Italy
| | - Letizia Zenzeri
- Pediatric Emergency Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Giovanni Di Nardo
- Chair of Pediatrics, Pediatric Gastroenterology and Endoscopy Unit, NESMOS Department, Faculty School of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
8
|
Inhibition of Fast Nerve Conduction Produced by Analgesics and Analgesic Adjuvants-Possible Involvement in Pain Alleviation. Pharmaceuticals (Basel) 2020; 13:ph13040062. [PMID: 32260535 PMCID: PMC7243109 DOI: 10.3390/ph13040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nociceptive information is transmitted from the periphery to the cerebral cortex mainly by action potential (AP) conduction in nerve fibers and chemical transmission at synapses. Although this nociceptive transmission is largely inhibited at synapses by analgesics and their adjuvants, it is possible that the antinociceptive drugs inhibit nerve AP conduction, contributing to their antinociceptive effects. Many of the drugs are reported to inhibit the nerve conduction of AP and voltage-gated Na+ and K+ channels involved in its production. Compound action potential (CAP) is a useful measure to know whether drugs act on nerve AP conduction. Clinically-used analgesics and analgesic adjuvants (opioids, non-steroidal anti-inflammatory drugs, 2-adrenoceptor agonists, antiepileptics, antidepressants and local anesthetics) were found to inhibit fast-conducting CAPs recorded from the frog sciatic nerve by using the air-gap method. Similar actions were produced by antinociceptive plant-derived chemicals. Their inhibitory actions depended on the concentrations and chemical structures of the drugs. This review article will mention the inhibitory actions of the antinociceptive compounds on CAPs in frog and mammalian peripheral (particularly, sciatic) nerves and on voltage-gated Na+ and K+ channels involved in AP production. Nerve AP conduction inhibition produced by analgesics and analgesic adjuvants is suggested to contribute to at least a part of their antinociceptive effects.
Collapse
|
9
|
Kern KU, Schwickert-Nieswandt M, Maihöfner C, Gaul C. Topical Ambroxol 20% for the Treatment of Classical Trigeminal Neuralgia - A New Option? Initial Clinical Case Observations. Headache 2019; 59:418-429. [PMID: 30653673 DOI: 10.1111/head.13475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Trigeminal neuralgia is difficult to treat and shows upregulation of sodium channels. The expectorant ambroxol acts as a strong local anesthetic, about 40 times stronger than lidocaine. It preferentially inhibits the channel subtype Nav 1.8, expressed especially in nociceptive C-fibers. It seemed reasonable to try ambroxol for the treatment with neuropathic facial pain unresponsive to other standard options. MATERIAL AND METHODS Medical records of patients suffering from classical trigeminal neuralgia (n = 5) and successful pain reduction following topical ambroxol 20% cream in addition to standard treatment are reported. RESULTS All patients reported pain attacks with pain intensity between 4 and 10 NRS (numeric pain scale). In all cases they could be triggered, 3 patients reported additional spontaneous pain. Attacks were reduced in all 5 patients. Pain reduction achieved following ambroxol 20% cream was 2-8 points (NRS) earliest within 15-30 minutes and lasted for 4-6 hours mostly. This was reproducible in all cases; in one case pain was eliminated after 1 week. No patient reported side effects or skin changes; oral medication was reduced in 2 patients. CONCLUSION For the first time, a clinically significant pain relief following topical ambroxol 20% cream in patients with trigeminal neuralgia is reported. In view of the positive side effect profile, topical ambroxol for patients with such a highly impaired quality of life should be investigated further as a matter of urgency.
Collapse
Affiliation(s)
- Kai-Uwe Kern
- Institute for Pain Medicine/Pain Practice Wiesbaden, Wiesbaden, Germany
| | | | | | - Charly Gaul
- Migraine and Headache Clinic, Königstein, Germany
| |
Collapse
|
10
|
Kang IS, Cho JH, Lee MG, Jang IS. Modulation of tetrodotoxin-resistant Na + channels by amitriptyline in dural afferent neurons. Eur J Pharmacol 2018; 838:69-77. [PMID: 30194938 DOI: 10.1016/j.ejphar.2018.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
Migraine is characterized by recurrent and disabling headaches; therefore, several drugs have been widely prescribed to prevent acute migraine attacks. Amitriptyline, a tricyclic antidepressant, is among the most commonly administered. It is poorly known, however, whether amitriptyline modulates the excitability of dural afferent neurons that transmit pain signals from the dura mater. In this study, the effects of amitriptyline on tetrodotoxin-resistant (TTX-R) Na+ channels were examined in acutely isolated rat dural afferent neurons, which were identified by the fluorescent dye DiI. The TTX-R Na+ currents (INa) were recorded from medium-sized DiI-positive neurons using a whole-cell patch clamp technique. Amitriptyline (3 μM) slightly reduced the peak component of transient INa and induced a marked decrease in the steady-state component of transient TTX-R INa, as well as in the slow ramp-induced TTX-R INa. Our findings suggest that amitriptyline specifically inhibits persistent Na+ currents mediated by TTX-R Na+ channels. While amitriptyline had minor effects on voltage-activation/inactivation, it increased the extent of the use-dependent inhibition of TTX-R Na+ channels. Amitriptyline also affected the inactivation kinetics of TTX-R Na+ channels by significantly accelerating the inactivation of TTX-R Na+ channels and slowing the subsequent recovery. Amitriptyline decreased the number of action potentials by increasing the threshold for their generation. In conclusion, the amitriptyline-mediated diverse modulation of TTX-R Na+ channels would be, at least in part, responsible for its prophylactic efficacy for migraine attacks.
Collapse
Affiliation(s)
- In-Sik Kang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea.
| |
Collapse
|
11
|
Chen X, Zhu C, Zhou H, Zhang Y, Cai Z, Wu H, Ren X, Gao L, Zhang J, Li Y. Key Role of the Membrane Trafficking of Nav1.5 Channel Protein in Antidepressant-Induced Brugada Syndrome. Front Physiol 2018; 9:1230. [PMID: 30233406 PMCID: PMC6134322 DOI: 10.3389/fphys.2018.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022] Open
Abstract
Anti-depressant treatment has been found to be associated with the development of Brugada syndrome (BrS) through poorly defined mechanisms. Herein, this study aimed to explore the molecular basis for amitriptyline-induced BrS. The effects of long-term treatments of amitriptyline on Nav1.5 were investigated using neonatal rat ventricular myocytes. The electrophysiological properties, expression and distribution of Nav1.5 were studied using the patch clamp, Western blot and confocal laser microscopy assays. Interactions between Nav1.5 and its interacting proteins, including ankyrin-G and dystrophin, were evaluated by co-immunoprecipitation. A larger decrease in the peak INa occurred after long-term treatments to amitriptyline (56.64%) than after acute exposure to amitriptyline (28%). Slow recovery from inactivation of Nav1.5 was observed after acute or long-term treatments to amitriptyline. The expression of Nav1.5 on the cell membrane showed a larger decrease by long-term treatments to amitriptyline than by acute exposure to amitriptyline. After long-term treatments to amitriptyline, we observed reduced Nav1.5 proteins on the cell membrane and the disrupted co-localization of Nav1.5 and ankyrin-G or dystrophin. Co-immunoprecipitation experiments further testified that the combination of Nav1.5 and ankyrin-G or dystrophin was severely weakened after long-term treatments to amitriptyline, implying the failed interaction between Nav1.5 and ankyrin-G or dystrophin. Our data suggest that the long-term effect of amitriptyline serves as an important contribution to BrS induced by amitriptyline. The mechanisms of BrS induced by amitriptyline were related to Nav1.5 trafficking and could be explained by the disrupted interaction of ankyrin-G, dystrophin and Nav1.5.
Collapse
Affiliation(s)
- Xi Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chao Zhu
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hao Zhou
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yu Zhang
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhongqi Cai
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Honglin Wu
- Department of Cardiology, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Xiaomeng Ren
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lei Gao
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiancheng Zhang
- Department of Cardiology, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Yang Li
- Department of Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
12
|
Li D, Zhang S, Yao Y, Xiang Y, Ma X, Wei X, Yan H, Liu X. Sigma-1 receptor agonist increases axon outgrowth of hippocampal neurons via voltage-gated calcium ions channels. CNS Neurosci Ther 2017; 23:930-939. [PMID: 28990373 PMCID: PMC6492695 DOI: 10.1111/cns.12768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/26/2017] [Accepted: 09/19/2017] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Sigma-1 receptors (Sig-1Rs) are unique endoplasmic reticulum proteins that have been implicated in both neurodegenerative and ischemic diseases, such as Alzheimer's disease and stroke. Accumulating evidence has suggested that Sig-1R plays a role in neuroprotection and axon outgrowth. The underlying mechanisms of Sig-1R-mediated neuroprotection have been well elucidated. However, the mechanisms underlying the effects of Sig-1R on axon outgrowth are not fully understood. METHODS To clarify this issue, we utilized immunofluorescence to compare the axon lengths of cultured naïve hippocampal neurons before and after the application of the Sig-1R agonist, SA4503. Then, electrophysiology and immunofluorescence were used to examine voltage-gated calcium ion channel (VGCCs) currents in the cell membranes and growth cones. RESULTS We found that Sig-1R activation dramatically enhanced the axonal length of the naïve hippocampal neurons. Application of the Sig-1R antagonist NE100 and gene knockdown techniques both demonstrated the effects of Sig-1R. The growth-promoting effect of SA4503 was accompanied by the inhibition of voltage-gated Ca2+ influx and was recapitulated by incubating the neurons with the L-type, N-type, and P/Q-type VGCC blockers, nimodipine, MVIIA and ω-agatoxin IVA, respectively. This effect was unrelated to glial cells. The application of SA4503 transformed the growth cone morphologies from complicated to simple, which favored axon outgrowth. CONCLUSION Sig-1R activation can enhance axon outgrowth and may have a substantial influence on neurogenesis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Li
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
- Department of SurgeryHospital of 73096 Troop of PLANanjingJiangsuChina
| | - Shu‐Zhuo Zhang
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yu‐Hong Yao
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yun Xiang
- Training basesHunan Key Laboratory of Chinese Materia Medical Power and Innovative Drugs Established by Provincial and MinistryHunan University of Chinese MedicineChangshaChina
| | - Xiao‐Yun Ma
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xiao‐Li Wei
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Hai‐Tao Yan
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xiao‐Yan Liu
- Department of Biochemical PharmacologyBeijing Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
13
|
Masuoka T, Gallar J, Belmonte C. Inhibitory Effect of Amitriptyline on the Impulse Activity of Cold Thermoreceptor Terminals of Intact and Tear-Deficient Guinea Pig Corneas. J Ocul Pharmacol Ther 2017; 34:195-203. [PMID: 29185841 DOI: 10.1089/jop.2017.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Chronic dryness of the ocular surface evokes sensitization of corneal cold-sensitive neurons through an increase of sodium currents and a decrease of potassium currents, leading to the unpleasant dryness and pain sensations typical of dry eye disease. Here, we explored the effects of amitriptyline, a voltage-gated Na+ channel blocker used for the treatment of depression and chronic pain, on nerve terminal impulse (NTI) activity of cold-sensitive nerve terminals recorded in intact and tear-deficient guinea pig corneas. METHODS Main lachrymal gland was surgically removed in anesthetized guinea pigs to induce chronic tear deficiency. Four to 6 weeks afterward, animals were sacrificed and both corneas placed in a perfusion chamber superfused at 34°C. Thermal stimuli were induced by changing the solution temperature from 34°C to 20°C (cooling ramp) and from 34°C to 50°C (heating ramp). Spontaneous and stimulus-evoked NTIs of cold-sensitive nerve terminals were recorded before, during, and after perfusion with solutions containing amitriptyline at different concentrations (3-30 μM). RESULTS Perfusion with amitriptyline inhibited irreversibly and in a concentration-dependent manner the spontaneous NTI activity of cold thermoreceptors of intact corneas. This effect was less evident in tear-deficient corneas. In addition, amitriptyline (10 μM) attenuated the maximal response to cooling ramps without changing cold threshold in intact but not in tear-deficient corneas. Only cold thermoreceptors with low cooling threshold values were sensitive to amitriptyline. CONCLUSION Amitriptyline effectively reduces the activity of cold thermoreceptors, although its efficacy is different in intact and tear-deficient corneas, which might be due to the changes induced by ocular dryness in the expression of the various voltage-gated Na+ channels responsible of the action potential generation and propagation.
Collapse
Affiliation(s)
- Takayoshi Masuoka
- 1 Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC , Alicante, Spain .,2 Department of Pharmacology, Kanazawa Medical University , Uchinada, Ishikawa, Japan
| | - Juana Gallar
- 1 Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC , Alicante, Spain
| | - Carlos Belmonte
- 1 Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC , Alicante, Spain
| |
Collapse
|
14
|
Horishita T, Yanagihara N, Ueno S, Okura D, Horishita R, Minami T, Ogata Y, Sudo Y, Uezono Y, Sata T, Kawasaki T. Antidepressants inhibit Na v1.3, Na v1.7, and Na v1.8 neuronal voltage-gated sodium channels more potently than Na v1.2 and Na v1.6 channels expressed in Xenopus oocytes. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1255-1270. [PMID: 28905186 DOI: 10.1007/s00210-017-1424-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
Abstract
Tricyclic antidepressants (TCAs) and duloxetine are used to treat neuropathic pain. However, the mechanisms underlying their analgesic effects remain unclear. Although many investigators have shown inhibitory effects of antidepressants on voltage-gated sodium channels (Nav) as a possible mechanism of analgesia, to our knowledge, no one has compared effects on the diverse variety of sodium channel α subunits. We investigated the effects of antidepressants on sodium currents in Xenopus oocytes expressing Nav1.2, Nav1.3, Nav1.6, Nav1.7, and Nav1.8 with a β1 subunit by using whole-cell, two-electrode, voltage clamp techniques. We also studied the role of the β3 subunit on the effect of antidepressants on Nav1.3. All antidepressants inhibited sodium currents in an inactivated state induced by all five α subunits with β1. The inhibitory effects were more potent for Nav1.3, Nav1.7, and Nav1.8, which are distributed in dorsal root ganglia, than Nav1.2 and Nav1.6, which are distributed primarily in the central nervous system. The effect of amitriptyline on Nav1.7 with β1 was most potent with a half-maximal inhibitory concentration (IC50) 4.6 μmol/L. IC50 for amitriptyline on Nav1.3 coexpressed with β1 was lowered from 8.4 to 4.5 μmol/L by coexpression with β3. Antidepressants predominantly inhibited the sodium channels expressed in dorsal root ganglia, and amitriptyline has the most potent inhibitory effect. This is the first evidence, to our knowledge, showing the diverse effects of antidepressants on various α subunits. Moreover, the β3 subunit appears important for inhibition of Nav1.3. These findings may aid better understanding of the mechanisms underlying the pain relieving effects of antidepressants.
Collapse
Affiliation(s)
- Takafumi Horishita
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Nobuyuki Yanagihara
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Susumu Ueno
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Dan Okura
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Reiko Horishita
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Tomoko Minami
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yuichi Ogata
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yuka Sudo
- Department of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yasuhito Uezono
- Cancer Pathophysiology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuouku, Tokyo, 104-0045, Japan
| | - Takeyoshi Sata
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Takashi Kawasaki
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
15
|
Zhang M, Liu Y, Zhao M, Tang W, Wang X, Dong Z, Yu S. Depression and anxiety behaviour in a rat model of chronic migraine. J Headache Pain 2017; 18:27. [PMID: 28224378 PMCID: PMC5319946 DOI: 10.1186/s10194-017-0736-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 11/26/2022] Open
Abstract
Background Epidemiological and clinical studies have demonstrated comorbidity between migraine and affective disorders. However, it is unclear whether chronic migraine can lead to affective disorders in other animals. Methods A classical chronic migraine rat model (repeated dura mater inflammatory soup [IS] infusion) was used to evaluate depression and anxiety behaviour via weight, sucrose preference test, open field test and elevated plus maze test. Results We found that sucrose preference, locomotor and rearing behaviours, inner zoon distance percent, open-arm entries percent and serotonin and dopamine levels in the prefrontal cortex decreased significantly in the IS group compared with those in the control group; co-administration of low-dose amitriptyline ameliorated these deficits. However, no differences in weight, inner zone time percent, or open-arm time percent between the IS and control groups. These results were used to create new depression and anxiety scales to comprehensively assess and evaluate the degree of affective disorders in rats. Most of chronic migraine animals showed depression and anxiety like behaviors but a few didn’t. Conclusions Most of the chronic migraine rats were present depression and anxiety like behaviors. The new scales we created are expected to use in the future studies to find out the potential mechanism of affective disorders’ comorbidity.
Collapse
Affiliation(s)
- Mingjie Zhang
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yufei Liu
- Department of Neurology, Tianjin Third Center Hospital, Tianjin, 300170, People's Republic of China
| | - Mangsuo Zhao
- Department of Neurology, Yuquan Hospital, Medical Center, Tsinghua University, Beijing, 100049, People's Republic of China
| | - Wenjing Tang
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Xiaolin Wang
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
16
|
Abstract
UNLABELLED There is little evidence for most of the medications currently used to treat functional abdominal pain disorders (FAPDs) in children. Not only are there very few clinical trials, but also most have significant variability in the methods used and outcomes measured. Thus, the decision on the most appropriate pharmacological treatment is frequently based on adult studies or empirical data. In children, peppermint oil, trimebutine, and drotaverine have shown significant benefit compared with placebo, each of them in a single randomized clinical trial. A small study found that cyproheptadine was beneficial in the treatment of FAPDs in children. There are conflicting data regarding amitriptyline. While one small study found a significant benefit in quality of life compared with placebo, a large multicenter study found no benefit compared with placebo. The antidepressant, citalopram, failed to meet the primary outcomes in intention-to-treat and per-protocol analysis. Rifaximin has been shown to be efficacious in the treatment of adults with IBS. Those findings differ from studies in children where no benefit was found compared to placebo. To date, there are no placebo-controlled trials published on the use of linaclotide or lubiprostone in children. Alpha 2 delta ligands such as gabapentin and pregabalin are sometimes used in the care of this group of children, but no clinical trials are available in children with FAPDs. Similarly, novel drugs that have been approved for the care of irritable bowel with diarrhea in adults such as eluxadoline have yet to be studied in children. CONCLUSIONS Little data support the use of most medications commonly used to treat FAPDs in children. More randomized, placebo-controlled studies are needed to assess the efficacy of pharmacological interventions in the treatment of FAPDs in children.
Collapse
Affiliation(s)
- Miguel Saps
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Adrian Miranda
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
17
|
McEntire DM, Kirkpatrick DR, Dueck NP, Kerfeld MJ, Smith TA, Nelson TJ, Reisbig MD, Agrawal DK. Pain transduction: a pharmacologic perspective. Expert Rev Clin Pharmacol 2016; 9:1069-80. [PMID: 27137678 DOI: 10.1080/17512433.2016.1183481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pain represents a necessary physiological function yet remains a significant pathological process in humans across the world. The transduction of a nociceptive stimulus refers to the processes that turn a noxious stimulus into a transmissible neurological signal. This involves a number of ion channels that facilitate the conversion of nociceptive stimulus into and electrical signal. AREAS COVERED An understanding of nociceptive physiology complements a discussion of analgesic pharmacology. Therefore, the two are presented together. In this review article, a critical evaluation is provided on research findings relating to both the physiology and pharmacology of relevant acid-sensing ion channels (ASICs), transient receptor potential (TRP) cation channels, and voltage-gated sodium (Nav) channels. Expert commentary: Despite significant steps toward identifying new and more effective modalities to treat pain, there remain many avenues of inquiry related to pain transduction. The activity of ASICs in nociception has been demonstrated but the physiology is not fully understood. A number of medications appear to interact with ASICs but no research has demonstrated pain-relieving clinical utility. Direct antagonism of TRPV1 channels is not in practice due to concerning side effects. However, work in this area is ongoing. Additional research in the of TRPA1, TRPV3, and TRPM8 may yield useful results. Local anesthetics are widely used. However, the risk for systemic effects limits the maximal safe dosage. Selective Nav antagonists have been identified that lack systemic effects.
Collapse
Affiliation(s)
- Dan M McEntire
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Daniel R Kirkpatrick
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Nicholas P Dueck
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Mitchell J Kerfeld
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Tyler A Smith
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Taylor J Nelson
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Mark D Reisbig
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA
| |
Collapse
|
18
|
Yang F, Sun W, Yang Y, Wang Y, Li CL, Fu H, Wang XL, Yang F, He T, Chen J. SDF1-CXCR4 signaling contributes to persistent pain and hypersensitivity via regulating excitability of primary nociceptive neurons: involvement of ERK-dependent Nav1.8 up-regulation. J Neuroinflammation 2015; 12:219. [PMID: 26597700 PMCID: PMC4657286 DOI: 10.1186/s12974-015-0441-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pain is one critical hallmark of inflammatory responses. A large number of studies have demonstrated that stromal cell-derived factor 1 (SDF1, also named as CXCL12) and its cognate receptor C-X-C chemokine receptor type 4 (CXCR4) play an important role in immune reaction and inflammatory processes. However, whether and how SDF1-CXCR4 signaling is involved in inflammatory pain remains unclear. METHODS Under the intraplantar (i.pl.) bee venom (BV) injection-induced persistent inflammatory pain state, the changes of SDF1 and CXCR4 expression and cellular localization in the rat dorsal root ganglion (DRG) were detected by immunofluorescent staining. The role of SDF1 and CXCR4 in the hyperexcitability of primary nociceptor neurons was assessed by electrophysiological recording. Western blot analysis was used to quantify the DRG Nav1.8 and phosphorylation of ERK (pERK) expression. Behavioral tests were conducted to evaluate the roles of CXCR4 as well as extracellular signal-regulated kinase (ERK) and Nav1.8 in the BV-induced persistent pain and hypersensitivity. RESULTS We showed that both SDF1 and CXCR4 were dramatically up-regulated in the DRG in i.pl. BV-induced inflammatory pain model. Double immunofluorescent staining showed that CXCR4 was localized in all sizes (large, medium, and small) of DRG neuronal soma, while SDF1 was exclusively expressed in satellite glial cells (SGCs). Electrophysiological recording showed that bath application with AMD3100, a potent and selective CXCR4 inhibitor, could reverse the hyperexcitability of medium- and small-sized DRG neurons harvested from rats following i.pl. BV injection. Furthermore, we demonstrated that the BV-induced ERK activation and Nav1.8 up-regulation in the DRG could be blocked by pre-antagonism against CXCR4 in the periphery with AMD3100 as well as by blockade of ERK activation by intrathecal (i.t.) or intraplantar (i.pl.) U0126. At behavioral level, the BV-induced persistent spontaneous pain as well as primary mechanical and thermal hypersensitivity could also be significantly suppressed by blocking CXCR4 and Nav1.8 in the periphery as well as by inhibition of ERK activation at the DRG level. CONCLUSIONS The present results suggest that peripheral inflammatory pain state can trigger over release of SDF1 from the activated SGCs in the DRG by which SGC-neuronal cross-talk is mediated by SDF1-CXCR4 coupling that result in subsequent ERK-dependent Nav1.8 up-regulation, leading to hyperexcitability of tonic type of the primary nociceptor cells and development and maintenance of persistent spontaneous pain and hypersensitivity.
Collapse
Affiliation(s)
- Fei Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Yan Yang
- Beijing Institute for Brain Disorders, Beijing, 100069, People's Republic of China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Fan Yang
- Beijing Institute for Brain Disorders, Beijing, 100069, People's Republic of China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, #569 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China. .,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, People's Republic of China. .,Beijing Institute for Brain Disorders, Beijing, 100069, People's Republic of China.
| |
Collapse
|
19
|
Abstract
Tension-type headache (TTH) is the most common type of primary headaches, and its chronic form, chronic tension-type headache (CTTH), is affecting 0.5 to 4.8 % of the worldwide population. Although the mechanism underlying CTTH remains unclear, the role of central versus peripheral mechanisms has always been discussed while explaining the pathogenesis of CTTH. There is always a debate on differential diagnosis between CTTH and chronic migraine without aura which are regarded as different aspects of chronic daily headache spectrum because of many similarities and fuzzy boundaries. Compared with pharmacological treatments, non-pharmacological treatments have been popular as alternative interventions for CTTH in recent years. This review summaries the update knowledge on CTTH and discusses the most interested questions regarding pathogenesis and therapeutic strategies of CTTH.
Collapse
Affiliation(s)
- Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China,
| | | |
Collapse
|
20
|
|
21
|
Abstract
The perception of pain in children is easily influenced by environmental factors and psychological comorbidities that are known to play an important role in its origin and response to therapy. Chronic abdominal pain is one of the most commonly treated conditions in modern pediatric gastroenterology and is the hallmark of 'functional' disorders that include irritable bowel syndrome, functional dyspepsia, and functional abdominal pain. The development of pharmacological therapies for these disorders in adults and children has been limited by the lack of understanding of the putative, pathophysiological mechanisms that underlie them. Peripheral and central pain-signaling mechanisms are known to be involved in chronic pain originating from the gastrointestinal tract, but few therapies have been developed to target specific pathways or enhance correction of the underlying pathophysiology. The responses to therapy have been variable, potentially reflecting the heterogeneity of the disorders for which they are used. Only a few small, randomized clinical trials have evaluated the benefit of pain medications for chronic abdominal pain in children and thus, the decision on the most appropriate treatment is often based on adult studies and empirical data. This review discusses the most common, non-narcotic pharmacological treatments for chronic abdominal pain in children and includes a thorough review of the literature to support or refute their use. Because of the dearth of pediatric studies, the focus is on pharmacological and alternative therapies where there is sufficient evidence of benefit in either adults or children with chronic abdominal pain.
Collapse
Affiliation(s)
- Adrian Miranda
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA,
| | | |
Collapse
|