1
|
Buondonno I, Rovera G, Sassi F, Rigoni MM, Lomater C, Parisi S, Pellerito R, Isaia GC, D’Amelio P. Vitamin D and immunomodulation in early rheumatoid arthritis: A randomized double-blind placebo-controlled study. PLoS One 2017; 12:e0178463. [PMID: 28582403 PMCID: PMC5459341 DOI: 10.1371/journal.pone.0178463] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 05/12/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to evaluate differences in T helper cell sub-types and osteoclast (OCs) precursors in peripheral blood between patients affected by early rheumatoid arthritis (eRA) and healthy controls. The effect of administration of cholecalcipherol on clinical and laboratory parameters was subsequently evaluated, by a parallel, randomized double blind, placebo controlled trial. Thirty nine eRA patients and 31 age-matched controls were enrolled and compared for levels of 25OH vitamin D, T helper cell sub-types, OCs precursors including both classical and non-classical and pro-inflammatory cytokines at baseline. Eligible patients were female ≥18 years of age with a diagnosis of RA, as defined by the American College of Rheumatology 2010 criteria for <6 months prior to inclusion in the study. Patients with auto-immune or inflammatory diseases other than RA were excluded. Patients treated with glucocorticoids (GCs), disease modifying activity drugs and biologic agents within the past 6 months were also excluded. In the second phase of the study, eRA patients were randomly assigned to standard treatment with methotrexate (MTX) and GCs with (21) or without (18) cholecalcipherol (300,000 IU) and followed for 3 months; the randomization was done by computer generated tables to allocate treatments. Three patients didn’t come back to the follow up visit for personal reasons. None of the patients experienced adverse events. The main outcome measures were T cells phenotypes, OCs precursors and inflammatory cytokines. Secondary outcome measure were clinical parameters. In eRA, 25OH vitamin D levels were significantly lower. CD4+/IFNγ+,CD4+/IL4+, CD4+/IL17A+ and CD4+IL17A+IFNγ+, cells were increased in eRA as well as non-classical OCs precursors, whereas T regulatory cells were not altered. TNFα, TGFβ1, RANKL, IL-23 and IL-6 were increased in eRA. Non-classical OCs, IL-23 and IL-6 correlated with disease severity and activity. Standard treatment with MTX and GC ameliorated clinical symptoms and reduced IL-23, whereas it did not affect CD4+ cells sub-sets nor OCs precursors. After 3 months, the combined use of cholecalcipherol significantly ameliorated the effect of treatment on global health. In eRA, a significant imbalance in T CD4+ sub-types accompanied by increased levels of non-classical OCs precursors and pro-inflammatory cytokines was observed. A single dose of cholecalcipherol (300,000 IU) combined with standard treatment significantly ameliorates patients general health.
Collapse
Affiliation(s)
- Ilaria Buondonno
- Department of Medical Science, Gerontology and Bone Metabolic Disease Section, University of Torino, Torino, Italy
| | - Guido Rovera
- Rheumatology Unit, Ospedale Mauriziano, Torino, Italy
| | - Francesca Sassi
- Department of Medical Science, Gerontology and Bone Metabolic Disease Section, University of Torino, Torino, Italy
| | - Micol Maria Rigoni
- Department of Medical Science, Gerontology and Bone Metabolic Disease Section, University of Torino, Torino, Italy
| | | | - Simone Parisi
- Rheumatology Department, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | | | - Giovanni Carlo Isaia
- Department of Medical Science, Gerontology and Bone Metabolic Disease Section, University of Torino, Torino, Italy
| | - Patrizia D’Amelio
- Department of Medical Science, Gerontology and Bone Metabolic Disease Section, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
2
|
de Vries TJ, Yousovich J, Schoenmaker T, Scheres N, Everts V. Tumor necrosis factor-α antagonist infliximab inhibits osteoclast formation of peripheral blood mononuclear cells but does not affect periodontal ligament fibroblast-mediated osteoclast formation. J Periodontal Res 2015; 51:186-95. [PMID: 26095433 DOI: 10.1111/jre.12297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE The inflammatory cytokine tumor necrosis factor-alpha (TNF-α) is elevated in inflamed periodontal tissues and may contribute to periodontitis progression. TNF-α stimulates formation and activity of osteoclasts, the cells that are recruited in periodontitis, that cause alveolar bone degradation and subsequent tooth loss. We previously showed that TNF-α is elevated in co-cultures of periodontal ligament fibroblast (PDLF) and peripheral blood mononuclear cells (PBMC). Hence, TNF-α could be a determining factor in osteoclast formation in these cultures, as osteoclasts are formed despite the fact that prototypical osteoclast differentiation factor receptor activator of nuclear factor kappa-B ligand is outnumbered at least 100-fold by its inhibitor osteoprotegerin in these cultures. MATERIAL AND METHODS To assess the role of TNF-α in periodontitis-associated osteoclast formation in vitro, osteoclast formation was analyzed in the presence of the anti-TNF-α therapeutic agent infliximab in two culture systems: (i) PBMC in co-culture with PDLFs from controls and patients with periodontitis, or (ii) with PBMC only. PDLFs from control and patients with periodontitis were exposed to infliximab, PBMCs were added and the formation of osteoclast-like cells was assessed. RESULTS TNF-α was highest levels in supernatants at 7 d in co-cultures and declined at 14 and 21 d. TNF-α was undetectable in cultures that received infliximab. The formation and activity of osteoclasts in co-cultures was not affected by infliximab. In contrast, infliximab in cultures of only PBMC significantly reduced the formation of osteoclasts. This reduction was accompanied by a decreased number and size of cell clusters, a step that precedes the formation of osteoclasts. TNF-α was again undetectable in the supernatant of infliximab-treated cultures, but was detectable at similar levels in cell lysates of control and infliximab-treated PBMC cultures. CONCLUSION Our study shows that the contribution of TNF-α to osteoclast formation is cell system dependent. It contributes to PBMC-induced osteoclast formation, possibly by establishing stronger cell-cell interactions that precede osteoclast formation.
Collapse
Affiliation(s)
- T J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - J Yousovich
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - T Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - N Scheres
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - V Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Mucci JM, Cuello MF, Kisinovsky I, Larroude M, Delpino MV, Rozenfeld PA. Proinflammatory and proosteoclastogenic potential of peripheral blood mononuclear cells from Gaucher patients: Implication for bone pathology. Blood Cells Mol Dis 2015; 55:134-43. [PMID: 26142329 DOI: 10.1016/j.bcmd.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/04/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by mutations in the GBA gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells of monocyte/macrophage system. Bone compromise in Gaucher disease patients is the most disabling aspect of the disease. However, pathophysiological aspects of skeletal alterations are still poorly understood. On the other hand it is well known that inflammation is a key player in GD pathology. In this work, we revealed increased levels of the proinflammatory CD14(+)CD16(+) monocyte subset and increased inflammatory cytokine production by monocytes and T cells in the circulation of GD patients. We showed increased levels of osteoclast precursors in PBMC from patients and a higher expression of RANKL in the surface of T cells. PBMC from patients presented higher osteoclast differentiation compared to healthy controls when cultured in the presence of M-CSF alone or in combination with RANKL. In vitro treatment with Velaglucerase reduced osteoclast levels to control levels. On the other hand THP-1 derived osteoclast precursors cultured in the presence of conditioned media from PBMC of GD patients presented higher differentiation to active osteoclasts. This induction involved TNF-α and RANKL.
Collapse
Affiliation(s)
- J M Mucci
- IIFP, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, La Plata 1900, Argentina
| | - M F Cuello
- Servicio de Hematología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | | | - M Larroude
- Consultorio Larrea N° 1106 3°E, Buenos Aires, Argentina
| | - M V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - P A Rozenfeld
- IIFP, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, La Plata 1900, Argentina.
| |
Collapse
|
4
|
Oostlander AE, Everts V, Schoenmaker T, Bravenboer N, van Vliet SJ, van Bodegraven AA, Lips P, de Vries TJ. T cell-mediated increased osteoclast formation from peripheral blood as a mechanism for Crohn's disease-associated bone loss. J Cell Biochem 2012; 113:260-8. [PMID: 21898548 DOI: 10.1002/jcb.23352] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pathophysiology of osteoporosis in patients with Crohn's disease (CD) is still not completely elucidated. In this study, we evaluated osteoclastogenesis from peripheral blood cells of CD patients and studied the role of lymphocytes and inflammatory cytokines in this process. Peripheral blood mononuclear cells from seven patients with quiescent CD and matched healthy controls were isolated, and separated into T cells, B cells, and a T- and B-cell depleted fraction. In various culture combinations, osteoclast formation in the absence of the osteoclastogenic factors RANKL and M-CSF was assessed by scoring the number of tartrate-resistant acid phosphatase (TRACP) positive multinucleated cells (MNCs). Cytokine levels in culture supernatants were measured. Formation of heterogeneous cell clusters in culture was noticed; a process that was inhibited by anti-LFA-1. In CD cultures, mean cluster area was up to threefold higher than in control cultures, and shown to be induced by T cells. Over tenfold higher numbers of TRACP(+) MNCs were found in CD cultures, but exclusively in cultures containing T cells. Formation of cell clusters correlated strongly with formation of TRACP(+) MNCs. Both cell cluster formation and osteoclast formation were related to IL-17 levels in vitro. In conclusion, osteoclastogenesis, preceded by cell cluster formation, is T cell-mediated and increased in patients with quiescent CD. Our findings suggest heterotypic interactions between osteoclast precursors and T cells to be a triggering step in osteoclast formation in CD. Furthermore, our results propose a possible role for IL-17 in osteoclastogenesis in CD patients, and as such in CD-associated bone loss.
Collapse
Affiliation(s)
- Angela E Oostlander
- Department of Endocrinology, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Pisoni G, D’Amelio P, Sassi F, Manarolla G, Scaccabarozzi L, Locatelli C, Mazzocchi N, Baruscotti M, DiFrancesco D, Moroni P. Multinucleated giant cells with an osteoclast phenotype derived from caprine peripheral blood mononuclear cells. Vet J 2011; 189:361-3. [DOI: 10.1016/j.tvjl.2010.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
|
6
|
D'Amelio P, Grimaldi A, Cristofaro MA, Ravazzoli M, Molinatti PA, Pescarmona GP, Isaia GC. Alendronate reduces osteoclast precursors in osteoporosis. Osteoporos Int 2010; 21:1741-50. [PMID: 19949772 DOI: 10.1007/s00198-009-1129-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/06/2009] [Indexed: 11/30/2022]
Abstract
UNLABELLED This study evaluates the effect of alendronate on osteoclastogenesis, cytokine production, and bone resorption in postmenopausal women. We suggest that it acts on mature bone resorbing osteoclasts after 3 months of treatment, whereas, after 1 year, it diminishes their formation by reducing their precursors and serum RANKL. INTRODUCTION Osteoclasts are the target cells of bisphosphonates, though the most drug-sensitive steps of their formation and activity have not been determined. The present study evaluates the effect of alendronate on osteoclastogenesis, cytokine production, and bone resorption in postmenopausal women. METHODS The study was conducted on 35 osteoporotic women; 15 were pretreated with alendronate 70 mg/week, whereas, 20 were treated with calcium 1 g/day and vitamin D 800 IU/day. After 3 months, 30 received alendonate 70/mg, vitamin D 2800 IU/week, and calcium 1 g/day for 12 months (combined therapy), whereas, the other five patients remained on calcium 1 g/day and vitamin D 800 IU/day. The following parameters were assessed before and after therapy: changes in bone resorption markers, circulating osteoclast precursors, formation of osteoclasts in peripheral blood mononuclear cell cultures, their viability, and variations in cytokines production. RESULTS After 3 months of alendronate, there was no significant reduction in the number of osteoclast precursors, osteoclast formation and viability, and cytokine levels, whereas, there was a significant reduction of bone resorption markers. One year of the combined therapy, on the other hand, reduced osteoclast precursors, osteoclast formation, and serum RANKL, whereas, calcium plus vitamin D alone had no effect. CONCLUSIONS We suggest that alendronate mainly acts on mature bone resorbing osteoclasts in the short term, whereas, its long-term administration diminishes their formation by reducing their precursors and serum RANKL.
Collapse
Affiliation(s)
- P D'Amelio
- Gerontology Section, Department of Surgical and Medical Disciplines, University of Torino, Corso Bramante 88/90, 10126, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
D'Amelio P, Cristofaro MA, Grimaldi A, Ravazzoli M, Pluviano F, Grosso E, Pescarmona GP, Isaia GC. The role of circulating bone cell precursors in fracture healing. Calcif Tissue Int 2010; 86:463-9. [PMID: 20390407 DOI: 10.1007/s00223-010-9362-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/24/2010] [Indexed: 12/21/2022]
Abstract
Fracture healing is a complex process that involves several cell types; as a previous report suggested an increase in osteoblast (OB) precursors in peripheral blood during this process, this paper examines the role of circulating bone cell precursors in this process in the light of a prior suggestion that OB precursors are increased. Nine healthy men less than 60 years old with traumatic fractures were enrolled. The parameters circulating OB precursors (osteocalcin+/alkaline phosphatase+/CD15- cells) and osteoclast precursors (CD14+/CD11b+/vitronectin receptor + cells) were measured by flow cytometry; bone formation markers and TGFbeta1, by ELISA; and PTH, by RIA in serum on arrival at the emergency department (baseline) and 15 days after fracture. Bone cell precursors behaved differently during healing. TGFbeta1 was inversely correlated with OB number, but increased their degree of maturation at baseline. Bone formation markers and TGFbeta1 were increased after fracture, whereas PTH was decreased. The TGFbeta1 increase was directly correlated with age, whereas age was not correlated with the precursors. In conclusion, we confirm the role of TGFbeta1 in fracture healing; and its possible role in the control of pre-OB homeostasis. There was no variation in circulating precursor cells during healing, though the increase in TGFbeta1 may suggest increased pre-OB maturation and homing to the injured site.
Collapse
Affiliation(s)
- Patrizia D'Amelio
- Section of Gerontology, Department of Surgical and Medical Disciplines, University of Torino, Corso Bramante 88/90, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|