1
|
Sprouse J, Sampath C, Gangula P. 17β-Estradiol Suppresses Gastric Inflammatory and Apoptotic Stress Responses and Restores nNOS-Mediated Gastric Emptying in Streptozotocin (STZ)-Induced Diabetic Female Mice. Antioxidants (Basel) 2023; 12:758. [PMID: 36979006 PMCID: PMC10045314 DOI: 10.3390/antiox12030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Gastroparesis (Gp) is a severe complication of diabetes mellitus (DM) observed predominantly in women. It is characterized by abnormal gastric emptying (GE) without mechanical obstruction in the stomach. Nitric oxide (NO) is an inhibitory neurotransmitter produced by neuronal nitric oxide synthase (nNOS). It plays a critical role in gastrointestinal (GI) motility and stomach emptying. Here, we wanted to demonstrate the protective effects of supplemental 17β-estradiol (E2) on NO-mediated gastric function. We showed E2 supplementation to alleviate oxidative and inflammatory stress in streptozotocin (STZ)-induced diabetic female mice. Our findings suggest that daily administration of E2 at therapeutic doses is beneficial for metabolic homeostasis. This restoration occurs via regulating and modulating the expression/function of glycogen synthase kinase-3β (GSK-3β), nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), Phase II enzymes, MAPK- and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB)-mediated inflammatory cytokines (IL-1β, IL-6, TNFα, IGF-1), and gastric apoptotic regulators. We also showed E2 supplementation to elevate GCH-1 protein levels in female diabetic mice. Since GCH-1 facilitates the production of tetrahydrobiopterin (BH4, cofactor for nNOS), an increase in GCH-1 protein levels in diabetic mice may improve their GE and nitrergic function. Our findings provide new insights into the impact of estrogen on gastric oxidative stress and intracellular inflammatory cascades in the context of Gp.
Collapse
Affiliation(s)
- Jeremy Sprouse
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
- Department of Endodontics, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Chethan Sampath
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Pandu Gangula
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
2
|
Moosaie F, Mohammadi S, Saghazadeh A, Dehghani Firouzabadi F, Rezaei N. Brain-derived neurotrophic factor in diabetes mellitus: A systematic review and meta-analysis. PLoS One 2023; 18:e0268816. [PMID: 36787304 PMCID: PMC9928073 DOI: 10.1371/journal.pone.0268816] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/10/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor expressed in several tissues, including the brain, gut, and pancreas. Activation of the BDNF/TrkB/CREB reduces hepatic gluconeogenesis, induces hepatic insulin signal transduction, and protects against pancreatic beta-cell loss in diabetes mellitus (DM). Several studies have investigated the possible association between BDNF and DM and its complications, but the results have been conflicting. AIM In the present study, we aimed at systematically reviewing the literature on the serum and plasma levels of BDNF in DM and its subgroups such as T2DM, DM patients with depression, and patients with retinopathy. METHODS A comprehensive search was conducted in PubMed, Scopus, and Web of Science. We identified 28 eligible studies and calculated the standardized mean difference (SMD) of outcomes as an effect measure. RESULTS The meta-analysis included 2734 patients with DM and 6004 controls. Serum BDNF levels were significantly lower in patients with DM vs. controls (SMD = -1.00, P<0.001). Plasma BDNF levels were not different in patients with DM compared with controls. When conducting subgroup analysis, serum BDNF levels were lower among patients with T2DM (SMD = -1.26, P<0.001), DM and depression (SMD = -1.69, P<0.001), and patients with diabetic retinopathy (DR) vs. controls (SMD = -1.03, P = 0.01). CONCLUSIONS Serum BDNF levels were lower in patients with DM, T2DM, DM with depression, and DM and DR than the controls. Our findings are in line with the hypothesis that decreased BDNF levels might impair glucose metabolism and contribute to the pathogenesis of DM and its complications.
Collapse
Affiliation(s)
- Fatemeh Moosaie
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Dehghani Firouzabadi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
3
|
Ahuja P, Ng CF, Pang BPS, Chan WS, Tse MCL, Bi X, Kwan HLR, Brobst D, Herlea-Pana O, Yang X, Du G, Saengnipanthkul S, Noh HL, Jiao B, Kim JK, Lee CW, Ye K, Chan CB. Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy 2021; 18:1367-1384. [PMID: 34689722 DOI: 10.1080/15548627.2021.1985257] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial remodeling is dysregulated in metabolic diseases but the underlying mechanism is not fully understood. We report here that BDNF (brain derived neurotrophic factor) provokes mitochondrial fission and clearance in skeletal muscle via the PRKAA/AMPK-PINK1-PRKN/Parkin and PRKAA-DNM1L/DRP1-MFF pathways. Depleting Bdnf expression in myotubes reduced fatty acid-induced mitofission and mitophagy, which was associated with mitochondrial elongation and impaired lipid handling. Muscle-specific bdnf knockout (MBKO) mice displayed defective mitofission and mitophagy, and accumulation of dysfunctional mitochondria in the muscle when they were fed with a high-fat diet (HFD). These animals also have exacerbated body weight gain, increased intramyocellular lipid deposition, reduced energy expenditure, poor metabolic flexibility, and more insulin resistance. In contrast, consuming a BDNF mimetic (7,8-dihydroxyflavone) increased mitochondrial content, and enhanced mitofission and mitophagy in the skeletal muscles. Hence, BDNF is an essential myokine to maintain mitochondrial quality and function, and its repression in obesity might contribute to impaired metabolism.Abbreviation: 7,8-DHF: 7,8-dihydroxyflavone; ACACA/ACC: acetyl Coenzyme A carboxylase alpha; ACAD: acyl-Coenzyme A dehydrogenase family; ACADVL: acyl-Coenzyme A dehydrogenase, very long chain; ACOT: acyl-CoA thioesterase; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; BDNF: brain derived neurotrophic factor; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CCL2/MCP-1: chemokine (C-C motif) ligand 2; CCL5: chemokine (C-C motif) ligand 5; CNS: central nervous system; CPT1B: carnitine palmitoyltransferase 1b, muscle; Cpt2: carnitine palmitoyltransferase 2; CREB: cAMP responsive element binding protein; DNM1L/DRP1: dynamin 1-like; E2: estrogen; EHHADH: enoyl-CoenzymeA hydratase/3-hydroxyacyl CoenzymeA dehydrogenase; ESR1/ER-alpha: estrogen receptor 1 (alpha); FA: fatty acid; FAO: fatty acid oxidation; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FFA: free fatty acids; FGF21: fibroblast growth factor 21; FUNDC1: FUN14 domain containing 1; HADHA: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha; HFD: high-fat diet; iWAT: inguinal white adipose tissues; MAP1LC3A/LC3A: microtubule-associated protein 1 light chain 3 alpha; MBKO; muscle-specific bdnf knockout; IL6/IL-6: interleukin 6; MCEE: methylmalonyl CoA epimerase; MFF: mitochondrial fission factor; NTRK2/TRKB: neurotrophic tyrosine kinase, receptor, type 2; OPTN: optineurin; PA: palmitic acid; PARL: presenilin associated, rhomboid-like; PDH: pyruvate dehydrogenase; PINK1: PTEN induced putative kinase 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PRKAA/AMPK: protein kinase, AMP-activated, alpha 2 catalytic subunit; ROS: reactive oxygen species; TBK1: TANK-binding kinase 1; TG: triacylglycerides; TNF/TNFα: tumor necrosis factor; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Palak Ahuja
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Chun Fai Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Brian Pak Shing Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Wing Suen Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Margaret Chui Ling Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Daniel Brobst
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Oana Herlea-Pana
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Keqiang Ye
- Department of Pathology, Emory University School of Medicine, Atlanta, USA
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
| |
Collapse
|
4
|
Zheng YL, Wang WD, Li MM, Lin S, Lin HL. Updated Role of Neuropeptide Y in Nicotine-Induced Endothelial Dysfunction and Atherosclerosis. Front Cardiovasc Med 2021; 8:630968. [PMID: 33708805 PMCID: PMC7940677 DOI: 10.3389/fcvm.2021.630968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Endothelial dysfunction of the arterial vasculature plays a pivotal role in cardiovascular pathogenesis. Nicotine-induced endothelial dysfunction substantially contributes to the development of arteriosclerotic cardiovascular disease. Nicotine promotes oxidative inflammation, thrombosis, pathological angiogenesis, and vasoconstriction, and induces insulin resistance. However, the exact mechanism through which nicotine induces endothelial dysfunction remains unclear. Neuropeptide Y (NPY) is widely distributed in the central nervous system and peripheral tissues, and it participates in the pathogenesis of atherosclerosis by regulating vasoconstriction, energy metabolism, local plaque inflammatory response, activation and aggregation of platelets, and stress and anxiety-related emotion. Nicotine can increase the expression of NPY, suggesting that NPY is involved in nicotine-induced endothelial dysfunction. Herein, we present an updated review of the possible mechanisms of nicotine-induced atherosclerosis, with a focus on endothelial cell dysfunction associated with nicotine and NPY.
Collapse
Affiliation(s)
- Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
5
|
Huang YQ, Wang Y, Hu K, Lin S, Lin XH. Hippocampal Glycerol-3-Phosphate Acyltransferases 4 and BDNF in the Progress of Obesity-Induced Depression. Front Endocrinol (Lausanne) 2021; 12:667773. [PMID: 34054732 PMCID: PMC8158158 DOI: 10.3389/fendo.2021.667773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Obesity has been reported to lead to increased incidence of depression. Glycerol-3-phosphate acyltransferases 4 (GPAT4) is involved in triacylglycerol synthesis and plays an important role in the occurrence of obesity. GPAT4 is the only one of GPAT family expressed in the brain. The aim of this study is to investigate if central GPAT4 is associated with obesity-related depression and its underlying mechanism. RESULTS A high-fat diet resulted in increased body weight and blood lipid. HFD induced depression like behavior in the force swimming test, tail suspension test and sucrose preference test. HFD significantly up-regulated the expression of GPAT4 in hippocampus, IL-1β, IL-6, TNF-α and NF-κB, accompanied with down-regulation of BDNF expression in hippocampus and ventromedical hypothalamus, which was attributed to AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB). CONCLUSION Our findings suggest that hippocampal GPAT4 may participate in HFD induced depression through AMPK/CREB/BDNF pathway, which provides insights into a clinical target for obesity-associated depression intervention.
Collapse
Affiliation(s)
- Yin-qiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yaofeng Wang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Keyue Hu
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, Australia
- *Correspondence: Xia-hong Lin, ; Shu Lin,
| | - Xia-hong Lin
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Xia-hong Lin, ; Shu Lin,
| |
Collapse
|
6
|
Salinero AE, Robison LS, Gannon OJ, Riccio D, Mansour F, Abi-Ghanem C, Zuloaga KL. Sex-specific effects of high-fat diet on cognitive impairment in a mouse model of VCID. FASEB J 2020; 34:15108-15122. [PMID: 32939871 DOI: 10.1096/fj.202000085r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
Mid-life metabolic disease (ie, obesity, diabetes, and prediabetes) causes vascular dysfunction and is a risk factor for vascular contributions to cognitive impairment and dementia (VCID), particularly in women. Using middle-aged mice, we modeled metabolic disease (obesity/prediabetes) via chronic high-fat (HF) diet and modeled VCID via unilateral common carotid artery occlusion. VCID impaired spatial memory in both sexes, but episodic-like memory in females only. HF diet caused greater weight gain and glucose intolerance in middle-aged females than males. HF diet alone impaired episodic-like memory in both sexes, but spatial memory in females only. Finally, the combination of HF diet and VCID elicited cognitive impairments in all tests, in both sexes. Sex-specific correlations were found between metabolic outcomes and memory. Notably, both visceral fat and the pro-inflammatory cytokine tumor necrosis factor alpha correlated with spatial memory deficits in middle-aged females, but not males. Overall, our data show that HF diet causes greater metabolic impairment and a wider array of cognitive deficits in middle-aged females than males. The combination of HF diet with VCID elicits deficits across multiple cognitive domains in both sexes. Our data are in line with clinical data, which shows that mid-life metabolic disease increases VCID risk, particularly in females.
Collapse
Affiliation(s)
- Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Lisa S Robison
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Olivia J Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Febronia Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
7
|
Blom DJ, Chen J, Yuan Z, Borges JLC, Monsalvo ML, Wang N, Hamer AW, Ge J. Effects of evolocumab therapy and low LDL-C levels on vitamin E and steroid hormones in Chinese and global patients with type 2 diabetes. Endocrinol Diabetes Metab 2020; 3:e00123. [PMID: 32318641 PMCID: PMC7170461 DOI: 10.1002/edm2.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
AIMS We assessed the change from baseline in vitamin E, steroid hormones, adrenocorticotropic hormone (ACTH), and gonadotropins, overall and by lowest achieved low-density lipoprotein-cholesterol (LDL-C) level, in patients with type 2 diabetes and dyslipidaemia after 12 weeks of treatment with evolocumab. MATERIALS AND METHODS This was a prespecified analysis of vitamin E, cortisol, ACTH, gonadal hormones and gonadotropins in the 12-week, placebo-controlled BERSON trial of evolocumab in patients with type 2 diabetes and dyslipidaemia. In BERSON, 981 (451 in China) patients on daily atorvastatin 20 mg were randomized to placebo or one of two doses of evolocumab. We measured analyte levels at baseline and week 12 (vitamin E in all patients; steroid/gonadal hormones only in Chinese patients). RESULTS In both the global and Chinese populations, absolute vitamin E levels decreased from baseline to week 12 by approximately 6 μmol/L (P < .0001) among evolocumab-treated patients; however, when normalized for LDL-C, apoB or non-HDL-C, we observed no decrease in vitamin E levels. In Chinese patients, levels of cortisol and ACTH as well as the cortisol:ACTH ratio did not change significantly from baseline to week 12. No patient had a cortisol:ACTH ratio <3.0 (nmol/pmol), suggestive of adrenocortical deficiency. We did not observe clinically relevant changes for gonadal hormones and gonadotropins (oestradiol and testosterone in female and male patients, respectively, luteinizing and follicle-stimulating hormones for both). CONCLUSIONS In the BERSON study, evolocumab did not adversely affect vitamin E, steroid hormone or gonadotropin levels in the Chinese or global type 2 diabetic populations.ClinicalTrials.gov NCT02662569.
Collapse
Affiliation(s)
| | - Jiyan Chen
- Guangdong Cardiovascular InstituteGuangdong General HospitalGuangzhouChina
| | - Zuyi Yuan
- First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | | | | | | | | | - Junbo Ge
- Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Novel Evidence of the Increase in Angiogenic Factor Plasma Levels after Lineage-Negative Stem/Progenitor Cell Intracoronary Infusion in Patients with Acute Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20133330. [PMID: 31284593 PMCID: PMC6650859 DOI: 10.3390/ijms20133330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cell therapy raises hope to reduce the harmful effects of acute myocardial ischemia. Stem and progenitor cells (SPCs) may be a valuable source of trophic factors. In this study, we assessed the plasma levels of selected trophic factors in patients undergoing application of autologous bone marrow (BM)-derived, lineage-negative (Lin-) stem/progenitor cells into the coronary artery in the acute phase of myocardial infarction. The study group consisted of 15 patients with acute myocardial infarction (AMI) who underwent percutaneous revascularization and, afterwards, Lin- stem/progenitor cell administration into the infarct-related artery. The control group consisted of 19 patients. BM Lin- cells were isolated using immunomagnetic methods. Peripheral blood was collected on day 0, 2, 4, and 7 and after the first and third month to assess the concentration of selected trophic factors using multiplex fluorescent bead-based immunoassays. We found in the Lin- group that several angiogenic trophic factors (vascular endothelial growth factor, Angiopoietin-1, basic fibroblast growth factor, platelet-derived growth factor-aa) plasma level significantly increased to the 4th day after myocardial infarction. In parallel, we noticed a tendency where the plasma levels of the brain-derived neurotrophic factor were increased in the Lin- group. The obtained results suggest that the administered SPCs may be a valuable source of angiogenic trophic factors for damaged myocardium, although this observation requires further in-depth studies.
Collapse
|
9
|
Mantor D, Pratchayasakul W, Minta W, Sutham W, Palee S, Sripetchwandee J, Kerdphoo S, Jaiwongkum T, Sriwichaiin S, Krintratun W, Chattipakorn N, Chattipakorn SC. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction. Exp Gerontol 2018; 108:149-158. [PMID: 29678475 DOI: 10.1016/j.exger.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/18/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity.
Collapse
Affiliation(s)
- Duangkamol Mantor
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanitchaya Minta
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wissuta Sutham
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirapas Sripetchwandee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkum
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warunsorn Krintratun
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
10
|
Manchishi SM, Cui RJ, Zou XH, Cheng ZQ, Li BJ. Effect of caloric restriction on depression. J Cell Mol Med 2018; 22:2528-2535. [PMID: 29465826 PMCID: PMC5908110 DOI: 10.1111/jcmm.13418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Recently, most of evidence shows that caloric restriction could induce antidepressant‐like effects in animal model of depression. Based on studies of the brain–gut axis, some signal pathways were common between the control of caloric restriction and depression. However, the specific mechanism of the antidepressant‐like effects induced by caloric restriction remains unclear. Therefore, in this article, we summarized clinical and experimental studies of caloric restriction on depression. This review may provide a new therapeutic strategy for depression.
Collapse
Affiliation(s)
- Stephen Malunga Manchishi
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Physiology, University of Cambridge, Cambridge, UK
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zi Qian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|