1
|
Bakker LM, Boulton ME, Różanowska MB. (Photo)toxicity of Partially Oxidized Docosahexaenoate and Its Effect on the Formation of Lipofuscin in Cultured Human Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:1428. [PMID: 39594569 PMCID: PMC11591205 DOI: 10.3390/antiox13111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Docosahexaenoate is a cytoprotective ω-3 polyunsaturated lipid that is abundant in the retina and is essential for its function. Due to its six unsaturated double bonds, docosahexaenoate is highly susceptible to oxidation and the formation of products with photosensitizing properties. This study aimed to test on cultured human retinal pigment epithelial cells ARPE-19 the (photo)cytotoxic potential of partly oxidized docosahexaenoate and its effect on the formation of lipofuscin from phagocytosed photoreceptor outer segments (POSs). The results demonstrate that the cytoprotective effects of docosahexaenoate do not counteract the deleterious effects of its oxidation products, leading to the concentration-dependent loss of cell metabolic activity, which is exacerbated by concomitant exposure to visible light. Partly oxidized docosahexaenoate does not cause permeability of the cell plasma membrane but does cause apoptosis. While vitamin E can provide partial protection from the (photo)toxicity of partly oxidized docosahexaenoate, zeaxanthin undergoes rapid photodegradation and can exacerbate the (photo)toxicity. Feeding cells with POSs enriched in partly oxidized docosahexaenoate results in a greater accumulation of intracellular fluorescent lipofuscin than in cells fed POSs without the addition. In conclusion, partly oxidized docosahexaenoate increases the accumulation of lipofuscin-like intracellular deposits, is cytotoxic, and its toxicity increases during exposure to light. These effects may contribute to the increased progression of geographic atrophy observed after long-term supplementation with docosahexaenoate in age-related macular degeneration patients.
Collapse
Affiliation(s)
- Linda M. Bakker
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK;
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
2
|
Xu M, Liu D, Wang L. Role of oxylipins in ovarian function and disease: A comprehensive review. Biomed Pharmacother 2024; 178:117242. [PMID: 39094547 DOI: 10.1016/j.biopha.2024.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Ovaries are essential for healthy female reproduction, with the follicles as their fundamental functional units, which consist of an oocyte and surrounding granulosa cells. The development and formation of follicles in the ovaries are closely linked to reproductive health. Oxylipins refer to oxidative metabolites produced from the oxidation of polyunsaturated fatty acids, either through automatic oxidation or with the help of specific enzymes. They play crucial regulatory roles in the immune system, oxidative stress, and inflammatory reactions and are intimately linked to the development of numerous illnesses, such as diabetes, heart disease, asthma, and Alzheimer's disease. Furthermore, oxylipins have a complex relationship with ovarian function, and both prostaglandins and leukotrienes produced by arachidonic acid affect processes such as follicle growth and development, ovulation, and hormone regulation. The synthesis and metabolism of oxylipins in the ovaries are finely regulated. Oxylipin dysregulation has been linked to various ovarian diseases, including endometriosis, polycystic ovary syndrome, ovarian cancer, and premature ovarian insufficiency. In addition, potential therapeutic targets and interventions targeting the oxylipin pathway for the treatment of ovarian diseases have become a prominent research focus, including regulating the enzymes responsible for oxylipin synthesis, using anti-inflammatory agents, and regulating lipid metabolism. Recent research has been directed towards improving the reproductive outcomes of women with ovarian diseases through this series of interventions. An overview of the role of oxylipins in ovarian function and disease is provided in this article, which will aid researchers in understanding the current state of the field and in identifying future directions.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Dan Liu
- Finance Department of Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China.
| |
Collapse
|
3
|
Liu L, Xu J, Huang X, Wang Y, Ma X, Wang X, Liu Y, Ren X, Li J, Wang Y, Zhou S, Yuan L. DHA dietary intervention caused different hippocampal lipid and protein profile in ApoE-/- and C57BL/6J mice. Biomed Pharmacother 2024; 177:117088. [PMID: 38971007 DOI: 10.1016/j.biopha.2024.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Changes in protein and lipid levels may occur in the Alzheimer's disease brain, and DHA can have beneficial effects on it. To investigate the impact of DHA dietary intervention on brain protein and lipid profile in ApoE-/- mice and C57 mice. METHOD Three-month-old ApoE-/- mice and C57 mice were randomly divided into two groups respectively, and fed with control diet and DHA-fortified diet for five months. Cortical TC, HDL-C and LDL-C levels and cholesterol metabolism-related protein expression were measured by ELISA or immunohistochemistry methods. Hippocampus were collected for proteomic and lipidomics analysis by LC-MS/MS and differential proteins and lipid metabolites were screened and further analyzed by GO functional annotation and KEGG pathway enrichment analysis. RESULTS DHA intervention decreased cortical TC level in both C57 and ApoE-/- mice (P < 0.05), but caused different change of cortical HDL-C, LDL-C level and LDL-C/HDL-C ratio in C57 and ApoE-/- mice (P < 0.05). Discrepant cortical and hippocampal LDLR, ABCG1, Lox1 and SORT1 protein expression was found between C57 and ApoE-/- mice (P < 0.05), and DHA treatment caused different changes of these proteins in C57 and ApoE-/- mice (P < 0.05). Differential hippocampal proteins and lipids profile were found in C57 and ApoE-/- mice before and after DHA treatment, which were mainly involved in vesicular transport and phospholipid metabolic pathways. CONCLUSION ApoE genetic defect caused abnormal cholesterol metabolism, and affected protein and lipid profile, as well as discrepant response of hippocampal protein and lipids profile in the brain of mice given DHA fortified diet intervention.
Collapse
Affiliation(s)
- Lu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiuwen Ren
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jiahao Li
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yueyong Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK.
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases.
| |
Collapse
|
4
|
Li J, Huang H, Fan R, Hua Y, Ma W. Lipidomic analysis of brain and hippocampus from mice fed with high-fat diet and treated with fecal microbiota transplantation. Nutr Metab (Lond) 2023; 20:12. [PMID: 36793054 PMCID: PMC9930259 DOI: 10.1186/s12986-023-00730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Dietary fat intake affects brain composition and function. Different types of dietary fatty acids alter species and abundance of brain lipids in mice. The aim of this study is to explore whether the changes are effective through gut microbiota. METHODS In our study, 8-week-old male C57BL/6 mice were randomly divided into 7 groups and fed with high-fat diet (HFD) with different fatty acid compositions, control (CON) group, long-chain saturated fatty acid (LCSFA) group, medium-chain saturated fatty acid (MCSFA) group, n-3 polyunsaturated fatty acid (n-3 PUFA) group, n-6 polyunsaturated fatty acid (n-6 PUFA) group, monounsaturated fatty acid (MUFA) group and trans fatty acid (TFA) group. Then, the fecal microbiota transplant (FMT) was performed in other pseudo germ-free mice after antibiotic treatment. The experimental groups were orally perfused with gut microbiota that induced by HFD with different types of dietary fatty acids. The mice were fed with regular fodder before and after FMT. High-performance liquid chromatography-mass spectrometry (LC-MS) was used to analysis the composition of fatty acids in the brain of HFD-fed mice and hippocampus of mice treated with FMT which was collected from HFD-fed mice. RESULTS The content of acyl-carnitines (AcCa) increased and lysophosphatidylgylcerol (LPG) decreased in all kinds of HFD groups. phosphatidic acids (PA), phosphatidylethanolamine (PE) and sphingomyelin (SM) contents were significantly increased in the n-6 PUFA-fed HFD group. The HFD elevated the saturation of brain fatty acyl (FA). Lysophosphatidylcholine (LPC), lysodi-methylphosphatidylethanolamine (LdMePE), monolysocardiolipin (MLCL), dihexosylceramides (Hex2Cer), and wax ester (WE) significantly increased after LCSFA-fed FMT. MLCL reduced and cardiolipin (CL) raised significantly after n-3 PUFA-fed FMT. CONCLUSIONS The study revealed, HFD and FMT in mice had certain effects on the content and composition of fatty acids in the brain, especially on glycerol phospholipid (GP). The change of AcCa content in FA was a good indicator of dietary fatty acid intake. By altering the fecal microbiota, dietary fatty acids might affect brain lipids.
Collapse
Affiliation(s)
- Jinchen Li
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Hongying Huang
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Fan
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yinan Hua
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Weiwei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Front Nutr 2022; 8:812119. [PMID: 35118110 PMCID: PMC8805515 DOI: 10.3389/fnut.2021.812119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a major n-3 polyunsaturated fatty acid (PUFA) particularly involved in cognitive and cardiovascular functions. Due to the high unsaturation index, its dietary intake form has been considered to improve oxidation status and to favor bioaccessibility and bioavailability as well. This study aimed at investigating the effect of DHA encapsulated with natural whey protein. DHA was dietary provided as triacylglycerols to achieve 2.3% over total fatty acids. It was daily supplied to weanling rats for four weeks in omelet as food matrix, consecutively to a 6-hour fasting. First, when DHA oil was encapsulated, consumption of chow diet was enhanced leading to promote animal growth. Second, the brain exhibited a high accretion of 22.8% DHA, which was not improved by dietary supplementation of DHA. Encapsulation of DHA oil did not greatly affect the fatty acid proportions in tissues, but remarkably modified the profile of oxidized metabolites of fatty acids in plasma, heart, and even brain. Specific oxylipins derived from DHA were upgraded, such as Protectin Dx in heart and 14-HDoHE in brain, whereas those generated from n-6 PUFAs were mainly mitigated. This effect did not result from oxylipins measured in DHA oil since DHA and EPA derivatives were undetected after food processing. Collectively, these data suggested that dietary encapsulation of DHA oil triggered a more efficient absorption of DHA, the metabolism of which was enhanced more than its own accretion in our experimental conditions. Incorporating DHA oil in functional food may finally improve the global health status by generating precursors of protectins and maresins.
Collapse
Affiliation(s)
- Jun Wang
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Jordane Ossemond
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yann Le Gouar
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Françoise Boissel
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Didier Dupont
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Frédérique Pédrono
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Frédérique Pédrono
| |
Collapse
|
6
|
Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells 2021; 10:cells10112963. [PMID: 34831185 PMCID: PMC8616333 DOI: 10.3390/cells10112963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids are major components in the lipid bilayer of cell membranes. These molecules are comprised of two acyl or alkyl groups and different phospho-base groups linked to the glycerol backbone. Over the years, substantial interest has focused on metabolism of phospholipids by phospholipases and the role of their metabolic products in mediating cell functions. The high levels of polyunsaturated fatty acids (PUFA) in the central nervous system (CNS) have led to studies centered on phospholipases A2 (PLA2s), enzymes responsible for cleaving the acyl groups at the sn-2 position of the phospholipids and resulting in production of PUFA and lysophospholipids. Among the many subtypes of PLA2s, studies have centered on three major types of PLA2s, namely, the calcium-dependent cytosolic cPLA2, the calcium-independent iPLA2 and the secretory sPLA2. These PLA2s are different in their molecular structures, cellular localization and, thus, production of lipid mediators with diverse functions. In the past, studies on specific role of PLA2 on cells in the CNS are limited, partly because of the complex cellular make-up of the nervous tissue. However, understanding of the molecular actions of these PLA2s have improved with recent advances in techniques for separation and isolation of specific cell types in the brain tissue as well as development of sensitive molecular tools for analyses of proteins and lipids. A major goal here is to summarize recent studies on the characteristics and dynamic roles of the three major types of PLA2s and their oxidative products towards brain health and neurological disorders.
Collapse
|