1
|
The Interplay of Glycosaminoglycans and Cysteine Cathepsins in Mucopolysaccharidosis. Biomedicines 2023; 11:biomedicines11030810. [PMID: 36979788 PMCID: PMC10045161 DOI: 10.3390/biomedicines11030810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Mucopolysaccharidosis (MPS) consists of a group of inherited lysosomal storage disorders that are caused by a defect of certain enzymes that participate in the metabolism of glycosaminoglycans (GAGs). The abnormal accumulation of GAGs leads to progressive dysfunctions in various tissues and organs during childhood, contributing to premature death. As the current therapies are limited and inefficient, exploring the molecular mechanisms of the pathology is thus required to address the unmet needs of MPS patients to improve their quality of life. Lysosomal cysteine cathepsins are a family of proteases that play key roles in numerous physiological processes. Dysregulation of cysteine cathepsins expression and activity can be frequently observed in many human diseases, including MPS. This review summarizes the basic knowledge on MPS disorders and their current management and focuses on GAGs and cysteine cathepsins expression in MPS, as well their interplay, which may lead to the development of MPS-associated disorders.
Collapse
|
2
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
McDowell SH, Gallaher SA, Burden RE, Scott CJ. Leading the invasion: The role of Cathepsin S in the tumour microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118781. [PMID: 32544418 DOI: 10.1016/j.bbamcr.2020.118781] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Elevated expression of the cysteine protease Cathepsin S has been correlated with a number of different cancer types in recent years. As tools have been developed to enable more accurate examination of individual cathepsin species, our knowledge and appreciation of the role that this protease plays in facilitating cancer has increased exponentially. This review focuses on our current understanding of the role of Cathepsin S within tumours and the surrounding microenvironment. While various publications have shown that Cathepsin S can be derived from tumour cells themselves, a plethora of more recent studies have identified that Cathepsin S can also be derived from other cell types within the tumour microenvironment including endothelial cells, macrophages and T cells. Furthermore, specific proteolytic substrates cleaved by Cathepsin S have also been identified which have reinforced our hypothesis that this protease facilitates key steps within tumours leading to their invasion, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Sara H McDowell
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| | - Samantha A Gallaher
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| | - Roberta E Burden
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| |
Collapse
|
4
|
Kocak I, Hizmetli S, Tas A, Karadag A, Zontul C, Silig Y. High levels of cathepsin S and cystatin C in patients with fibromyalgia syndrome. Int J Rheum Dis 2020; 23:966-969. [PMID: 32307906 DOI: 10.1111/1756-185x.13840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 03/21/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Although the etiopathogenesis of fibromyalgia syndrome (FM) is not yet clear, central sensitization is thought to be responsible for the pathogenesis of FM. The aim of this study was to compare the serum cathepsin S (CatS) and cystatin C (CysC) levels between patients with FM and healthy control subjects. METHODS This study was conducted in the Physical Medicine and Rehabilitation Clinic between January 2019 and October 2019. The study included 145 FM patients newly diagnosed with primary FM according to the 2010 American College of Rheumatology criteria and 129 healthy volunteers. The age, gender, and body mass index (BMI) of the participants were recorded. Venous blood samples were collected from both groups for the measurement of the levels of serum CatS and CysC. The functional status of FM patients was evaluated using the Fibromyalgia Impact Questionnaire (FIQ). RESULTS No statistically significant difference was determined between the patient and control groups in terms of age, gender, and BMI (P > .05). A comparison of the serum CatS and CysC levels of the FM and control groups revealed a statistically significant difference (P = .001). No correlation was determined between FIQ and serum CatS and CysC levels (P > .05). CONCLUSION Serum CatS and CysC levels were found to be higher in FM patients. However, there was no correlation between the functional status of FM patients and serum CatS and CysC levels. These results can be of guidance for further clinical studies of the etiopathogenesis and treatment of FM.
Collapse
Affiliation(s)
- Ibrahim Kocak
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Sami Hizmetli
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ayça Tas
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas, Turkey
| | - Ahmet Karadag
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Cemile Zontul
- Department of Biochemistry, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Yavuz Silig
- Department of Biochemistry, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
5
|
A Novel Role for Cathepsin S as a Potential Biomarker in Triple Negative Breast Cancer. JOURNAL OF ONCOLOGY 2019; 2019:3980273. [PMID: 31346333 PMCID: PMC6620839 DOI: 10.1155/2019/3980273] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
Abstract
Cathepsin S (CTSS) has previously been implicated in a number of cancer types, where it is associated with poor clinical features and outcome. To date, patient outcome in breast cancer has not been examined with respect to this protease. Here, we carried out immunohistochemical (IHC) staining of CTSS using a breast cancer tissue microarray in patients who received adjuvant therapy. We scored CTSS expression in the epithelial and stromal compartments and evaluated the association of CTSS expression with matched clinical outcome data. We observed differences in outcome based on CTSS expression, with stromal-derived CTSS expression correlating with a poor outcome and epithelial CTSS expression associated with an improved outcome. Further subtype characterisation revealed high epithelial CTSS expression in TNBC patients with improved outcome, which remained consistent across two independent TMA cohorts. Further in silico gene expression analysis, using both in-house and publicly available datasets, confirmed these observations and suggested high CTSS expression may also be beneficial to outcome in ER-/HER2+ cancer. Furthermore, high CTSS expression was associated with the BL1 Lehmann subgroup, which is characterised by defects in DNA damage repair pathways and correlates with improved outcome. Finally, analysis of matching IHC analysis reveals an increased M1 (tumour destructive) polarisation in macrophage in patients exhibiting high epithelial CTSS expression. In conclusion, our observations suggest epithelial CTSS expression may be prognostic of improved outcome in TNBC. Improved outcome observed with HER2+ at the gene expression level furthermore suggests CTSS may be prognostic of improved outcome in ER- cancers as a whole. Lastly, from the context of these patients receiving adjuvant therapy and as a result of its association with BL1 subgroup CTSS may be elevated in patients with defects in DNA damage repair pathways, indicating it may be predictive of tumour sensitivity to DNA damaging agents.
Collapse
|
6
|
Small DM, Brown RR, Doherty DF, Abladey A, Zhou-Suckow Z, Delaney RJ, Kerrigan L, Dougan CM, Borensztajn KS, Holsinger L, Booth R, Scott CJ, López-Campos G, Elborn JS, Mall MA, Weldon S, Taggart CC. Targeting of cathepsin S reduces cystic fibrosis-like lung disease. Eur Respir J 2019; 53:13993003.01523-2018. [PMID: 30655278 DOI: 10.1183/13993003.01523-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/27/2018] [Indexed: 11/05/2022]
Abstract
Cathepsin S (CatS) is upregulated in the lungs of patients with cystic fibrosis (CF). However, its role in CF lung disease pathogenesis remains unclear.In this study, β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice, a model of CF-like lung disease, were crossed with CatS null (CatS-/-) mice or treated with the CatS inhibitor VBY-999.Levels of active CatS were elevated in the lungs of βENaC-Tg mice compared with wild-type (WT) littermates. CatS-/-βENaC-Tg mice exhibited decreased pulmonary inflammation, mucus obstruction and structural lung damage compared with βENaC-Tg mice. Pharmacological inhibition of CatS resulted in a significant decrease in pulmonary inflammation, lung damage and mucus plugging in the lungs of βENaC-Tg mice. In addition, instillation of CatS into the lungs of WT mice resulted in inflammation, lung remodelling and upregulation of mucin expression. Inhibition of the CatS target, protease-activated receptor 2 (PAR2), in βENaC-Tg mice resulted in a reduction in airway inflammation and mucin expression, indicating a role for this receptor in CatS-induced lung pathology.Our data indicate an important role for CatS in the pathogenesis of CF-like lung disease mediated in part by PAR2 and highlight CatS as a therapeutic target.
Collapse
Affiliation(s)
- Donna M Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Ryan R Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Declan F Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anthony Abladey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Zhe Zhou-Suckow
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Rebecca J Delaney
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lauren Kerrigan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Caoifa M Dougan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Keren S Borensztajn
- INSERM UMRS_933, Université Pierre et Marie Curie, Hôpital Trousseau, Paris, France
| | | | | | - Christopher J Scott
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Guillermo López-Campos
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Dept of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
7
|
Andrés-Benito P, Moreno J, Aso E, Povedano M, Ferrer I. Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration. Aging (Albany NY) 2017; 9:823-851. [PMID: 28283675 PMCID: PMC5391234 DOI: 10.18632/aging.101195] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Transcriptome arrays identifies 747 genes differentially expressed in the anterior horn of the spinal cord and 2,300 genes differentially expressed in frontal cortex area 8 in a single group of typical sALS cases without frontotemporal dementia compared with age-matched controls. Main up-regulated clusters in the anterior horn are related to inflammation and apoptosis; down-regulated clusters are linked to axoneme structures and protein synthesis. In contrast, up-regulated gene clusters in frontal cortex area 8 involve neurotransmission, synaptic proteins and vesicle trafficking, whereas main down-regulated genes cluster into oligodendrocyte function and myelin-related proteins. RT-qPCR validates the expression of 58 of 66 assessed genes from different clusters. The present results: a. reveal regional differences in de-regulated gene expression between the anterior horn of the spinal cord and frontal cortex area 8 in the same individuals suffering from sALS; b. validate and extend our knowledge about the complexity of the inflammatory response in the anterior horn of the spinal cord; and c. identify for the first time extensive gene up-regulation of neurotransmission and synaptic-related genes, together with significant down-regulation of oligodendrocyte- and myelin-related genes, as important contributors to the pathogenesis of frontal cortex alterations in the sALS/frontotemporal lobar degeneration spectrum complex at stages with no apparent cognitive impairment.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Institute of Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Jesús Moreno
- Institute of Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Ester Aso
- Institute of Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Mónica Povedano
- Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Isidro Ferrer
- Institute of Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Hospitalet de Llobregat, Spain
| |
Collapse
|
8
|
Wilkinson RDA, Young A, Burden RE, Williams R, Scott CJ. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol Cancer 2016; 15:29. [PMID: 27097645 PMCID: PMC4839156 DOI: 10.1186/s12943-016-0513-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/09/2016] [Indexed: 12/27/2022] Open
Abstract
Background Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Methods Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true Ki values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. Results We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. Conclusions In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0513-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard D A Wilkinson
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Andrew Young
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Roberta E Burden
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Rich Williams
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom.
| | - Christopher J Scott
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom.
| |
Collapse
|
9
|
Strategies for detection and quantification of cysteine cathepsins-evolution from bench to bedside. Biochimie 2016; 122:48-61. [DOI: 10.1016/j.biochi.2015.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022]
|
10
|
Payne CD, Deeg MA, Chan M, Tan LH, LaBell ES, Shen T, DeBrota DJ. Pharmacokinetics and pharmacodynamics of the cathepsin S inhibitor, LY3000328, in healthy subjects. Br J Clin Pharmacol 2015; 78:1334-42. [PMID: 25039273 DOI: 10.1111/bcp.12470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/11/2014] [Indexed: 11/27/2022] Open
Abstract
AIM The aim of this study was to assess the safety and tolerability, pharmacokinetics and pharmacodynamics of LY3000328 when administered as single escalating doses to healthy volunteers. METHODS This was a phase 1, placebo-controlled, dose escalation study with LY3000328 in 21 healthy male volunteers. Subjects were administered escalating LY3000328 doses up to 300 mg with food in this single dose study. Blood samples were collected at set times post-dose for the assessment of LY3000328 pharmacokinetics and the measurement of cathepsin S (CatS) activity, CatS mass and calculated CatS specific activity. RESULTS All doses of LY3000328 were well tolerated, with linear pharmacokinetics up to the 300 mg dose. The pharmacodynamic activity of LY3000328 was measured ex vivo showing a biphasic response to LY3000328, where CatS activity declines, then returns to baseline, and then increases to a level above baseline. CatS mass was also assessed post-dose which increased in a dose-dependent manner, and continued to increase after LY3000328 had been cleared from the body. CatS specific activity was additionally calculated to normalize CatS activity for changes in CatS mass. This demonstrated the increase in CatS activity was attributable to the increase in CatS mass detected in plasma. CONCLUSION A specific inhibitor of CatS which is cleared quickly from plasma may produce a transient decrease in plasma CatS activity which is followed by a more prolonged increase in plasma CatS mass which may have implications for the future clinical development of inhibitors of CatS.
Collapse
Affiliation(s)
- Christopher D Payne
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Lecaille F, Lalmanach G, Andrault PM. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie 2015; 122:151-68. [PMID: 26341472 DOI: 10.1016/j.biochi.2015.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense.
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France.
| | - Gilles Lalmanach
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| | - Pierre-Marie Andrault
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| |
Collapse
|
12
|
Fsn0503h antibody-mediated blockade of cathepsin S as a potential therapeutic strategy for the treatment of solid tumors. Biochimie 2015; 108:101-7. [DOI: 10.1016/j.biochi.2014.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/27/2014] [Indexed: 01/20/2023]
|
13
|
Kim M, Jeon J, Baek J, Choi J, Park EJ, Song J, Bang H, Suh KH, Kim YH, Kim J, Kim D, Min KH, Lee KO. Synthesis of Vinyl Sulfone-tethered Proline Derivatives as Highly Selective Cathepsin S Inhibitors. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.2.345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Inhibition of cathepsin S produces neuroprotective effects after traumatic brain injury in mice. Mediators Inflamm 2013; 2013:187873. [PMID: 24282339 PMCID: PMC3824312 DOI: 10.1155/2013/187873] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/16/2013] [Accepted: 09/04/2013] [Indexed: 11/20/2022] Open
Abstract
Cathepsin S (CatS) is a cysteine protease normally present in lysosomes. It has long been regarded as an enzyme that is primarily involved in general protein degradation. More recently, mounting evidence has shown that it is involved in Alzheimer disease, seizures, age-related inflammatory processes, and neuropathic pain. In this study, we investigated the time course of CatS protein and mRNA expression and the cellular distribution of CatS in a mouse model of traumatic brain injury (TBI). To clarify the roles of CatS in TBI, we injected the mice intraventricularly with LHVS, a nonbrain penetrant, irreversible CatS inhibitor, and examined the effect on inflammation and neurobehavioral function. We found that expression of CatS was increased as early as 1 h after TBI at both protein and mRNA levels. The increased expression was detected in microglia and neurons. Inhibition of CatS significantly reduced the level of TBI-induced inflammatory factors in brain tissue and alleviated brain edema. Additionally, administration of LHVS led to a decrease in neuronal degeneration and improved neurobehavioral function. These results imply that CatS is involved in the secondary injury after TBI and provide a new perspective for preventing secondary injury after TBI.
Collapse
|
15
|
Sage J, Mallèvre F, Barbarin-Costes F, Samsonov SA, Gehrcke JP, Pisabarro MT, Perrier E, Schnebert S, Roget A, Livache T, Nizard C, Lalmanach G, Lecaille F. Binding of chondroitin 4-sulfate to cathepsin S regulates its enzymatic activity. Biochemistry 2013; 52:6487-98. [PMID: 23968158 DOI: 10.1021/bi400925g] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human cysteine cathepsin S (catS) participates in distinct physiological and pathophysiological cellular processes and is considered as a valuable therapeutic target in autoimmune diseases, cancer, atherosclerosis, and asthma. We evaluated the capacity of negatively charged glycosaminoglycans (heparin, heparan sulfate, chondroitin 4/6-sulfates, dermatan sulfate, and hyaluronic acid) to modulate the activity of catS. Chondroitin 4-sulfate (C4-S) impaired the collagenolytic activity (type IV collagen) and inhibited the peptidase activity (Z-Phe-Arg-AMC) of catS at pH 5.5, obeying a mixed-type mechanism (estimated Ki = 16.5 ± 6 μM). Addition of NaCl restored catS activity, supporting the idea that electrostatic interactions are primarly involved. Furthermore, C4-S delayed in a dose-dependent manner the maturation of procatS at pH 4.0 by interfering with the intermolecular processing pathway. Binding of C4-S to catS was demonstrated by gel-filtration chromatography, and its affinity was measured by surface plasmon resonance (equilibrium dissociation constant Kd = 210 ± 40 nM). Moreover, C4-S induced subtle conformational changes in mature catS as observed by intrinsic fluorescence spectroscopy analysis. Molecular docking predicted three specific binding sites on catS for C4-S that are different from those found in the crystal structure of the cathepsin K-C4-S complex. Overall, these results describe a novel glycosaminoglycan-mediated mechanism of catS inhibition and suggest that C4-S may modulate the collagenase activity of catS in vivo.
Collapse
Affiliation(s)
- Juliette Sage
- INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais , F-37032 Tours cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lecaille F, Naudin C, Sage J, Joulin-Giet A, Courty A, Andrault PM, Veldhuizen RA, Possmayer F, Lalmanach G. Specific cleavage of the lung surfactant protein A by human cathepsin S may impair its antibacterial properties. Int J Biochem Cell Biol 2013; 45:1701-9. [DOI: 10.1016/j.biocel.2013.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
|
17
|
Small DM, Burden RE, Jaworski J, Hegarty SM, Spence S, Burrows JF, McFarlane C, Kissenpfennig A, McCarthy HO, Johnston JA, Walker B, Scott CJ. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int J Cancer 2013; 133:2102-12. [PMID: 23629809 DOI: 10.1002/ijc.28238] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/09/2013] [Indexed: 01/13/2023]
Abstract
Recent murine studies have demonstrated that tumor-associated macrophages in the tumor microenvironment are a key source of the pro-tumorigenic cysteine protease, cathepsin S. We now show in a syngeneic colorectal carcinoma murine model that both tumor and tumor-associated cells contribute cathepsin S to promote neovascularization and tumor growth. Cathepsin S depleted and control colorectal MC38 tumor cell lines were propagated in both wild type C57Bl/6 and cathepsin S null mice to provide stratified depletion of the protease from either the tumor, tumor-associated host cells, or both. Parallel analysis of these conditions showed that deletion of cathepsin S inhibited tumor growth and development, and revealed a clear contribution of both tumor and tumor-associated cell derived cathepsin S. The most significant impact on tumor development was obtained when the protease was depleted from both sources. Further characterization revealed that the loss of cathepsin S led to impaired tumor vascularization, which was complemented by a reduction in proliferation and increased apoptosis, consistent with reduced tumor growth. Analysis of cell types showed that in addition to the tumor cells, tumor-associated macrophages and endothelial cells can produce cathepsin S within the microenvironment. Taken together, these findings clearly highlight a manner by which tumor-associated cells can positively contribute to developing tumors and highlight cathepsin S as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Donna M Small
- School of Pharmacy, Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim M, Jeon J, Song J, Suh KH, Kim YH, Min KH, Lee KO. Synthesis of proline analogues as potent and selective cathepsin S inhibitors. Bioorg Med Chem Lett 2013; 23:3140-4. [PMID: 23639544 DOI: 10.1016/j.bmcl.2013.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 02/08/2023]
Abstract
Cathepsin S is a potential target of autoimmune disease. A series of proline derived compounds were synthesized and evaluated as cathepsin S inhibitors. We discovered potent cathepsin S inhibitors through structure-activity relationship studies of proline analogues. In particular, compound 19-(S) showed promising in vitro/vivo pharmacological activities and properties as a selective cathepsin S inhibitor.
Collapse
Affiliation(s)
- Mira Kim
- Department of Drug Discovery, Hanmi Research Center, 377-1 Yeongcheon-ri, Dongtan-myeon, Hwaseong, Gyeonggi-do 445-813, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Cox JM, Troutt JS, Knierman MD, Siegel RW, Qian YW, Ackermann BL, Konrad RJ. Determination of cathepsin S abundance and activity in human plasma and implications for clinical investigation. Anal Biochem 2012; 430:130-7. [PMID: 22922382 DOI: 10.1016/j.ab.2012.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/16/2012] [Accepted: 08/16/2012] [Indexed: 11/24/2022]
Abstract
There is strong experimental evidence associating cathepsin S with the pathogenesis of atherosclerosis, with emerging data to support its role in diseases such as abdominal aortic aneurysm, obesity, and type 2 diabetes. To further our understanding of cathepsin S, we have developed a novel sandwich immunoassay to measure the mature form of cathepsin S in plasma (mean values from 12 healthy donors of 53±17ng/ml, range=39-102). We also developed a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to measure in vitro cathepsin S activity to compare activity levels with the protein mass levels determined by enzyme-linked immunosorbent assay (ELISA). Interestingly, we observed that only 0.4 to 1.1% of circulating cathepsin S was enzymatically active. We subsequently demonstrated that the attenuated activity we observed resulted from binding between cathepsin S and its endogenous inhibitor cystatin C in plasma. These data were obtained through immunoprecipitation coupled with either Western blotting analysis or in-gel tryptic digestion and LC-MS/MS characterization of Coomassie-stained gel bands. Although many laboratories have explored the relationship between cathepsin S and cystatin C, this is the first study to demonstrate their association in human circulation, a finding that could prove to be important in furthering our understanding of cathepsin S biology.
Collapse
Affiliation(s)
- Jennifer M Cox
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
The role of Cathepsin S as a marker of prognosis and predictor of chemotherapy benefit in adjuvant CRC: a pilot study. Br J Cancer 2011; 105:1487-94. [PMID: 21989182 PMCID: PMC3242524 DOI: 10.1038/bjc.2011.408] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: The aim of this pilot retrospective study was to investigate the immunohistochemical expression of Cathepsin S (CatS) in three cohorts of colorectal cancer (CRC) patients (n=560). Methods: Prevalence and association with histopathological variables were assessed across all cohorts. Association with clinical outcomes was investigated in the Northern Ireland Adjuvant Chemotherapy Trial cohort (n=211), where stage II/III CRC patients were randomised between surgery-alone or surgery with adjuvant fluorouracil/folinic acid (FU/FA) treatment. Results: Greater than 95% of tumours had detectable CatS expression with significantly increased staining in tumours compared with matched normal colon (P>0.001). Increasing CatS was associated with reduced recurrence-free survival (RFS; P=0.03) among patients treated with surgery alone. Adjuvant FU/FA significantly improved RFS (hazard ratio (HR), 0.33; 95% CI, 0.12–0.89) and overall survival (OS; HR, 0.25; 95% CI, 0.08–0.81) among 36 patients with high CatS. Treatment did not benefit the 66 patients with low CatS, with a RFS HR of 1.34 (95% CI, 0.60–3.19) and OS HR of 1.33 (95% CI, 0.56–3.15). Interaction between CatS and treatment status was significant for RFS (P=0.02) and OS (P=0.04) in a multivariate model adjusted for known prognostic markers. Conclusion: These results signify that CatS may be an important prognostic biomarker and predictive of response to adjuvant FU/FA in CRC.
Collapse
|