1
|
Bogusławska A, Godlewska M, Hubalewska-Dydejczyk A, Korbonits M, Starzyk J, Gilis-Januszewska A. Tall stature and gigantism in adult patients with acromegaly. Eur J Endocrinol 2024; 190:193-200. [PMID: 38391173 DOI: 10.1093/ejendo/lvae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVES Increased height in patients with acromegaly could be a manifestation of growth hormone (GH) excess before epiphysis closure. The aim of this study was to evaluate the relationship between the height of adult patients with GH excess related to mid-parental height (MPH) and population mean and to find whether taller patients with acromegaly come from tall families. METHODS This is a single-centre, observational study involving 135 consecutive patients with acromegaly diagnosed as adults and no family history of GH excess. We established three categories for height for patients with acromegaly: normal stature, tall stature (TS, height above the 97th percentile (1.88 standard deviations (SD)) to <3 SD for gender- and country-specific data or as a height which was greater than 1.5 SD but less than 2 SD above the MPH) and gigantism (height which was greater than 3 SD) above the gender- and country-specific mean or greater than 2 SD above MPH). RESULTS Thirteen percent (17/135) of patients (53% females) met the criteria for gigantism, 10% (14/135) fulfilled the criteria for TS (57% females). Parents and adult siblings were not taller than the population mean. CONCLUSION In a group of 135 consecutive adult patients with acromegaly, 23% had increased height based on country-specific and MPH data: 13% presented with gigantism while 10% had TS. The frequency of gigantism and TS in patients diagnosed with GH excess as adults is not higher in males than in females. Patients with acromegaly come from normal-stature families.
Collapse
Affiliation(s)
- Anna Bogusławska
- Department of Endocrinology, Jagiellonian University, Medical College, 31-008 Krakow, Poland
| | - Magdalena Godlewska
- Department of Endocrinology, Jagiellonian University, Medical College, 31-008 Krakow, Poland
| | | | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Jerzy Starzyk
- Department of Paediatric and Adolescence Endocrinology, Paediatric Institute, Jagiellonian University Medical College, 31-000 Krakow, Poland
| | | |
Collapse
|
2
|
de Herder WW. A bronze statue of the acromegalic giant Rigardus Rijnhout. J Endocrinol Invest 2024; 47:757-758. [PMID: 37330422 PMCID: PMC10904497 DOI: 10.1007/s40618-023-02139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Affiliation(s)
- W W de Herder
- Sector of Endocrinology, Department of Internal Medicine, Rg520, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Gaspar LM, Gonçalves CI, Saraiva C, Cortez L, Amaral C, Nobre E, Lemos MC. Low frequency of AIP mutations in patients with young-onset sporadic pituitary macroadenomas. J Endocrinol Invest 2023; 46:2299-2307. [PMID: 37149543 PMCID: PMC10558361 DOI: 10.1007/s40618-023-02083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
PURPOSE Mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene cause familial isolated pituitary adenomas (FIPA). AIP mutations have also been found in patients with apparently sporadic pituitary adenomas, particularly in young patients with large adenomas. The aim of this study was to determine the frequency of AIP germline mutations in patients with young-onset sporadic pituitary macroadenomas. METHODS The AIP gene was sequenced in 218 Portuguese patients with sporadic pituitary macroadenomas diagnosed before the age of 40 years. RESULTS Heterozygous rare sequence variants in AIP were identified in 18 (8.3%) patients. However, only four (1.8%) patients had pathogenic or likely pathogenic variants. These consisted of two already known mutations (p.Arg81* and p.Leu115Trpfs*41) and two novel mutations (p.Glu246*, p.Ser53Thrfs*36). All four patients had GH-secreting adenomas diagnosed between the ages of 14 and 25 years. The frequency of AIP pathogenic or likely pathogenic variants in patients under the age of 30 and 18 years was 3.4% and 5.0%, respectively. CONCLUSION The frequency of AIP mutations in this cohort was lower than in other studies. Previous reports may have overestimated the contribution of AIP mutations due to the inclusion of genetic variants of uncertain significance. The identification of novel AIP mutations expands the known spectrum of genetic causes of pituitary adenomas and may help understand the role of AIP mutations in the molecular mechanisms underlying pituitary tumorigenesis.
Collapse
Affiliation(s)
- L M Gaspar
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - C I Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - C Saraiva
- Serviço de Endocrinologia, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - L Cortez
- Serviço de Endocrinologia, Hospital de Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - C Amaral
- Serviço de Endocrinologia, Hospital de Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - E Nobre
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - M C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
4
|
Detomas M, Altieri B, Flitsch J, Saeger W, Korbonits M, Deutschbein T. Novel AIP mutation in exon 6 causing acromegaly in a German family. J Endocrinol Invest 2023:10.1007/s40618-023-02031-5. [PMID: 36757586 DOI: 10.1007/s40618-023-02031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
The most frequent genetic alteration of familial isolated growth hormone producing pituitary neuroendocrine tumors is a germline mutation of the aryl hydrocarbon receptor-interacting protein (AIP) gene. Various AIP mutations are already known; however, an AIP mutation in exon 6 (c.811_812del; p.Arg271Glyfs*16) has not been reported yet. Here, we report a German family with two identical twins who were both affected by acromegaly and carried the above-mentioned novel AIP mutation. The father was found to be an unaffected carrier, while the paternal aunt most likely suffered from acromegaly as well and died from metastatic colorectal cancer. Apart from reporting a novel AIP mutation, this study does not only highlight the different clinical and histological features of the AIP mutated growth hormone producing pituitary neuroendocrine tumors but also confirms the poor responsiveness of dopamine agonists in AIP mutated acromegaly. Furthermore, it highlights the increased mortality risk of comorbidities typically associated with acromegaly.
Collapse
Affiliation(s)
- M Detomas
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Würzburg, Germany.
| | - B Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - J Flitsch
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Saeger
- Institute of Neuropathology, University of Hamburg, UKE, Hamburg, Germany
| | - M Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - T Deutschbein
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
- Medicover Oldenburg MVZ, Oldenburg, Germany
| |
Collapse
|
5
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
6
|
Bartke A. Growth Hormone and Aging: Updated Review. World J Mens Health 2018; 37:19-30. [PMID: 29756419 PMCID: PMC6305861 DOI: 10.5534/wjmh.180018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 01/28/2023] Open
Abstract
Role of growth hormone (GH) in mammalian aging is actively explored in clinical, epidemiological, and experimental studies. The age-related decline in GH levels is variously interpreted as a symptom of neuroendocrine aging, as one of causes of altered body composition and other unwelcome symptoms of aging, or as a mechanism of natural protection from cancer and other chronic diseases. Absence of GH signals due to mutations affecting anterior pituitary development, GH secretion, or GH receptors produces an impressive extension of longevity in laboratory mice. Extension of healthspan in these animals and analysis of survival curves suggest that in the absence of GH, aging is slowed down or delayed. The corresponding endocrine syndromes in the human have no consistent impact on longevity, but are associated with remarkable protection from age-related disease. Moreover, survival to extremely old age has been associated with reduced somatotropic (GH and insulin-like growth factor-1) signaling in women and men. In both humans and mice, elevation of GH levels into the supranormal (pathological) range is associated with increased disease risks and reduced life expectancy likely representing acceleration of aging. The widely advertised potential of GH as an anti-aging agent attracted much interest. However, results obtained thus far have been disappointing with few documented benefits and many troublesome side effects. Possible utility of GH in the treatment of sarcopenia and frailty remains to be explored.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
7
|
Marques P, Barry S, Ronaldson A, Ogilvie A, Storr HL, Goadsby PJ, Powell M, Dang MN, Chahal HS, Evanson J, Kumar AV, Grieve J, Korbonits M. Emergence of Pituitary Adenoma in a Child during Surveillance: Clinical Challenges and the Family Members' View in an AIP Mutation-Positive Family. Int J Endocrinol 2018; 2018:8581626. [PMID: 29849625 PMCID: PMC5904812 DOI: 10.1155/2018/8581626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Germline aryl hydrocarbon receptor-interacting protein (AIP) mutations are responsible for 15-30% of familial isolated pituitary adenomas (FIPAs). We report a FIPA kindred with a heterozygous deletion in AIP, aiming to highlight the indications and benefits of genetic screening, variability in clinical presentations, and management challenges in this setting. PATIENTS An 18-year-old male was diagnosed with a clinically nonfunctioning pituitary adenoma (NFPA). Two years later, his brother was diagnosed with a somatolactotrophinoma, and a small Rathke's cleft cyst and a microadenoma were detected on screening in their 17-year-old sister. Following amenorrhoea, their maternal cousin was diagnosed with hyperprolactinaemia and two distinct pituitary microadenomas. A 12-year-old niece developed headache and her MRI showed a microadenoma, not seen on a pituitary MRI scan 3 years earlier. DISCUSSION Out of the 14 members harbouring germline AIP mutations in this kindred, 5 have pituitary adenoma. Affected members had different features and courses of disease. Bulky pituitary and not fully suppressed GH on OGTT can be challenging in the evaluation of females in teenage years. Multiple pituitary adenomas with different secretory profiles may arise in the pituitary of these patients. Small, stable NFPAs can be present in mutation carriers, similar to incidentalomas in the general population. Genetic screening and baseline review, with follow-up of younger subjects, are recommended in AIP mutation-positive families.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy Ronaldson
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Arla Ogilvie
- West Hertfordshire Hospitals NHS Trust, Watford, UK
| | - Helen L. Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter J. Goadsby
- Basic & Clinical Neuroscience and NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Michael Powell
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Mary N. Dang
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harvinder S. Chahal
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Jane Evanson
- Department of Radiology, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ajith V. Kumar
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Joan Grieve
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Araujo PB, Kasuki L, de Azeredo Lima CH, Ogino L, Camacho AHS, Chimelli L, Korbonits M, Gadelha MR. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation. Endocr Connect 2017; 6:914-925. [PMID: 29074612 PMCID: PMC5704447 DOI: 10.1530/ec-17-0237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
Aryl hydrocarbon receptor-interacting protein (AIP) gene mutations (AIPmut) are the most frequent germline mutations found in apparently sporadic pituitary adenomas (SPA). Our aim was to evaluate the frequency of AIPmut among young Brazilian patients with SPA. We performed an observational cohort study between 2013 and 2016 in a single referral center. AIPmut screening was carried out in 132 SPA patients with macroadenomas diagnosed up to 40 years or in adenomas of any size diagnosed until 18 years of age. Twelve tumor samples were also analyzed. Leukocyte DNA and tumor tissue DNA were sequenced for the entire AIP-coding region for evaluation of mutations. Eleven (8.3%) of the 132 patients had AIPmut, comprising 9/74 (12%) somatotropinomas, 1/38 (2.6%) prolactinoma, 1/10 (10%) corticotropinoma and no non-functioning adenomas. In pediatric patients (≤18 years), AIPmut frequency was 13.3% (2/15). Out of the 5 patients with gigantism, two had AIPmut, both truncating mutations. The Y268* mutation was described in Brazilian patients and the K273Rfs*30 mutation is a novel mutation in our patient. No somatic AIP mutations were found in the 12 tumor samples. A tumor sample from an acromegaly patient harboring the A299V AIPmut showed loss of heterozygosity. In conclusion, AIPmut frequency in SPA Brazilian patients is similar to other populations. Our study identified two mutations exclusively found in Brazilians and also shows, for the first time, loss of heterozygosity in tumor DNA from an acromegaly patient harboring the A299V AIPmut Our findings corroborate previous observations that AIPmut screening should be performed in young patients with SPA.
Collapse
Affiliation(s)
- Paula Bruna Araujo
- Department of Internal Medicine and Endocrine UnitMedical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Diagnósticos da América SARio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Department of Internal Medicine and Endocrine UnitMedical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrinology UnitInstituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro, Brazil
- Endocrinology UnitHospital Federal de Bonsucesso, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Liana Ogino
- Molecular Genetics LaboratoryInstituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline H S Camacho
- Neuropathology Laboratory Instituto Estadual do Cérebro Paulo NiemeyerRio de Janeiro, Rio de Janeiro, Brazil
- National Cancer InstituteRio de Janeiro, Rio de Janeiro, Brazil
| | - Leila Chimelli
- Neuropathology Laboratory Instituto Estadual do Cérebro Paulo NiemeyerRio de Janeiro, Rio de Janeiro, Brazil
| | - Márta Korbonits
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| | - Monica R Gadelha
- Department of Internal Medicine and Endocrine UnitMedical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Molecular Genetics LaboratoryInstituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrinology UnitInstituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Rostomyan L, Potorac I, Beckers P, Daly AF, Beckers A. AIP mutations and gigantism. ANNALES D'ENDOCRINOLOGIE 2017; 78:123-130. [DOI: 10.1016/j.ando.2017.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Iacovazzo D, Hernández-Ramírez LC, Korbonits M. Sporadic pituitary adenomas: the role of germline mutations and recommendations for genetic screening. Expert Rev Endocrinol Metab 2017; 12:143-153. [PMID: 30063429 DOI: 10.1080/17446651.2017.1306439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although most pituitary adenomas occur sporadically, these common tumors can present in a familial setting in approximately 5% of cases. Germline mutations in several genes with autosomal dominant (AIP, MEN1, CDKN1B, PRKAR1A, SDHx) or X-linked dominant (GPR101) inheritance are causative of familial pituitary adenomas. Due to variable disease penetrance and occurrence of de novo mutations, some patients harboring germline mutations have no family history of pituitary adenomas (simplex cases). Areas covered: We summarize the recent findings on the role of germline mutations associated with familial pituitary adenomas in patients with sporadic clinical presentation. Expert commentary: Up to 12% of patients with young onset pituitary adenomas (age at diagnosis/onset ≤30 years) and up to 25% of simplex patients with gigantism carry mutations in the AIP gene, while most cases of X-linked acrogigantism (XLAG) due to GPR101 duplication are simplex female patients with very early disease onset (<5 years). With regard to the syndromes of multiple endocrine neoplasia (MEN), MEN1 mutations can be identified in a significant proportion of patients with childhood onset prolactinomas. Somatotroph and lactotroph adenomas are the most common pituitary adenomas associated with germline predisposing mutations. Genetic screening should be considered in patients with young onset pituitary adenomas.
Collapse
Affiliation(s)
- D Iacovazzo
- a Centre for Endocrinology, Barts and The London School of Medicine , Queen Mary University of London , London , UK
| | - L C Hernández-Ramírez
- b Section on Endocrinology and Genetics , Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH , Bethesda , MD , USA
| | - M Korbonits
- a Centre for Endocrinology, Barts and The London School of Medicine , Queen Mary University of London , London , UK
| |
Collapse
|
11
|
Daly AF, Beckers A. The role of AIP mutations in pituitary adenomas: 10 years on. Endocrine 2017; 55:333-335. [PMID: 27981517 DOI: 10.1007/s12020-016-1194-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium.
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Abstract
Acromegaly is caused by a somatotropinoma in the vast majority of the cases. These are monoclonal tumors that can occur sporadically or rarely in a familial setting. In the last few years, novel familial syndromes have been described and recent studies explored the landscape of somatic mutations in sporadic somatotropinomas. This short review concentrates on the current knowledge of the genetic basis of both familial and sporadic acromegaly.
Collapse
Affiliation(s)
- Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
- Endocrine Unit, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1A 6BQ, UK.
| |
Collapse
|
13
|
Caimari F, Korbonits M. Novel Genetic Causes of Pituitary Adenomas. Clin Cancer Res 2016; 22:5030-5042. [DOI: 10.1158/1078-0432.ccr-16-0452] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
|
14
|
Radian S, Diekmann Y, Gabrovska P, Holland B, Bradley L, Wallace H, Stals K, Bussell AM, McGurren K, Cuesta M, Ryan AW, Herincs M, Hernández-Ramírez LC, Holland A, Samuels J, Aflorei ED, Barry S, Dénes J, Pernicova I, Stiles CE, Trivellin G, McCloskey R, Ajzensztejn M, Abid N, Akker SA, Mercado M, Cohen M, Thakker RV, Baldeweg S, Barkan A, Musat M, Levy M, Orme SM, Unterländer M, Burger J, Kumar AV, Ellard S, McPartlin J, McManus R, Linden GJ, Atkinson B, Balding DJ, Agha A, Thompson CJ, Hunter SJ, Thomas MG, Morrison PJ, Korbonits M. Increased Population Risk of AIP-Related Acromegaly and Gigantism in Ireland. Hum Mutat 2016; 38:78-85. [PMID: 27650164 PMCID: PMC5215436 DOI: 10.1002/humu.23121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023]
Abstract
The aryl hydrocarbon receptor interacting protein (AIP) founder mutation R304* (or p.R304*; NM_003977.3:c.910C>T, p.Arg304Ter) identified in Northern Ireland (NI) predisposes to acromegaly/gigantism; its population health impact remains unexplored. We measured R304* carrier frequency in 936 Mid Ulster, 1,000 Greater Belfast (both in NI) and 2,094 Republic of Ireland (ROI) volunteers and in 116 NI or ROI acromegaly/gigantism patients. Carrier frequencies were 0.0064 in Mid Ulster (95%CI = 0.0027–0.013; P = 0.0005 vs. ROI), 0.001 in Greater Belfast (0.00011–0.0047) and zero in ROI (0–0.0014). R304* prevalence was elevated in acromegaly/gigantism patients in NI (11/87, 12.6%, P < 0.05), but not in ROI (2/29, 6.8%) versus non‐Irish patients (0–2.41%). Haploblock conservation supported a common ancestor for all the 18 identified Irish pedigrees (81 carriers, 30 affected). Time to most recent common ancestor (tMRCA) was 2550 (1,275–5,000) years. tMRCA‐based simulations predicted 432 (90–5,175) current carriers, including 86 affected (18–1,035) for 20% penetrance. In conclusion, R304* is frequent in Mid Ulster, resulting in numerous acromegaly/gigantism cases. tMRCA is consistent with historical/folklore accounts of Irish giants. Forward simulations predict many undetected carriers; geographically targeted population screening improves asymptomatic carrier identification, complementing clinical testing of patients/relatives. We generated disease awareness locally, necessary for early diagnosis and improved outcomes of AIP‐related disease.
Collapse
Affiliation(s)
- Serban Radian
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, C.I. Parhon National Institute of Endocrinology, Bucharest, Romania
| | - Yoan Diekmann
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Plamena Gabrovska
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Brendan Holland
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lisa Bradley
- Department of Medical Genetics, Belfast HSC Trust, Belfast, UK
| | - Helen Wallace
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Karen Stals
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust/ Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Anna-Marie Bussell
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust/ Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Karen McGurren
- Department of Endocrinology and Diabetes, Beaumont Hospital/RCSI Medical School, Dublin, Ireland
| | - Martin Cuesta
- Department of Endocrinology and Diabetes, Beaumont Hospital/RCSI Medical School, Dublin, Ireland
| | - Anthony W Ryan
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | - Maria Herincs
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura C Hernández-Ramírez
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aidan Holland
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jade Samuels
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elena Daniela Aflorei
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sayka Barry
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Judit Dénes
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Craig E Stiles
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giampaolo Trivellin
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ronan McCloskey
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Noina Abid
- Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Scott A Akker
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Moises Mercado
- Endocrinology Service/Experimental Endocrinology Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Mark Cohen
- Department of Endocrinology and Diabetes, Barnet General Hospital, London, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, OCDEM, University of Oxford, Oxford, UK
| | - Stephanie Baldeweg
- Department of Endocrinology and Diabetes, University College London Hospitals, London, UK
| | - Ariel Barkan
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Madalina Musat
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, C.I. Parhon National Institute of Endocrinology, Bucharest, Romania
| | - Miles Levy
- Department of Endocrinology, University Hospitals of Leicester, Leicester, UK
| | - Stephen M Orme
- Department of Endocrinology, St James's University Hospital, Leeds, UK
| | | | - Joachim Burger
- Institute of Anthropology, Johannes Gutenberg University, Mainz, Germany
| | - Ajith V Kumar
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust/ Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Joseph McPartlin
- Trinity Biobank, Institute of Molecular Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | - Ross McManus
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Brew Atkinson
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - David J Balding
- Research Department of Genetics, Evolution and Environment, University College London, London, UK.,School of Biosciences, University of Melbourne, Parkville, Victoria, Australia.,Schools of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Amar Agha
- Department of Endocrinology and Diabetes, Beaumont Hospital/RCSI Medical School, Dublin, Ireland
| | - Chris J Thompson
- Department of Endocrinology and Diabetes, Beaumont Hospital/RCSI Medical School, Dublin, Ireland
| | - Steven J Hunter
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Patrick J Morrison
- Department of Medical Genetics, Belfast HSC Trust, Belfast, UK.,Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| | - Márta Korbonits
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|