1
|
Norris JN, Waack AL, Becker KN, Keener M, Hoyt A, Reinard K. Glioblastoma in pregnant patient with pathologic and exogenous sex hormone exposure and family history of high-grade glioma: A case report and review of the literature. Surg Neurol Int 2023; 14:169. [PMID: 37292394 PMCID: PMC10246315 DOI: 10.25259/sni_58_2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Background Glioblastoma (GBM) incidence is higher in males, suggesting sex hormones may influence GBM tumorigenesis. Patients with GBM and altered sex hormone states could offer insight into a relationship between the two. Most GBMs arise sporadically and heritable genetic influence on GBM development is poorly understood, but reports describing familial GBM suggest genetic predispositions exist. However, no existing reports examine GBM development in context of both supraphysiologic sex hormone states and familial predisposition for GBM. We present a case of isocitrate dehydrogenase (IDH)-wild type GBM in a young pregnant female with polycystic ovary syndrome (PCOS), history of in vitro fertilization (IVF), and significant family history of GBM and further discuss how unique sex hormone states and genetics may affect GBM development or progression. Case Description A 35-year-old pregnant female with PCOS and recent history of IVF treatment and frozen embryo transfer presented with seizure and headache. Imaging revealed a right frontal brain mass. Molecular and histopathological analysis of the resected tumor supported a diagnosis of IDH-wild type GBM. The patient's family medical history was significant for GBM. Current literature indicates testosterone promotes GBM cell proliferation, while estrogen and progesterone effects vary with receptor subtype and hormone concentration, respectively. Conclusion Sex hormones and genetics likely exert influence on GBM development and progression that may compound with concurrence. Here, we describe a unique case of GBM in a young pregnant patient with a family history of glioma and atypical sex hormone exposure due to endocrine disorder and pregnancy assisted by exogenous IVF hormone administration.
Collapse
Affiliation(s)
- Jordan N. Norris
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Andrew L. Waack
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Kathryn N. Becker
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Myles Keener
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Alastair Hoyt
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Kevin Reinard
- Department of Neurosurgery, Promedica, Toledo, Ohio, United States
| |
Collapse
|
2
|
Li H, Chen H, Shi J, Fan Q, Zhou Z, Tang X, Wang Y, Liu Y. ERβ overexpression may not be a direct prognostic factor in patients with NSCLC: A meta-analysis. Int J Biol Markers 2022; 37:249-259. [PMID: 35730164 DOI: 10.1177/03936155221105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Overall survival of non-small cell lung cancer (NSCLC) patients remains disappointingly low. The estrogen receptor (ER) was considered a promising therapeutic target for NSCLC. Numerous studies have linked expression of ERβ to lung cancer outcome. However, results are conflicting regarding the association of ERβ with surviving lung cancer. METHOD The aim of this meta-analysis was to evaluate the prognostic aspect of ERβ expression on survival among NSCLC patients. We performed a final analysis of prognostic value of overexpression ERβ on 3500 patients from 18 evaluable studies (from January 1, 2000 to May 1, 2021). The reference category is specified as low ERβ expression levels. Summarized hazard ratios were calculated. RESULTS Our study showed that the pooled hazard ratios of ERβ overexpression for overall survival in NSCLC was 0.81 (95% confidence interval (CI): 0.64-1.02, P = 0.07) by univariate analysis and 1.06 (95% CI: 0.83-1.36, P = 0.63) by multivariate analysis. Pooled hazard ratio by univariate analysis in Asian studies was 0.73 (95%CI: 0.59-0.89, P = 0.002). Pooled hazard ratio by univariate analysis was 0.75 (95% CI: 0.61-0.93, P = 0.009) from seven studies reported for nuclear ERβ. No significant results were found in subgroups by multivariate analysis. No significant results were found in studies outside Asia or in studies reported for cytoplasmic ERβ. CONCLUSION Our results suggested that expression of ERβ might not be a direct prognostic factor for NSCLC patients. More detailed prospective studies are needed to identify direct prognostic factors in these patients.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haishegn Chen
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Shi
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Fan
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongxia Zhou
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiufeng Tang
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanhong Wang
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuguo Liu
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Jia S, Li L, Xie L, Zhang W, Zhu T, Qian B. Transcriptome Based Estrogen Related Genes Biomarkers for Diagnosis and Prognosis in Non-small Cell Lung Cancer. Front Genet 2021; 12:666396. [PMID: 33936178 PMCID: PMC8081391 DOI: 10.3389/fgene.2021.666396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background Lung cancer is the tumor with the highest morbidity and mortality, and has become a global public health problem. The incidence of lung cancer in men has declined in some countries and regions, while the incidence of lung cancer in women has been slowly increasing. Therefore, the aim is to explore whether estrogen-related genes are associated with the incidence and prognosis of lung cancer. Methods We obtained all estrogen receptor genes and estrogen signaling pathway genes in The Cancer Genome Atlas (TCGA), and then compared the expression of each gene in tumor tissues and adjacent normal tissues for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) separately. Survival analysis was performed of the differentially expressed genes in LUAD and LUSC patients separately. The diagnostic and prognostic values of the candidate genes were validated in the Gene Expression Omnibus (GEO) datasets. Results We found 5 estrogen receptor genes and 66 estrogen pathway genes in TCGA. A total of 50 genes were differently expressed between tumor tissues and adjacent normal tissues and 6 of the 50 genes were related to the prognosis of LUAD in TCGA. 56 genes were differently expressed between tumor tissues and adjacent normal tissues and none of the 56 genes was related to the prognosis of LUSC in TCGA. GEO datasets validated that the 6 genes (SHC1, FKBP4, NRAS, PRKCD, KRAS, ADCY9) had different expression between tumor tissues and adjacent normal tissues in LUAD, and 3 genes (FKBP4, KRAS, ADCY9) were related to the prognosis of LUAD. Conclusions The expressions of FKBP4 and ADCY9 are related to the pathogenesis and prognosis of LUAD. FKBP4 and ADCY9 may serve as biomarkers in LUAD screening and prognosis prediction in clinical settings.
Collapse
Affiliation(s)
- Sinong Jia
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xie
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weituo Zhang
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengteng Zhu
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Clinical Research Promotion and Development Center, Shanghai Hospital Development Center, Shanghai, China
| |
Collapse
|
4
|
Pinton G, Manzotti B, Balzano C, Moro L. Expression and clinical implications of estrogen receptors in thoracic malignancies: a narrative review. J Thorac Dis 2021; 13:1851-1863. [PMID: 33841973 PMCID: PMC8024832 DOI: 10.21037/jtd-20-2277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thoracic malignancies represent a significant global health burden with incidence and mortality increasing year by year. Thoracic cancer prognosis and treatment options depend on several factors, including the type and size of the tumor, its location, and the overall health status of patients. Gender represents an important prognostic variable in thoracic malignancies. One of the greatest biological differences between women and men is the presence of female sex hormones, and an increasing number of studies suggest that estrogens may play either a causative or a protective role in thoracic malignancies. Over the past 60 years since the discovery of the first nuclear estrogen receptor (ER) isoform α and the almost 20 years since the discovery of the second estrogen receptor, ERβ, different mechanisms governing estrogen action have been identified and characterized. This literature review reports the published data regarding the expression and function of ERs in different thoracic malignancies and discuss sex disparity in clinical outcomes. From this analysis emerges that further efforts are warranted to better elucidate the role of sex hormones in thoracic malignancies, and to reduce disparities in care between genders. Understanding the mechanisms by which gender-related differences can affect and interfere with the onset and evolution of thoracic malignancies and impact on response to therapies could help to improve the knowledge needed to develop increasingly personalized and targeted treatments.
Collapse
Affiliation(s)
- Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Beatrice Manzotti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cecilia Balzano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
5
|
Ishii H, Hattori Y, Ozawa H. Identification of Novel C-Terminally Truncated Estrogen Receptor β Variant Transcripts and Their Distribution in Humans. J NIPPON MED SCH 2021; 88:54-62. [DOI: 10.1272/jnms.jnms.2021_88-105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| | - Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
6
|
Yu H, Gu D, Qian P. Prognostic value of ESR2 expression on adjuvant chemotherapy in completely resected NSCLC. PLoS One 2020; 15:e0243891. [PMID: 33332474 PMCID: PMC7746143 DOI: 10.1371/journal.pone.0243891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/30/2020] [Indexed: 11/18/2022] Open
Abstract
Background Prognostic biomarker, which can inform the treatment outcome of adjuvant chemotherapy (ACT) after complete resection of early-stage non-small cell lung cancer (NSCLC), is urgently needed for the personalized treatment of these patients. Patients and methods The prognostic value of gene expression of the estrogen receptor (ER) on the effect of ACT in completely resected NSCLC was investigated in the present study. Two independent datasets from Gene Expression Omnibus (GEO) with a total of 309 patients were included in this study. The prognostic value of ER gene expression on ACT’s efficacy was evaluated by survival analysis and Cox hazards models. Results We found a consistent and significant prognostic value of ERβ (ESR2) expression for ACT’s efficacy in completely resected NSCLC in both of the two independent cohorts. After multivariate adjustment, a significant survival benefit of ACT was observed in patients with low expression of ESR2, with a hazard ratio (HR) of 0.19 (95%CI 0.05–0.82, p = 0.026) in the discovery cohort and an HR of 0.27 (95%CI 0.10–0.76, p = 0.012) in the validation group. No significant benefit of ACT in the subgroup of patients with high expression of ESR2 was observed, with an HR of 0.80 (95%CI 0.31–2.09, p = 0.644) in the discovery cohort and an HR of 1.05 (95%CI 0.48–2.29, p = 0.896) in the validation group. Conclusion A significant survival benefit from ACT was observed in patients with low ESR2 expression. No significant survival benefit was observed in patients with high ESR2 expression. Detection of ESR2 expression in NSCLC may help personalize its treatment after complete resection.
Collapse
Affiliation(s)
- Hongliang Yu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Dayong Gu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Pudong Qian
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Fan S, Liao Y, Qiu W, Li L, Li D, Cao X, Ai B. Targeting Toll-like receptor 4 with CLI-095 (TAK-242) enhances the antimetastatic effect of the estrogen receptor antagonist fulvestrant on non-small cell lung cancer. Clin Transl Oncol 2020; 22:2074-2086. [PMID: 32367494 PMCID: PMC7505887 DOI: 10.1007/s12094-020-02353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/04/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Estrogen plays a critical role in the invasiveness and metastasis of non-small cell lung cancer (NSCLC) through estrogen receptor β (ERβ). However, the antimetastatic effect of the ERβ antagonist fulvestrant was still limited in NSCLC patients. Recently, Toll-like receptor 4 (TLR4) signaling was implicated in NSCLC metastasis. Our present study aimed to evaluate the synergistic antimetastatic effect of a combination of fulvestrant and the TLR4-specific inhibitor CLI-095 (TAK-242) on human NSCLC cells. METHODS The expression levels of ERβ and TLR4 were detected by immunohistochemical (IHC) analysis of 180 primary NSCLC and 30 corresponding metastatic lymph node samples. The association between ERβ and TLR4 expression was analyzed. The aggressiveness of NSCLC cells treated with fulvestrant, CLI-095 or the drug combination and formation status of their invadopodia, invasion-associated structures, were investigated. The protein levels in NSCLC cells in different groups were determined by Western blot and immunofluorescence analyses. RESULTS Here, a positive correlation between ERβ and TLR4 expression was observed in both primary NSCLC tissue (Spearman's Rho correlation coefficient = 0.411, p < 0.001) and metastatic lymph node tissue (Spearman's Rho correlation coefficient = 0.374, p = 0.009). The protein levels of ERβ in NSCLC cell lines were decreased by fulvestrant, and this suppressive effect was significantly enhanced when fulvestrant was combined with CLI-095 (p < 0.05). Both the migration and invasion of NSCLC cells were suppressed by fulvestrant or CLI-095 alone, and the combination of fulvestrant + CLI-095 showed the strongest inhibitory effect (p < 0.05). In addition, the results demonstrated that CLI-095 also helped fulvestrant restrict the formation and function of invadopodia in NSCLC cells (p < 0.05). CONCLUSIONS Collectively, our study results suggested that CLI-095 enhances the antimetastatic effect of fulvestrant on NSCLC and provided support for further investigation of the antitumor activity of combined therapy with antiestrogen and anti-TLR4 agents in the clinic.
Collapse
Affiliation(s)
- S. Fan
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361000 Fujian Province China
| | - Y. Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao Street 1277, Wuhan, 430030 Hubei Province China
| | - W. Qiu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province China
| | - L. Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province China
| | - D. Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province China
| | - X. Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province China
| | - B. Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province China
| |
Collapse
|
8
|
Enwere EK, Dean ML, Li H, D'Silva A, Bebb DG. The prevalence and prognostic significance of estrogen receptor beta expression in non-small cell lung cancer. Transl Lung Cancer Res 2020; 9:496-506. [PMID: 32676313 PMCID: PMC7354142 DOI: 10.21037/tlcr.2020.03.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Estrogen receptor beta (ERβ) is the predominant estrogen receptor (ER) expressed in non-small cell lung cancer (NSCLC); however, due to methodological disparities among prior studies, the prognostic value of ERβ expression in NSCLC remains unclear. Our objective was to apply improved detection and analysis techniques to assess the prognostic value of ERβ expression in NSCLC. Methods A tissue microarray (TMA) was used which contained resected and biopsy specimens from 299 patients diagnosed at a single center with stages I-IV NSCLC. Sections of this array were stained using high-sensitivity fluorescence immunohistochemistry, with the well-validated PPG5/10 monoclonal antibody. Digital images of the stained array slides were analyzed using software-based image analysis, which reported ERβ expression as a continuous variable in different subcellular domains. Results There were no differences in ERβ expression between male and female patients. High expression of ERβ was not a prognostic factor, but was significantly associated with stage IV disease in both tumor and stroma (P<0.001). In multivariable analysis, a high nuclear/cytoplasmic (N/C) ratio of ERβ expression was significantly associated with shorter overall survival, based on expression in the tumor [hazard ratio (HR): 1.65; 95% confidence interval (CI): 1.25-2.19; P<0.001] and in the stroma (HR: 1.57; 95% CI: 1.16-2.12; P=0.003). Conclusions These results suggest that subcellular localization of ERβ, but not absolute expression, is a prognostic factor in NSCLC.
Collapse
Affiliation(s)
- Emeka K Enwere
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michelle L Dean
- Translational Laboratories, Tom Baker Cancer Center, Calgary, Alberta, Canada
| | - Haocheng Li
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Tom Baker Cancer Center, Calgary, Alberta, Canada
| | - Adrijana D'Silva
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - D Gwyn Bebb
- Translational Laboratories, Tom Baker Cancer Center, Calgary, Alberta, Canada.,Department of Oncology, Tom Baker Cancer Center, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Tang H, Bai Y, Xiong L, Zhang L, Wei Y, Zhu M, Wu X, Long D, Yang J, Yu L, Xu S, Zhao J. Interaction of estrogen receptor β5 and interleukin 6 receptor in the progression of non-small cell lung cancer. J Cell Biochem 2019; 120:2028-2038. [PMID: 30216513 DOI: 10.1002/jcb.27510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
Numerous studies have shown that the estrogen receptor beta (ERβ) and interleukin 6 receptor (IL-6R) had interaction in many tumors, including lung cancer. Previous studies found that ERβ5 exhibits a different biological function compared with the other subtypes of ERβ. Therefore, this study mainly explores the interaction between ERβ5 and IL-6R in the progression of lung cancer. We found that the expression of ERβ5, IL-6 and glycoprotein 130 (GP130) were significantly increased (P < 0.001) and the 5-year survival rate with the co-expression of ERβ5 and GP130 is significantly lower (P = 0.0315) in non-small cell lung cancer (NSCLC) patients. The cell proliferation, invasion, and cell cycle were markedly increased, and the cell apoptotic was markedly inhibited with the concurrent action of ERβ5 and IL-6 in A549 cells (P < 0.05). In addition, the expression of ERβ5, GP130, p-AKT, and p-44/42 MAPK was also significantly increased in A549 cells (P < 0.05). These results indicate that ERβ5 and GP130 can synergistically promote the progression of NSCLC and maybe combined as an independent prognostic factor in patients. In addition, these results also provide a theoretical basis for the combined targeting therapy of ERβ5 and GP130 in NSCLC.
Collapse
Affiliation(s)
- Hexiao Tang
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuquan Bai
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lecai Xiong
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanhong Wei
- Department of Nephrology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglin Zhu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoling Wu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Long
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhui Yang
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Xu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Bai Y, Shen W, Zhang L, Yang Z, Xiong L, Tang H, Zhao J. Oestrogen receptor β5 and epidermal growth factor receptor synergistically promote lung cancer progression. Autoimmunity 2018; 51:157-165. [PMID: 30022688 DOI: 10.1080/08916934.2018.1486825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Oestrogen receptor beta (ERβ) and epidermal growth factor receptor (EGFR) pathway can synergistically promote the proliferation, invasion, and metastasis of non-small-cell lung cancer (NSCLC) cells. ERβ has five subtypes, and the selective splicing of exon 8 in ERβ5 transcription translational phase makes its biological function different from other subtypes. The following study investigates whether ERβ5 interacts with EGFR pathway in lung cancer. Briefly, we found that the overexpression of ERβ5 and EGFR is associated with poor prognosis and decreased overall survival in NSCLC patients. Furthermore, the effects of ERβ5 and EGFR on cell biological behaviour were investigated in vitro. These results indicated that the combination of ERβ5 and EGF induces cell proliferation and invasion, while the combination of ERβ5 and Gefitinib (EGFR inhibitors, Gef) induces cell apoptosis and promotes cell mitosis in A549 cell line. In addition, the combination of ERβ5 and EGF increases the expression of ERβ5, EGFR, and p-ERK1/2 in lung cancer cells. To sum up, the obtained results suggest that ERβ5 and EGFR synergistically promote the progression of lung cancer by activating MEK/ERK signalling pathway, which provides a theoretical basis for more accurate combined targeted therapy.
Collapse
Affiliation(s)
- Yuquan Bai
- a Department of Thoracic and Cardiovascular Surgery , Zhongnan Hospital of Wuhan University , Wuhan , China
| | - Wulin Shen
- a Department of Thoracic and Cardiovascular Surgery , Zhongnan Hospital of Wuhan University , Wuhan , China
| | - Li Zhang
- a Department of Thoracic and Cardiovascular Surgery , Zhongnan Hospital of Wuhan University , Wuhan , China
| | - Zetian Yang
- a Department of Thoracic and Cardiovascular Surgery , Zhongnan Hospital of Wuhan University , Wuhan , China
| | - Lecai Xiong
- a Department of Thoracic and Cardiovascular Surgery , Zhongnan Hospital of Wuhan University , Wuhan , China
| | - Hexiao Tang
- a Department of Thoracic and Cardiovascular Surgery , Zhongnan Hospital of Wuhan University , Wuhan , China
| | - Jinping Zhao
- a Department of Thoracic and Cardiovascular Surgery , Zhongnan Hospital of Wuhan University , Wuhan , China
| |
Collapse
|
11
|
Huang Q, Zhang Z, Liao Y, Liu C, Fan S, Wei X, Ai B, Xiong J. 17β-estradiol upregulates IL6 expression through the ERβ pathway to promote lung adenocarcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:133. [PMID: 29970138 PMCID: PMC6029357 DOI: 10.1186/s13046-018-0804-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023]
Abstract
Background In non-small cell lung cancer (NSCLC), estrogen (E2) significantly promotes NSCLC cell growth via estrogen receptor beta (ERβ). Discovery and elucidation of the mechanism underlying estrogen-promoted NSCLC progression is critical for effective preventive interventions. IL6 has been demonstrated to be involved in the development, progression and metastasis in several cancers and IL6 overexpression is associated with poor prognosis in NSCLC. However, the exact role played by IL6 in estrogen-promoted NSCLC progress remain unknown. Here, we evaluated the expression and biological effects of IL6 in NSCLC cells when treated with E2 and explored the underlying mechanism of IL6 in E2-promoted NSCLC progression. Methods Expression of ERβ/IL6 in 289 lung cancer samples was assessed by immunohistochemistry. Matched samples of metastatic lymph node and primary tumor tissues were used to quantify the expression of ERβ/IL6 by western blot. Expression levels of IL6 in NSCLC cells were quantified by western blotting, ELISA, and immunofluorescence staining. The effects of IL6 stimulated by E2 on cell malignancy were evaluated using CCK8, colony formation, wound healing and transwell. Furthermore, overexpression and knockdown ERβ constructs were constructed to measure the expression of IL6. The effects of IL6 stimulated by E2 on tumor growth were evaluated using a urethane-induced adenocarcinoma model. In addition, a xenograft mouse model was used to observe differences in ERβ subtype tumor growth with respect to IL6 expression. Results IL6/ERβ expression were significantly increased in lung cancer. Higher IL6/ERβ expression was associated with decreased differentiation or increased metastasis. IL6 was an independent prognostic factor for overall survival (OS), higher IL6 expression was associated with decreased OS. Furthermore, ERβ regulates IL6 expression via MAPK/ERK and PI3K/AKT pathways when stimulated by E2 and promotes cell malignancy in vitro and induced tumor growth in vivo. Finally we confirm that ERβ isolation 1/5 is essential for E2 promotion of IL6 expression, while ERβ2 not. Conclusions Our findings demonstrate that E2 stimulates IL6 expression to promote lung adenocarcinoma progression through the ERβ pathway. We also clarify the difference in each ERβ subtype for E2 promoting IL6 expression, suggesting that ERβ/IL6 might be potential targets for prognostic assessment and therapeutic intervention in lung cancer. Electronic supplementary material The online version of this article (10.1186/s13046-018-0804-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quanfu Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Liu J, Sareddy GR, Zhou M, Viswanadhapalli S, Li X, Lai Z, Tekmal RR, Brenner A, Vadlamudi RK. Differential Effects of Estrogen Receptor β Isoforms on Glioblastoma Progression. Cancer Res 2018; 78:3176-3189. [PMID: 29661831 DOI: 10.1158/0008-5472.can-17-3470] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
The estrogen receptor β (ERβ) functions as a tumor suppressor in glioblastoma (GBM) cells. However, the in vivo significance of endogenous ERβ and the roles of its isoforms in GBM are incompletely understood. Using ERβ isoform-specific PCR screening, we found that GBM cells predominantly express ERβ1 and ERβ5, along with low levels of ERβ2 and ERβ4. We observed greater ERβ5 expression in higher grades of glioma than in lower grades. In CRISPR-based ERβ knockout (KO) cells and ERβ KO cells uniquely expressing ERβ1 or ERβ5 only, ERβ1 significantly reduced proliferation. Compared with parental GBM cells, ERβ KO cells exhibited high migratory and invasive potentials, and reexpression of ERβ1 resulted in the reduction of this phenotype. Interestingly, ERβ5 expression increased foci formation and anchorage-independent growth of NIH3T3 cells and increased motile structure formation, including filopodia and ruffles in GBM cells. Only ERβ1-expressing tumors resulted in longer mouse survival. RNA-Seq analysis revealed unique pathways modulated by ERβ1 and ERβ5. Compared with ERβ KO cells, ERβ1 cells exhibited lower activation of mTOR signaling molecules, including p-mTOR, p-S6K, and p-S6, and ERβ5-expressing cells had enhanced mTOR downstream signaling. Unique proteins including several that function as regulators of mTOR, immunomodulatory, and apoptosis pathways bound to ERβ1 and ERβ5 isoforms. Our work confirms the tumor-suppressive potential of ERβ1 and reveals the acquired oncogenic ability of ERβ5 in GBM cells. ERβ isoform status and their unique interactions with oncogenic pathways may have important implications in GBM progression.Significance: These findings suggest that only ERβ isoform 1 has tumor suppressor function in GBM and that ERβ isoform switching contributes to GBM progression. Cancer Res; 78(12); 3176-89. ©2018 AACR.
Collapse
Affiliation(s)
- Jinyou Liu
- Department of Obstetrics and Gynecology, University of Texas Health at San Antonio, San Antonio, Texas.,Department of Oncology, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health at San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, Texas
| | - Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health at San Antonio, San Antonio, Texas.,Department of Gastroenterology, Second Xiangya Hospital and Xiangya School of Medicine, Central South University, Hunan, P.R. China
| | | | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health at San Antonio, San Antonio, Texas
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health at San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, Texas
| | - Andrew Brenner
- Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, Texas.,Hematology and Oncology, University of Texas Health at San Antonio, San Antonio, Texas
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health at San Antonio, San Antonio, Texas. .,Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, Texas
| |
Collapse
|
13
|
Rodriguez-Lara V, Hernandez-Martinez JM, Arrieta O. Influence of estrogen in non-small cell lung cancer and its clinical implications. J Thorac Dis 2018; 10:482-497. [PMID: 29600083 DOI: 10.21037/jtd.2017.12.61] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer death in men worldwide and has significantly increased in women. Differences in non-small cell lung cancer (NSCLC) behavior, prognosis, and response to treatment have been reported by sex and hormonal status, with premenopausal women presenting the worst prognosis compared to postmenopausal women and men. Additionally, the use of hormonal replacement therapy significantly increases NSCLC mortality; supporting the role of estrogen signaling in the pathogenesis of LC. The mechanisms by which estrogen promotes lung carcinogenesis have not been fully elucidated. Estrogen, through its receptor, can stimulate LC cell proliferation, death resistance, angiogenesis, migration and metastasis. Estrogen also induces expression of pro-inflammatory proteins and ligands that promote tumor evasion, suggesting that estrogen might modify the microenvironment and anti-tumor immune response. Recent reports have shown an interaction between the epidermal growth factor receptor (EGFR) pathway and estrogen signaling in lung adenocarcinoma, whence, combined treatment based on tyrosine kinase inhibitors (TKIs) and antiestrogen therapy is beginning to be evaluated. This review focuses on the differences in NSCLC behavior by sex and hormonal status, highlighting the role of estrogen and its receptors in lung carcinogenesis and LC prognosis. Due to the importance of estrogen in NSCLC development and progression we finally discuss the potential of antiestrogen therapy in LC treatment and show the results from preclinical and clinical trials.
Collapse
Affiliation(s)
- Vianey Rodriguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Juan-Manuel Hernandez-Martinez
- CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico.,Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Oscar Arrieta
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
14
|
Chan KKL, Siu MKY, Jiang YX, Wang JJ, Wang Y, Leung THY, Liu SS, Cheung ANY, Ngan HYS. Differential expression of estrogen receptor subtypes and variants in ovarian cancer: effects on cell invasion, proliferation and prognosis. BMC Cancer 2017; 17:606. [PMID: 28859612 PMCID: PMC5579953 DOI: 10.1186/s12885-017-3601-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Due to the presence of both classical estrogen receptor (ERα) and another ER subtype (ERβ) in ovarian cancer, hormonal treatment is an attractive option. However, response to tamoxifen in ovarian cancer is modest. The presence of ERβ variants further complicated the issue. We have recently shown that specifically targeting ER subtypes using selective ER modulators showed opposing functions of ER subtypes on cell growth. In the present study, the clinical significance of ERα and ERβ variants (β1, β2 and β5) and the functional effects of ERβ2 and ERβ5 in ovarian cancer was investigated. METHODS ERα, ERβ1, ERβ2 and ERβ5 expression were evaluated by immunohistochemistry in 106 ovarian cancer tissues. The association between ERs expression and clinicopathological parameters or prognosis was analyzed. Ectopic expression of ERβ2 and ERβ5 followed by functional assays were performed in ovarian cancer cell lines in order to detect their effects on cell invasion and proliferation. RESULTS We found significantly higher nuclear (n)ERα and nERβ5 and lower cytoplasmic (c)ERα expression in advanced cancers. Significantly lower ERβ1 expression was also detected in high grade cancers. Significant loss of nERα and cERβ2 expression were observed in clear cell histological subtypes. Higher nERβ5 and lower cERβ5 expression were associated with serous/clear cell subtypes, poor disease-free and overall survival. Positive cERα and higher cERβ1 expression were significantly associated with better disease-free and overall survival. Furthermore, we found nERβ5 as an independent prognostic factor for overall survival. Functionally, overexpression of ERβ5 enhanced ovarian cancer cell migration, invasion and proliferation via FAK/c-Src activation whereas ERβ2 induced cell migration and invasion. CONCLUSIONS Since tamoxifen binds to both ERα and ERβ1 which appear to bear opposing oncogenic roles, the histotypes-specific expression pattern of ERs indicates that personalized treatment for women based on ERs expression using selective estrogen receptor modulators may improve response rate. This study also suggests nERβ5 as a potential prognostic marker and therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Karen K L Chan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China.
| | - Michelle K Y Siu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Yu-Xin Jiang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Jing-Jing Wang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Yan Wang
- Department of Pathology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Thomas H Y Leung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Stephanie S Liu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Annie N Y Cheung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| |
Collapse
|
15
|
Liu C, Liao Y, Fan S, Fu X, Xiong J, Zhou S, Zou M, Wang J. G-Protein-Coupled Estrogen Receptor Antagonist G15 Decreases Estrogen-Induced Development of Non-Small Cell Lung Cancer. Oncol Res 2017; 27:283-292. [PMID: 28877783 PMCID: PMC7848463 DOI: 10.3727/096504017x15035795904677] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-protein-coupled estrogen receptor (GPER) was found to promote non-small cell lung cancer (NSCLC) by estrogen, indicating the potential necessity of inhibiting GPER by a selective antagonist. This study was performed to elucidate the function of GPER-selective inhibitor G15 in NSCLC development. Cytoplasmic GPER (cGPER) and nuclear GPER (nGPER) were detected by immunohistochemical analysis in NSCLC samples. The relation of GPER and estrogen receptor β (ERβ) expression and correlation between GPER, ERβ, and clinical factors were analyzed. The effects of activating GPER and function of G15 were analyzed in the proliferation of A549 and H1793 cell lines and development of urethane-induced adenocarcinoma. Overexpression of cGPER and nGPER was detected in 80.49% (120/150) and 52.00% (78/150) of the NSCLC samples. High expression of GPER was related with higher stages, poorer differentiation, and high expression of ERβ. The protein level of GPER in the A549 and H1793 cell lines was increased by treatment with E2, G1 (GPER agonist), or fulvestrant (Ful; ERβ antagonist) and decreased by G15. Administration with G15 reversed the E2- or G1-induced cell growth by inhibiting GPER. In urethane-induced adenocarcinoma mice, the number of tumor nodules and tumor index increased in the E2 or G1 group and decreased by treatment with G15. These findings demonstrate that using G15 to block GPER signaling may be considered as a new therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Yongde Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Sheng Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Jing Xiong
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Man Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Jianmiao Wang
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
16
|
Hsu LH, Chu NM, Kao SH. Estrogen, Estrogen Receptor and Lung Cancer. Int J Mol Sci 2017; 18:ijms18081713. [PMID: 28783064 PMCID: PMC5578103 DOI: 10.3390/ijms18081713] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Estrogen has been postulated as a contributor for lung cancer development and progression. We reviewed the current knowledge about the expression and prognostic implications of the estrogen receptors (ER) in lung cancer, the effect and signaling pathway of estrogen on lung cancer, the hormone replacement therapy and lung cancer risk and survival, the mechanistic relationship between the ER and the epidermal growth factor receptor (EGFR), and the relevant clinical trials combining the ER antagonist and the EGFR antagonist, to investigate the role of estrogen in lung cancer. Estrogen and its receptor have the potential to become a prognosticator and a therapeutic target in lung cancer. On the other hand, tobacco smoking aggravates the effect of estrogen and endocrine disruptive chemicals from the environment targeting ER may well contribute to the lung carcinogenesis. They have gradually become important issues in the course of preventive medicine.
Collapse
Affiliation(s)
- Li-Han Hsu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Sun Yat-Sen Cancer Center, Taipei 112, Taiwan.
- Department of Medicine, National Yang-Ming University Medical School, Taipei 112, Taiwan.
| | - Nei-Min Chu
- Department of Medical Oncology, Sun Yat-Sen Cancer Center, Taipei 112, Taiwan.
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
17
|
Fan S, Liao Y, Liu C, Huang Q, Liang H, Ai B, Fu S, Zhou S. Estrogen promotes tumor metastasis via estrogen receptor beta-mediated regulation of matrix-metalloproteinase-2 in non-small cell lung cancer. Oncotarget 2017; 8:56443-56459. [PMID: 28915603 PMCID: PMC5593574 DOI: 10.18632/oncotarget.16992] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
In non–small cell lung cancer (NSCLC), estrogen significantly promotes NSCLC cell growth via estrogen receptor beta (ERβ). However, the effects by which ERβ contributes to metastasis in NSCLC have not been previously reported. This study aims at defining whether the stimulation of ERβ promotes NSCLC metastasis in vitro and in vivo. Here, Our results showed that estrogen and ERβ agonist enhanced aggressiveness of two lung cancer cell lines (A549 and H1793) and promoted murine lung metastasis formation. ER-inhibitor Fulvestrant treatment or ERβ-knockdown significantly suppressed the migration, invasion and nodule formation of NSCLC cells. The expression level of ERβ protein was analyzed in matched samples of metastatic lymph node and primary tumor tissues from the same individuals, and we found significantly higher levels of ERβ were expressed in lymph node compared to primary tumor tissues. Moreover, Studies on both surgical biopsies and on lung cancer cells revealed that the expression level of ERβ and matrix-metalloproteinase-2 (MMP-2) were associated. Furthermore, inhibition of ERβ resulted in down-regulation of MMP-2 expression. Taken together, our results demonstrate that activation of ERβ in lung cancer cells promotes tumor metastasis through increasing expression of invasiveness-associated MMP-2. These results also highlight the therapeutic potential of inhibition of ERβin the treatment of advanced NSCLC.
Collapse
Affiliation(s)
- Sheng Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yongde Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Quanfu Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Bo Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shegnling Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
18
|
Bruner-Tran KL, Duleba AJ, Taylor HS, Osteen KG. Developmental Toxicant Exposure Is Associated with Transgenerational Adenomyosis in a Murine Model. Biol Reprod 2016; 95:73. [PMID: 27535957 PMCID: PMC5333937 DOI: 10.1095/biolreprod.116.138370] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/10/2016] [Indexed: 01/03/2023] Open
Abstract
The common environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or, commonly, dioxin) is a known endocrine disruptor that has been linked to the development of endometriosis in experimental models. Using a murine model, we previously demonstrated that in utero TCDD exposure promotes the transgenerational development of an “endometriosis-like” uterine phenotype consisting of reduced responsiveness to progesterone, as well as subfertility and an increased risk of preterm birth. Because adenomyosis is frequently observed as a comorbidity in women with endometriosis, herein we sought to determine the incidence of adenomyosis in nonpregnant mice with a history of direct or indirect TCDD exposure. Using histologic assessment and immunohistochemical staining, we analyzed murine uteri for adenomyosis, microvessel density, and expression of estrogen receptors alpha and beta (ESR1 and ESR2). Our studies revealed that unexposed control mice did not exhibit adenomyosis, whereas this disease was frequently observed in mice with a history of early-life TCDD exposure. A transgenerational impact of developmental TCDD exposure was demonstrated, because a subset of mice with only an indirect exposure (F3) also exhibited adenomyosis. Microvessel density within the uterus was significantly higher in all groups of TCDD-exposed mice compared with control animals, with density correlated to the severity of disease. Both ESR1 and ESR2 proteins exhibited alterations in expression in experimental mice compared with controls. Similar to women with endometriosis, we observed a significant reduction in the ratio of Esr1:Esr2 mRNA in all F1 mice compared with controls. Although this retrospective study was not designed to specifically address mechanisms associated with the development of adenomyosis, our data suggest that developmental TCDD exposure permanently alters adult steroid responses, which may contribute to the transgenerational development of adenomyosis.
Collapse
Affiliation(s)
- Kaylon L. Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
- Correspondence: Kaylon L. Bruner-Tran, Vanderbilt University Medical Center, Women's Reproductive Health Research Center, 1161 21st Ave. S., MCN B-1100, Nashville, TN 37232. E-mail:
| | - Antoni J. Duleba
- Department of Reproductive Medicine, University of California, San Diego, San Diego, California
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Kevin G. Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
19
|
Hattori Y, Ishii H, Munetomo A, Watanabe H, Morita A, Sakuma Y, Ozawa H. Human C-terminally truncated ERα variants resulting from the use of alternative exons in the ligand-binding domain. Mol Cell Endocrinol 2016; 425:111-22. [PMID: 26835991 DOI: 10.1016/j.mce.2016.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
Abstract
The nuclear receptor genes contain alternative internal and terminal exons, with alternative exon incorporation yielding mRNA variants that encode various receptor types, including some with C-terminal truncation that exhibit constitutive activation or dominant-negative transcriptional transactivation. However, C-terminally truncated estrogen receptor α (ERα) variants with alternative sequences have rarely been reported in humans. Therefore, we assessed human ERα genomic organization and alternative splicing profiles, and identified both alternative exons and C-terminally truncated ERα variants. These naturally occurring C-terminally truncated ERα proteins were localized in the nuclei of transfected cells. In addition, ERαi45c and ERαΔ5 variants exhibited constitutive transactivation of an estrogen responsive element-driven promoter in transfected cells. We manufactured expression vectors encoding artificially truncated ERα constructs and evaluated their transactivation abilities to establish mechanisms determining the constitutive activity and dominant-negative properties of truncated variants. Lack of the region encoded in exon 8 eliminated basal and ligand-induced transcriptional transactivation. The C-terminally truncated ERα variants/constructs containing the helices 5 in their ligand-binding domains did not exhibit constitutive transactivation. Furthermore, we demonstrated that truncation from C-termini to helices 5 in the variant ligand-binding domains was required for constitutive activation and found that the remnant regions of the ligand-binding domains and variant-specific sequences influenced transcriptional transactivation efficiency. In conclusion, we elucidated the structural and functional features of novel C-terminally truncated ERα variants and revealed the mechanisms underlying constitutive transactivation by C-terminally truncated nuclear receptor variants.
Collapse
Affiliation(s)
- Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Neurosurgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Arisa Munetomo
- Laboratory of Behavior Neuroscience, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Hiroshi Watanabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Akio Morita
- Department of Neurosurgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yasuo Sakuma
- University of Tokyo Health Sciences, 4-11 Ochiai, Tama, Tokyo 206-0033, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
20
|
Marzagalli M, Casati L, Moretti RM, Montagnani Marelli M, Limonta P. Estrogen Receptor β Agonists Differentially Affect the Growth of Human Melanoma Cell Lines. PLoS One 2015. [PMID: 26225426 PMCID: PMC4520550 DOI: 10.1371/journal.pone.0134396] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Cutaneous melanoma is an aggressive malignancy; its incidence is increasing worldwide and its prognosis remains poor. Clinical observations indicate that estrogen receptor β (ERβ) is expressed in melanoma tissues and its expression decreases with tumor progression, suggesting its tumor suppressive function. These experiments were performed to investigate the effects of ERβ activation on melanoma cell growth. Methods and Results Protein expression was analyzed by Western blot and immunofluorescence assays. Cell proliferation was assessed by counting the cells by hemocytometer. ERβ transcriptional activity was evaluated by gene reporter assay. Global DNA methylation was analyzed by restriction enzyme assay and ERβ isoforms were identified by qRT-PCR. We demonstrated that ERβ is expressed in a panel of human melanoma cell lines (BLM, WM115, A375, WM1552). In BLM (NRAS-mutant) cells, ERβ agonists significantly and specifically inhibited cell proliferation. ERβ activation triggered its cytoplasmic-to-nuclear translocation and transcriptional activity. Moreover, the antiproliferative activity of ERβ agonists was associated with an altered expression of G1-S transition-related proteins. In these cells, global DNA was found to be hypomethylated when compared to normal melanocytes; this DNA hypomethylation status was reverted by ERβ activation. ERβ agonists also decreased the proliferation of WM115 (BRAF V600D-mutant) cells, while they failed to reduce the growth of A375 and WM1552 (BRAF V600E-mutant) cells. Finally, we could observe that ERβ isoforms are expressed at different levels in the various cell lines. Specific oncogenic mutations or differential expression of receptor isoforms might be responsible for the different responses of cell lines to ERβ agonists. Conclusions Our results demonstrate that ERβ is expressed in melanoma cell lines and that ERβ agonists differentially regulate the proliferation of these cells. These data confirm the notion that melanoma is a heterogeneous tumor and that genetic profiling is mandatory for the development of effective personalized therapeutic approaches for melanoma patients.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Roberta M. Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
21
|
Liu ZG, Jiao XY, Chen ZG, Feng K, Luo HH. Estrogen receptorβ2 regulates interlukin-12 receptorβ2 expression via p38 mitogen-activated protein kinase signaling and inhibits non-small-cell lung cancer proliferation and invasion. Mol Med Rep 2015; 12:248-54. [PMID: 25695486 DOI: 10.3892/mmr.2015.3366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is one of the most common types of cancer and is the leading cause of cancer-related mortality worldwide. Estrogens are known to be involved in the development and progression of non-small-cell lung cancer (NSCLC). These effects are initially mediated through binding of estrogen to estrogen receptors (ERs), in particular ERβ2. Our preliminary studies demonstrated that ERβ2 and interleukin-12 receptorβ2 (IL-12Rβ2) expression are correlated in NSCLC. The present study investigated the expression of these proteins in NSCLC cells and how changes in their expression affected cell proliferation and invasion. In addition, it aimed to explore whether p38 mitogen-activated protein kinase (p38MAPK) is involved in the regulation of IL-12Rβ2 expression by ERβ2. An immunocytochemical array was used to observe the distribution of ERβ2 and IL-12Rβ2. Co-immuoprecipitation was employed to observe the interaction between p38MAPK and IL-12Rβ2, by varying the expression of ERβ2 and p38MAPK. Western-blot analysis and reverse transcription-polymerase chain reaction assays were used to investigate the mechanism underlying ERβ2 regulation of IL-12Rβ2 expression. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, scratch wound healing and Transwell assays were used to investigate the impact of ERβ2 on proliferative, invasive and migratory abilities of NSCLC cells. ERβ2 was predominantly found in the cytoplasm and nucleus, whilst IL-12Rβ2 was largely confined to the cytoplasm, although a degree of expression was observed in the nucleus. Compared with normal bronchial epithelial cells, IL-12Rβ2 and ERβ2 were overexpressed in the NSCLC cell groups. Coimmuoprecipitation demonstrated an interaction between p38MAPK and IL-12Rβ2. ERβ2 appeared to upregulate IL-12Rβ2 expression and inhibition of p38MAPK attenuated this effect. ERβ2 and IL-12Rβ2 expression inhibited the proliferation, metastasis and invasion of NSCLC cell lines, but knockout of IL-12Rβ2, even in the presence of ERβ2, led to an increase in NSCLC cell proliferation and invasiveness. In conclusion, to the best of our knowledge this study is the first to demonstrate that IL-12Rβ2 may be important in the mechanisms underlying ERβ2 inhibition of NSCLC development, and that this interaction may be mediated via p38MAPK.
Collapse
Affiliation(s)
- Zhao-Guo Liu
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun‑Yat sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Xing-Yuan Jiao
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhen-Guang Chen
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun‑Yat sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Ke Feng
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun‑Yat sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Hong-He Luo
- Department of General Thoracic Surgery, First Affiliated Hospital, Sun‑Yat sen University, Guangzhou, Guangdong 510089, P.R. China
| |
Collapse
|
22
|
Kawai H. Estrogen receptors as the novel therapeutic biomarker in non-small cell lung cancer. World J Clin Oncol 2014; 5:1020-1027. [PMID: 25493237 PMCID: PMC4259928 DOI: 10.5306/wjco.v5.i5.1020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/23/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Although a wide range of studies have addressed the relationship between estrogen receptor (ER) expression and prognosis in non-small cell lung cancer (NSCLC), that relationship remains controversial. This is in large part because there is no consensus on the rate of ER expression in NSCLC or on the intracellular distribution of ER expression. This suggests that establishing the relationship between ER expression and prognosis will require standardization of the antibodies used as well as the definition of a positive response. For example, it is supposed from previous studies that ERs in the cytoplasm and nucleus have different relationships to prognosis than ERs in the cytoplasm. Moreover, ER signaling in NSCLC is known to be affected by aromatase, progesterone receptor and epidermal growth factor receptor mutation. However, there has been little functional analysis these mutants and subtypes. This review will focus on what is known about the role of ERs in NSCLC and whether ER can be a useful prognostic marker or therapeutic target in NSCLC.
Collapse
|
23
|
In vitro chronic administration of ERbeta selective ligands and prostate cancer cell growth: hypotheses on the selective role of 3beta-adiol in AR-positive RV1 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801473. [PMID: 24877132 PMCID: PMC4022250 DOI: 10.1155/2014/801473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/27/2014] [Indexed: 02/08/2023]
Abstract
Prostate cancer (PC) progression from androgen-dependent (AD) to castration-resistant (CR) disease is a process caused by modifications of different signal transduction pathways within tumor microenvironment. Reducing cell proliferation, estrogen receptor beta (ERbeta) is emerging as a potential target in PC chemoprevention. Among the known selective ERbeta ligands, 3beta-Adiol, the endogenous ligand in the prostate, has been proved to counteract PC progression. This study compares the effects of chronic exposure (1–12 weeks) to different ERbeta selective ligands (DPN, 8beta-VE2, 3beta-Adiol) on proliferation of human androgen-responsive CWR22Rv1 cells, representing an intermediate phenotype between the AD- and CR-PC. 3beta-Adiol (10 nM) is the sole ligand decreasing cell proliferation and increasing p21 levels. In vitro transcriptional activity assays were performed to elucidate different behavior between 3beta-Adiol and the other ligands; in these experiments the endogenous and the main ERbeta subtype activation were considered. It is concluded that ERbeta activation has positive effects also in androgen-responsive PC. The underlying mechanisms are still to be clarified and may include the interplay among different ERbeta subtypes and the specific PC microenvironment. ERbeta agonists might be useful in counteracting PC progression, although the final outcome may depend upon the molecular pattern specific to each PC lesion.
Collapse
|
24
|
Burns TF, Stabile LP. Targeting the estrogen pathway for the treatment and prevention of lung cancer. Lung Cancer Manag 2014; 3:43-52. [PMID: 25395992 DOI: 10.2217/lmt.13.67] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The estrogen signaling pathway is involved in the biology of non-small-cell lung cancer and represents a novel therapeutic target for lung cancer. This is supported by epidemiological evidence, preclinical studies and recent data from clinical trials. Antiestrogens and inhibitors of estrogen synthesis have been shown to inhibit lung tumor growth as well as prevent lung tumorigenesis in preclinical models both in vitro and in vivo. Two clinical trials testing the effectiveness of hormonal strategies in advanced non-small-cell lung cancer have recently been completed with promising results. Future work in this field should focus on identification of patients that would benefit from hormone modulators so that they can be used earlier in the course of disease or for chemoprevention.
Collapse
Affiliation(s)
- Timothy F Burns
- Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh Cancer Institute, Hillman Cancer Center Research Pavilion, 2.18e, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, UPMC Cancer Pavilion, 441, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA
| |
Collapse
|
25
|
Abstract
Experimental and population-based evidence has been steadily accumulating that steroid hormones are fundamentally involved in the biology of the lung. Both estrogen and progesterone receptors are present in normal and malignant lung tissue, and the reproductive hormones that bind these receptors have a role in lung development, lung inflammation, and lung cancer. The estrogen receptor-β (ER-β) was discovered in the 1990s as a novel form of ER that is transcribed from a gene distinct from ER-α, the receptor previously isolated from breast tissue. Interestingly, ER-β is the predominate ER expressed in normal and malignant lung tissue, whereas inflammatory cells that infiltrate the lung are known to express both ER-α and ER-β. Although there is evidence from animal models for the preferential effects of ER-β in the lungs of females, human lung tumors from males often contain comparable numbers of ER-β-positive cells and male-derived lung cancer cell lines respond to estrogens. Lung tumors from both males and females also express CYP19 (aromatase), the rate-limiting enzyme in estrogen synthesis that converts testosterone to estrone and β-estradiol. Thus, testosterone acts as a precursor for local estrogen production within lung tumors, independent of reproductive organs. This review discusses the recent literature findings about the biology of the ERs, aromatase, and the progesterone receptor in lung cancer and highlights the ongoing clinical trials and future therapeutic implications of these findings.
Collapse
Affiliation(s)
- Jill M Siegfried
- University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455-0217.
| |
Collapse
|
26
|
Abstract
It is becoming increasingly clear that steroid hormones are involved in the biology of many organs outside the reproductive system. Evidence has been accumulating since the mid 1990s that the lung contains receptors for both estrogen and progesterone and that these hormones have some role in lung development, pulmonary inflammation, and lung cancer. The estrogen receptor β (ERβ) is the major ER expressed in lung tissues, while inflammatory cells capable of infiltrating the lung are reported to express both ERα and ERβ. Although there is evidence in animals of preferential effects of ERβ in the lungs of females, human lung tumors from males also contain ERβ-positive cells and express aromatase, the enzyme that converts testosterone to estrogens. This review will discuss current literature findings on the role of the ERs and the progesterone receptor (PR), as well CYP19 (aromatase), the rate-limiting enzyme in the synthesis of estrogen, in lung cancer.
Collapse
Affiliation(s)
- Jill M Siegfried
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA; Current address: Department of Pharmacology, University of Minnesota, Minneapolis, MN.
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|