1
|
Yang Y, Sun M, Jia W, Jiao K, Wang S, Liu Y, Liu L, Dai Z, Jiang X, Yang T, Luo Y, Cheng Z, Wang H, Liu G. An osteoporosis bone defect regeneration strategy via three-dimension short fibers loaded with alendronate modified hydroxyapatite. Colloids Surf B Biointerfaces 2024; 233:113659. [PMID: 38029468 DOI: 10.1016/j.colsurfb.2023.113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Osteoporotic bone defect has become clinic challenge due to its morbid bone microenvironment. Overactive bone resorption and limited bone formation lead to unstable combination between bone tissue and scaffolds. Electrospinning has been widely used in guide tissue membrane, but its barrier property results in limited application. In order to optimize the structure and add anti-bone resorption function of electrospinning fibers, we exploited the application of short fibers generated by homogenization at osteoporotic tibial bone defect. The modified nano-hydroxyapatite (m-HA) was loaded with alendronate. It overcame the problem that hydrophilic drugs were difficult to distribute uniformly in hydrophobic fibers. We confirmed that m-HA was loaded into polycaprolactone (PCL) short fibers. PCL short fibers with m-HA (PCL/m-HA) continuously released ALN, provided stable structure and showed good cytocompatibility. In vitro, PCL/m-HA increased the activity of alkaline phosphatase (ALP), promoted extracellular matrix mineralization and upregulated the expression of osteogenesis-related genes, Col 1, Alp, osteopontin (Opn) and runt-related transcription factor 2 (Runx2). In vivo, PCL/m-HA short fibers accelerated the new bone formation, inhibited the bone resorption and rebalanced the bone microenvironment through regulating osteoprotegerin (OPG) /receptor activator of NF-kB (RANKL) ratio. The above results confirmed that the PCL/m-HA short fibers achieved the application of three-dimension osteoporotic bone defect and had potential prospects in bone tissue scaffolds.
Collapse
Affiliation(s)
- Yuheng Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China
| | - Maolei Sun
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenyuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China
| | - Kun Jiao
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Shaoru Wang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Yun Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Liping Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Zhihui Dai
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Xuanzuo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China
| | - Tao Yang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Yungang Luo
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; Department of Stomatology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhiqiang Cheng
- Department of Stomatology, The First Hospital of Jilin University, Changchun 130021, China; College of Resources and Environment, Jilin Agriculture University, Changchun 130118, China
| | - Hailiang Wang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun 130033, China
| | - Guomin Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China.
| |
Collapse
|
2
|
de Lima do Nascimento TC, Gerber JT, Verbicaro T, Arce RM, Elsalanty ME, Fontana JD, Muller Storrer CL, Scariot R. Biochemical and X-ray micro-computed tomographic analyses of critical size bone defects grafted with autogenous bone and mercerized bacterial cellulose membranes salified with alendronate. J Oral Biosci 2021; 63:408-415. [PMID: 34425239 DOI: 10.1016/j.job.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES This study aimed to evaluate the repair of critical-sized bone defects grafted with autogenous bone and mercerized bacterial cellulose membranes (BCm) salified with alendronate (ALN). METHODS Forty-eight male Wistar rats underwent surgery to create a 5 mm-diameter bone defect in the calvarium. The removed bone was particularized, regrafted into the defect, and covered by a BCm according to the group: control group (CG), simply mercerized BCm; group 1 (G1), negatively charged BCm (BCm-CM-) salified with ALN; and group 2 (G2), positively charged BCm (BCm-DEAE+) salified with ALN. Serum samples were collected preoperatively and before euthanasia to analyze osteoprotegerin (OPG), parathyroid hormone (PTH), sclerostin (SOST), and fibroblast growth factor 23 (FGF23) levels. The animals were euthanized after 15 or 60 d. Calvaria were analyzed using quantitative microtomography (μCT). RESULTS There was an increased level of PTH in the CG compared to the G2 group, at day 60 (p = 0.019). When analyzing the same group over time, G1 presented an increased FGF23 level on days 15 and 60 (p < 0.05). CG presented an increase in PTH (p = 0.037) at day 60. The μCT analysis detected increased trabecular separation on day 15 in G2 compared to G1 (p = 0.040). CONCLUSIONS Salification of ionized BCm with ALN had no direct effect on bone repair; however, BCm-CM- increased the levels of FGF23 over time. BCm-DEAE+ decreased PTH levels compared to mercerized BCm. BCm-CM-salified with ALN-induced superior bone quality, with respect to trabecular separation, compared to BCm-DEAE+.
Collapse
Affiliation(s)
- Tuanny C de Lima do Nascimento
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Curitiba, PR, Brazil, Zip code: 81280-330
| | - Jennifer Tsi Gerber
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Curitiba, PR, Brazil, Zip code: 81280-330
| | - Thalyta Verbicaro
- School of Health Sciences, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Curitiba, PR, Brazil, Zip code: 81280-330
| | - Roger M Arce
- Department of Periodontics and Oral Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, TX, USA, Zip code: 77054
| | - Mohammed E Elsalanty
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 615 E 3rd St Pomona, CA, USA, Zip code: 91766
| | - José Domingos Fontana
- Master Graduation on Urban and Industrial Environments, Polytechnic Center, Federal University of Paraná, 100 Cel. Francisco H. Dos Santos Avenue, Curitiba, PR, Brazil, Zip code: 81530-000
| | - Carmen Lucia Muller Storrer
- Department of Periodontics, IOA Boutique Curitiba, 6823 Sete de Setembro Avenue, Seminario, Curitiba, PR, Brazil, Zip code: 80240-001
| | - Rafaela Scariot
- Department of Stomatology, School of Dentistry, Federal University of Parana, 632 Prefeito Lothario Meissner Avenue, Curitiba, PR, Brazil, Zip code: 80210-170.
| |
Collapse
|
3
|
Zeng Y, Zhou M, Mou S, Yang J, Yuan Q, Guo L, Zhong A, Wang J, Sun J, Wang Z. Sustained delivery of alendronate by engineered collagen scaffold for the repair of osteoporotic bone defects and resistance to bone loss. J Biomed Mater Res A 2020; 108:2460-2472. [PMID: 32419333 DOI: 10.1002/jbm.a.36997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022]
Abstract
Researches of biomaterials for osteoporotic bone defects focus on the improvement of its anti-osteoporosis ability, due to osteoporosis is a kind of systemic and long-range bone metabolism disorder. Nevertheless, how to steadily deliver anti-osteoporosis drugs in osteoporotic bone defects is rarely studied. Reported evidences have shown that alendronate (Aln) is known to not only restrain osteoclasts from mediating bone resorption but also stimulate osteoblasts to regenerate bone tissue. Here, we developed an engineered implantable scaffold that could sustainably release Aln for osteoporotic bone defects. Briefly, Aln was added into 2% collagen (Col) solution to form a 5 mg/ml mixture. Then the mixture was filled into pre-designed round models (diameter: 5 mm, height: 2 mm) and crosslinked to obtain engineered Col-Aln scaffolds. The release kinetics showed that Aln was released at an average rate of 2.99 μg/d in the initial 8 days and could sustainably release for 1 month. To detect the repair effects of the Col-Aln scaffolds for osteoporotic defects, the Col and Col-Aln scaffolds were implanted into 5 mm cranial defects in ovariectomized rats. After 3 months, the cranial defects implanted with Col-Aln scaffolds achieved more bone regeneration in defect area (11.74 ± 3.82%) than Col scaffold (5.12 ± 1.15%) (p < .05). Moreover, ovariectomized rats in Col-Aln scaffold group possessed more trabecular bone in femur metaphysis than Col scaffold group as analyzed by Micro-CT. This study demonstrated the engineered Col-Aln scaffold has the potential to repair osteoporotic bone defects and resist bone loss in osteoporosis.
Collapse
Affiliation(s)
- Yuyang Zeng
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| | - Shan Mou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| | - Quan Yuan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| | - Liang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, China
| |
Collapse
|
4
|
Chen C, Zheng H, Qi S. Genistein and Silicon Synergistically Protects Against Ovariectomy-Induced Bone Loss Through Upregulating OPG/RANKL Ratio. Biol Trace Elem Res 2019; 188:441-450. [PMID: 30014283 DOI: 10.1007/s12011-018-1433-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
We have reported that genistein (Gen) and silicon (Si) have synergistic effects on ovariectomy-induced bone loss in rat; however, the potential mechanisms behind this effect were not fully clarified yet. This study was performed to evaluate the bone protective mechanisms of concomitant intake of genistein and silicon in ovariectomized rat by OPG/RANKL axis. Three-month-old Sprague-Dawley female rats were subjected to ovariectomy (OVX) or sham surgery; after surgery, the OVX rats were randomly divided into five groups: OVX-Gen, OVX-Si, OVX-Gen-Si, OVX-E, and OVX. Genistein, silicon, and 17β-estradiol supplementation were started after ovariectomy and continued for 10 weeks. The results showed that genistein and silicon treatment increased the bone mineral density (BMD) of ovariectomized rats. In addition, the BMD of the tibia and femur were highest in the OVX-Gen-Si group compared with OVX-Gen and OVX-Si group (p < 0.05). After 10 weeks treatment with genistein and silicon, the bone structure of ovariectomized rats was recovered, there was no difference of bone histomorphometric parameters between OVX-Gen-Si, OVX-E, and SHAM group (p > 0.05), and there was no difference in the concentration of serum ALP, Ca, P, OPG, and RANKL between OVX-Gen-Si, SHAM, and OVX-E groups (p > 0.05). RT-PCR showed that genistein and silicon treatment could effectively increase the OPG mRNA expression and decreased the RANKL mRNA expression compared to that of the OVX group (p < 0.05), the OPG/RANKL mRNA ratios were significantly decreased in the OVX group (p < 0.05), and it was nearly to normal in the OVX-Gen-Si group. Immunohistochemical staining results showed that genistein and silicon supplementation could effectively increase the protein expression of OPG and decrease the protein expression of RANKL in bone tissues; there were no significant differences in OPG and RANKL positive expression areas between OVX-Gen-Si, SHAM, and OVX-E group (p > 0.05). The results above indicate that genistein and silicon supplementation can effectively reduce RANKL, increase OPG levels, and OPG/RANKL ratios in the serum and bone tissue of ovariectomized rats; this is the main mechanism by which genistein and silicon play a bone protective role in ovariectomized rats.
Collapse
Affiliation(s)
- Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Chaoyang Road, Hantai District, Hanzhong, 723000, Shaanxi Province, China
| | - Hongxing Zheng
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Chaoyang Road, Hantai District, Hanzhong, 723000, Shaanxi Province, China.
| | - Shanshan Qi
- Vitamin D research institute, Shaanxi University of Technology, Chaoyang Road, Hantai District, Hanzhong, 723000, Shaanxi Province, China.
| |
Collapse
|
5
|
Qi S, Zheng H, Chen C, Jiang H. Du-Zhong (Eucommia ulmoides Oliv.) Cortex Extract Alleviates Lead Acetate-Induced Bone Loss in Rats. Biol Trace Elem Res 2019; 187:172-180. [PMID: 29740803 DOI: 10.1007/s12011-018-1362-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to evaluate the protective effect of Du-Zhong cortex extract (DZCE) on lead acetate-induced bone loss in rats. Forty female Sprague-Dawley rats were randomly divided into four groups: group I (control) was provided with distilled water. Group II (PbAc) received 500 ppm lead acetate in drinking water for 60 days. Group III (PbAc+DZCE) received 500 ppm lead acetate in drinking water, and given intragastric DZCE (100 mg/kg body weight) for 60 days. Group IV (DZCE) was given intragastric DZCE (100 mg/kg body weight) for 60 days. The bone mineral density, serum biochemical markers, bone histomorphology, and bone marrow adipocyte parameters were analyzed using dual-energy X-ray absorptiometry, biochemistry, histomorphometry, and histopathology, respectively. The results showed that the lumbar spine and femur bone mineral density was significantly decreased in PbAc group compared with the control (P < 0.05); however, this decrease was inhibited by the intake of Du-Zhong cortex extract (P < 0.05, vs. PbAc group; P > 0.05, vs. control and DZCE group). Serum calcium and serum phosphorus in the PbAc+DZCE group were greater than that in the PbAc group (P < 0.05). The PbAc group had higher ALP, osteocalcin, and RANKL than the control group (P < 0.01), and they were significantly lower in the PbAc+DZCE group compared with the PbAc group. There were no significant differences of ALP, osteocalcin, and RANKL among the PbAc+DZCE, control, and DZCE groups (P > 0.05). Serum OPG and OPG/RANKL ration were significantly higher in the PbAc+DZCE group than that in the PbAc group (P < 0.05). The bone histomorphometric analyses showed that bone volume and trabecular thickness in the femoral trabecular bone were significantly lower in the PbAc group than that in the control group, but those were restored in the PbAc+DZCE groups. The bone marrow adipocyte number, percent adipocyte volume per tissue volume (AV/TV), and mean adipocyte diameter were significantly increased in the PbAc group compared to the control (P < 0.01), and those were restored in the PbAc+DZCE group. The differences of those parameters between PbAc+DZCE, DZCE, and the control group were not significant. The results above indicate that the Du-Zhong cortex extract has protective effects on both stimulation of bone formation and suppression of bone resorption in lead-exposed rats, therefore, Du-Zhong cortex extract has the potential to prevent or treat osteoporosis resulting from lead expose.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Hongxing Zheng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
| | - Chen Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi University of Technology, Hanzhong, 723000, China.
| | - Hai Jiang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| |
Collapse
|
6
|
Kwak EJ, Cha IH, Nam W, Yook JI, Park YB, Kim HJ. Effects of locally administered rhBMP-2 and bisphosphonate on bone regeneration in the rat fibula. Oral Dis 2018; 24:1042-1056. [DOI: 10.1111/odi.12864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/23/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Affiliation(s)
- E-J Kwak
- Department of Oral and Maxillofacial Surgery; College of Dentistry; Yonsei University; Seoul Korea
| | - I-H Cha
- Department of Oral and Maxillofacial Surgery; College of Dentistry; Yonsei University; Seoul Korea
| | - W Nam
- Department of Oral and Maxillofacial Surgery; College of Dentistry; Yonsei University; Seoul Korea
| | - JI Yook
- Department of Oral Pathology; College of Dentistry; Yonsei University; Seoul Korea
| | - Y-B Park
- Department of Prosthodontics; College of Dentistry; Yonsei University; Seoul Korea
| | - HJ Kim
- Department of Oral and Maxillofacial Surgery; College of Dentistry; Yonsei University; Seoul Korea
| |
Collapse
|
7
|
Qi S. Synergistic Effects of Genistein and Zinc on Bone Metabolism and the Femoral Metaphyseal Histomorphology in the Ovariectomized Rats. Biol Trace Elem Res 2018; 183:288-295. [PMID: 28842860 DOI: 10.1007/s12011-017-1134-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
In this study, we evaluated the synergistic effects of genistein and zinc on bone metabolism, bone mineral density, and the femoral metaphyseal histomorphology in the ovariectomized rats. Sixty female Sprague-Dawley rats, aged 13 weeks, were divided into sham-operated group (SHAM), ovariectomized group (OVX), genistein-treated group (OVX-Gen), zinc-treated group (OVX-Zn), genistein combined zinc-treated group (OVX-Gen-Zn), and 17β-estradiol-treated group (OVX-E) (n = 10). Genistein, zinc, and 17β-estradiol injections were started immediately after OVX and continued for 10 weeks. The OVX-Gen group was subcutaneous injections of genistein (5 mg/kg once every day). The OVX-Zn group was given intragastric ZnSO4 (0.25 mg/kg once every day) after bilateral ovariectomy. The OVX-Gen-Zn group was subcutaneous injections of genistein (5 mg/kg), at the same time intragastric ZnSO4 (0.25 mg/kg once every day). OVX-E group were intraperitoneally injected with 17β-estradiol (10 μg/kg) once every other day. The results showed that genistein and zinc did not alter body weight in OVX rats. The soluble ZnSO4 had no effect to uterus weight loss. Genistein and zinc supplementation significantly increased the BMD of the femur and lumbar spine in OVX rats (P < 0.05, vs. OVX control group). The BMD of the lumbar spine and femur in the OVX-Gen-Zn group is higher than that in the OVX-Gen and OVX-Zn groups (P < 0.05), and there were no differences of BMD among the OVX-Gen-Zn, OVX-E, and SHAM groups (P > 0.05). The femoral metaphyseal morphology and bone histomorphometric parameters revealed that the trabecular volume and thickness in the OVX-Gen-Zn and OVX-E groups were similar to that of SHAM group, and the OVX-Gen-Zn group had more trabecular volume than the OVX-Gen and OVX-Zn groups. Serum zinc was found to be significantly reduced in the OVX group when compared with SHAM. Serum zinc levels were enhanced in the OVX-Zn, OVX-Gen-Zn, and OVX-E groups and restored to normal levels. Serum calcium and serum phosphorus in the OVX-Gen-Zn group was greater than that in the OVX-Gen and OVX-Zn groups (P < 0.05); the serum calcium, phosphorus, and ALP in the OVX-Gen-Zn group were similar to that of SHAM and OVX-E groups (P > 0.05). The OVX group had higher osteocalcin, CTX, and RANKL than the SHAM group (P < 0.01). They were lower in the OVX-Gen and OVX-Zn groups (P < 0.05), and they were significantly lower in the OVX-Gen-Zn and OVX-E groups, than in the OVX group. There were no significant differences of osteocalcin, CTX, and RANKL among the OVX-Gen-Zn, OVX-E, and SHAM groups (P > 0.05). OPG and OPG/RANKL ratios were significantly higher in the OVX-Gen and OVX-Zn groups than that in the OVX group (P < 0.05). The OPG and OPG/RANKL ratio in the OVX-Gen-Zn group is higher than that in the OVX-Gen and OVX-Zn groups (P < 0.05, vs. OVX-Gen group; P < 0.01, vs. OVX-Zn group). The differences of the OPG and OPG/RANKL ratios between the OVX-Gen-Zn, OVX-E, and the SHAM groups were not significant (P > 0.05). The results above indicate that the genistein and zinc have synergistic effects on both stimulation of bone formation and suppression of bone resorption in ovariectomized rats, thereby increasing bone mass.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, Shaanxi University of Technology, Chaoyang Road, Hantai District, Hanzhong City, Shaanxi Province, 723000, China.
| |
Collapse
|
8
|
Shin SH, Kim KH, Choi NR, Kim IR, Park BS, Kim YD, Kim UK, Kim CH. Effect of low-level laser therapy on bisphosphonate-treated osteoblasts. Maxillofac Plast Reconstr Surg 2016; 38:48. [PMID: 27995121 PMCID: PMC5122599 DOI: 10.1186/s40902-016-0095-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study investigates the effect of alendronate-treated osteoblasts, as well as the effect of low-level laser therapy (LLLT) on the alendronate-treated osteoblasts. Bisphosphonate decreases the osteoblastic activity. Various treatment modalities are used to enhance the bisphosphonate-treated osteoblasts; however, there were no cell culture studies conducted using a low-level laser. METHODS Human fetal osteoblastic (hFOB 1.19) cells were treated with 50 μM alendronate. Then, they were irradiated with a 1.2 J/cm2 low-level Ga-Al-As laser (λ = 808 ± 3 nm, 80 mW, and 80 mA; spot size, 1 cm2; NDLux, Seoul, Korea). The cell survivability was measured with the MTT assay. The three cytokines of osteoblasts, receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF) were analyzed. RESULTS In the cells treated with alendronate at concentrations of 50 μM and higher, cell survivability significantly decreased after 48 h (p < 0.05). After the applications of low-level laser on alendronate-treated cells, cell survivability significantly increased at 72 h (p < 0.05). The expressions of OPG, RANKL, and M-CSF have decreased via the alendronate. The RANKL and M-CSF expressions have increased, but the OPG was not significantly affected by the LLLT. CONCLUSIONS The LLLT does not affect the OPG expression in the hFOB cell line, but it may increase the RANKL and M-CSF expressions, thereby resulting in positive effects on osteoclastogenesis and bone remodeling.
Collapse
Affiliation(s)
- Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Ki-Hyun Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Na-Rae Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Bong-Soo Park
- Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Yong-Deok Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Uk-Kyu Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Cheol-Hun Kim
- Department of Oral and Maxillofacial Surgery, Dentistry, Dong-A Medical Center, 602-715 Pusan, Republic of Korea
| |
Collapse
|
9
|
Miyamura N, Nishida S, Itasaka M, Matsuda H, Ohtou T, Yamaguchi Y, Inaba D, Tamiya S, Nakano T. A case of hepatitis C-associated osteosclerosis: accelerated bone turnover controlled by pulse steroid therapy. Endocrinol Diabetes Metab Case Rep 2016; 2016:EDM160097. [PMID: 27933174 PMCID: PMC5118973 DOI: 10.1530/edm-16-0097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/26/2016] [Indexed: 11/08/2022] Open
Abstract
Hepatitis C-associated osteosclerosis (HCAO), a very rare disorder in which an extremely rapid bone turnover occurs and results in osteosclerosis, was acknowledged in 1990s as a new clinical entity with the unique bone disorder and definite link to chronic type C hepatitis, although the pathogenesis still remains unknown. Affected patients suffer from excruciating deep bone pains. We report the 19th case of HCAO with diagnosis confirmed by bone biopsy, and treated initially with a bisphosphonate, next with corticosteroids and finally with direct acting antivirals (DAA: sofosbuvir and ribavirin) for HCV infection. Risedronate, 17.5 mg/day for 38 days, did not improve the patient’s symptoms or extremely elevated levels of bone markers, which indicated hyper-bone-formation and coexisting hyper-bone-resorption in the patient. Next, intravenous methylprednisolone pulse therapy followed by high-dose oral administration of prednisolone evidently improved them. DAA therapy initiated after steroid therapy successfully achieved sustained virological response, but no additional therapeutic effect on them was observed. Our results strongly suggested that the underlying immunological alteration is the crucial key to clarify the pathogenesis of HCAO. Bone mineral density of lumbar vertebrae of the patient was increased by 14% in four-month period of observation. Clarification of the mechanisms that develop osteosclerosis in HCAO might lead to a new therapeutic perspective for osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daisuke Inaba
- Orthopedic Surgery , Tamana Central Hospital, Tamana , Japan
| | - Sadahiro Tamiya
- Department of General and Community Medicine , Kumamoto University Hospital, Kumamoto , Japan
| | - Tetsuo Nakano
- Orthopedic Surgery , Tamana Central Hospital, Tamana , Japan
| |
Collapse
|
10
|
Conners CM, Bhethanabotla VR, Gupta VK. Concentration-dependent effects of alendronate and pamidronate functionalized gold nanoparticles on osteoclast and osteoblast viability. J Biomed Mater Res B Appl Biomater 2015; 105:21-29. [PMID: 26372402 DOI: 10.1002/jbm.b.33527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 08/30/2015] [Indexed: 01/05/2023]
Abstract
Severe osteoporotic diseases, such as Paget's disease, Osteogenesis Imperfecta, and Legg Calve Perthes disease, lack treatments that address the pathobiology of the diseases, as well as, long-term and prospective studies. Bisphosphonates, which are known to dramatically hinder the viability of osteoclast cells, along with gold nanoparticles (GNP) are a potential theranostic for osteoporotic diseases. We evaluated GNP functionalized with two different bisphosphonates, namely, alendronate and pamidronate. RANKL differentiated murine pre-osteoclasts (Raw 264.7) and murine osteoblasts (7F2) were treated with varying concentrations ranging from 0.1-5 µM of free and GNP bound bisphosphonates. GNPs with an average size of ∼15 nm were functionalized with alendronate and pamidronate through surface modification by self-assembly. MTT viability assay results show no changes in viability of the osteoclasts when treated with free bisphosphonates in the range of 1-5 µM, but significant decrease on treatment with functionalized GNP at concentrations above the range of 0.1-1 µM depending on the bisphosphonate. Osteoblast cell viability is maintained at all but the highest concentrations used. Qualitative and quantitative characterization by Western Blot for RANKL expression in the osteoblast cell line shows that expression is largely maintained. These results provide a basis for methods that use bisphosphonate functionalized GNP in the treatment of osteoporotic bone diseases. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 21-29, 2017.
Collapse
Affiliation(s)
- Christopher M Conners
- Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, Florida
| | - Venkat R Bhethanabotla
- Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, Florida
| | - Vinay K Gupta
- Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, Florida
| |
Collapse
|
11
|
Martins CA, Leyhausen G, Volk J, Geurtsen W. Effects of alendronate on osteoclast formation and activity in vitro. J Endod 2014; 41:45-9. [PMID: 25442070 DOI: 10.1016/j.joen.2014.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/13/2014] [Accepted: 07/07/2014] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Root resorption is a common complication after replantation following traumatic dental avulsion. Endodontic therapy combined with local and intracanal medications aims to avoid osteoclastic activity. In such cases, the application of alendronate (ALN), a bisphosphonate widely used for the treatment of bone disorders, could be of clinical relevance. This study evaluated alendronate biocompatibility on periodontal ligament cells as well as its effects on an in vitro osteoclastogenesis model. METHODS Alendronate cytotoxicity (10(-3) to 10(-9) mol/L) in human periodontal ligament fibroblasts, human osteogenic sarcoma cells, and murine osteoclastic precursors (RAW 264.7) was analyzed using cell number determination, cell viability, and proliferation assays. ALN (10(-6) to 10(-12) mol/L) effects on RANKL-induced osteoclastogenesis of RAW cells were assessed by tartrate-resistant acid phosphatase (TRAP) staining and activity and real-time polymerase chain reaction. RESULTS ALN at higher concentrations was cytotoxic for all cell types, inhibiting significantly the proliferation of human osteogenic sarcoma cells and human periodontal ligament fibroblasts (≥10(-5) mol/L). TRAP activity and expression of the osteoclast markers TRAP and cathepsin K by RAW-derived osteoclasts decreased significantly with ALN at low concentrations, reaching the maximum effect at 10(-10) mol/L. CONCLUSIONS We showed that ALN at very low concentrations is an effective inhibitor of RANKL-generated osteoclasts, without causing cytotoxic effects on their precursors or periapical cells. ALN at such concentrations might be useful to prevent replacement resorption in avulsed teeth.
Collapse
Affiliation(s)
- Caroline A Martins
- Department of Conservative/Preventive Dentistry and Periodontology, Hannover Medical School, Hannover, Germany
| | - Gabriele Leyhausen
- Department of Conservative/Preventive Dentistry and Periodontology, Hannover Medical School, Hannover, Germany
| | - Joachim Volk
- Department of Conservative/Preventive Dentistry and Periodontology, Hannover Medical School, Hannover, Germany
| | - Werner Geurtsen
- Department of Conservative/Preventive Dentistry and Periodontology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
12
|
Chang CH, Wang CZ, Chang JK, Hsu CY, Ho ML. The susceptive alendronate-treatment timing and dosage for osteogenesis enhancement in human bone marrow-derived stem cells. PLoS One 2014; 9:e105705. [PMID: 25157615 PMCID: PMC4144913 DOI: 10.1371/journal.pone.0105705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/23/2014] [Indexed: 02/04/2023] Open
Abstract
Recent studies indicated that alendronate enhanced osteogenesis in osteoblasts and human bone marrow-derived stem cells. However, the time- and dose-dependent effects of Aln on ostegenic differentiation and cytotoxicity of hBMSCs remain undefined. In present study, we investigated the effective dose range and timing of hBMSCs. hBMSCs were treated with various Aln doses (1, 5 and 10 µM) according to the following groups: group A was treated with Aln during the first five days of bone medium, groups B, C and D were treated during the first, second, and final five days of osteo-induction medium and group E was treated throughout the entire experiment. The mineralization level and cytotoxicity were measured by quantified Alizarin Red S staining and MTT assay. In addition, the reversal effects of farnesyl pyrophosphate and geranylgeranyl pyrophosphate replenishment in group B were also investigated. The results showed that Aln treatment in groups A, B and E enhanced hBMSC mineralization in a dose-dependent manner, and the most pronounced effects were observed in groups B and E. The higher dose of Aln simultaneously enhanced mineralization and caused cytotoxicity in groups B, C and E. Replenishment of FPP or GGPP resulted in partial or complete reverse of the Aln-induced mineralization respectively. Furthermore, the addition of FPP or GGPP also eliminated the Aln-induced cytotoxicity. We demonstrated that hBMSCs are susceptible to 5 µM Aln during the initiation stage of osteogenic differentiation and that a 10 µM dose is cytotoxic.
Collapse
Affiliation(s)
- Chih-Hsiang Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopaedics, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopaedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Che-Yu Hsu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Stuss M, Rieske P, Cegłowska A, Stêpień-Kłos W, Liberski PP, Brzeziańska E, Sewerynek E. Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab 2013; 98:E1007-11. [PMID: 23543663 DOI: 10.1210/jc.2012-3885] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CONTEXT Recent research results have confirmed the high significance of the OPG/RANK/RANKL system in the development of bone diseases. AIM The aim of the reported study was to assess gene expression levels of the OPG/RANK/RANKL system in peripheral blood mononuclear cells (PBMCs) after strontium ranelate (SR) and ibandronate administered to patients with postmenopausal osteoporosis. PATIENTS AND METHODS A total of 89 postmenopausal women, aged 51 to 85 years, patients of the Outpatient Clinic of Osteoporosis of the Military Teaching Hospital in Lodz, were enrolled into the study. The patients were randomly assigned to different medical therapies: ibandronate and SR. Patients of the control group received only calcium and vitamin D₃ supplements. Patient visits were repeated after 3 and 6 months. Measurements of serum alkaline phosphatase concentrations and of RNA expression in PBMCs as well as of total serum calcium and phosphate levels and of their 24-hour urine excretion rates were carried out in material, collected at baseline and after 3 and 6 months of the therapy. Densitometry of the left hip and of the lumbar spine was done at the baseline visit and after 6 months. RESULTS The differences in gene expressions of RANKL and RANK were not significant during the study period and did not differ between the groups in a statistically significant manner. No OPG gene expression was observed in PBMCs of patients in any of the studied groups and at any time point. The tendency of correlation (P = .07) was observed between decreasing RANK gene expression and increasing bone mineral density in the patients treated with SR. CONCLUSIONS Both ibandronate and SR do not seem to cause any significant changes in gene expression levels of OPG/RANK/RANKL in PBMCs during the first 6 months of treatment.
Collapse
Affiliation(s)
- Michal Stuss
- Department of Endocrine Disorders and Bone Metabolism, Medical University of Lodz, 90-752 Łódz, ul. Żeligowskiego 7/9, Poland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Nelson-Filho P, Lucisano MP, Da Silva RAB, Da Silva RS, Serra MC, Gerlach RF, Neto FCR, Carneiro ZA, Zamarioli A, Morse L, Battaglino R. Systemically alendronate was incorporated into dental tissues but did not cause morphological or mechanical changes in rats teeth. Microsc Res Tech 2012; 75:1265-71. [PMID: 22508272 DOI: 10.1002/jemt.22059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 03/21/2012] [Indexed: 11/07/2022]
Abstract
This study evaluated the effect of the systemic use of sodium alendronate in rats in vivo. Forty-five Wistar rats aged 36 to 42 days and weighing 200 to 230 g were randomly assigned to a control group (n = 20), which received distilled water, and an experimental group (n = 25), which received 2 weekly doses of 1 mg/kg of chemically pure sodium alendronate. The animals were killed after 60 days of treatment. The tibias were removed for analysis of bone mineral density by dual-energy X-ray absorptiometry (DXA). Then, the maxillary incisors were extracted for analysis of the mineralized dental tissues using fluorescence spectroscopy (FS), scanning electron microscopy (SEM), bright field microscopy (BFM), and cross-sectional microhardness (CSMH) testing. DXA and CSMH data were subjected to statistical analysis by Kruskal-Wallis test (5% significance level). The experimental group presented higher bone mineral density than the control group by DXA. FS analysis revealed presence of alendronate in the mineralized dental tissues of the specimens of the experimental group. Significant morphological differences were not found by SEM and BFM. Enamel and dentin (100 and 300 μm from the dentinoenamel junction) CSMH data did not show significant difference between the control and experimental groups. Based on the obtained results, we conclude that while alendronate increased the bone mineral density and was incorporated into the mineralized dental tissues it did not cause significant alterations in the morphology and microhardness of rat incisor enamel and dentin.
Collapse
Affiliation(s)
- Paulo Nelson-Filho
- Department of Pediatric Clinics, Preventive and Community Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|