1
|
Yang X, Deng H, Lv J, Chen X, Zeng L, Weng J, Liang H, Xu W. Comparison of changes in adipokine and inflammatory cytokine levels in patients with newly diagnosed type 2 diabetes treated with exenatide, insulin, or pioglitazone: A post-hoc study of the CONFIDENCE trial. Heliyon 2024; 10:e23309. [PMID: 38169889 PMCID: PMC10758788 DOI: 10.1016/j.heliyon.2023.e23309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Background Adipokines and inflammatory cytokines (ADICs) play important roles in type 2 diabetes mellitus (T2DM). This study aimed to compare the changes of ADIC levels (ΔADICs) in patients with newly diagnosed T2DM treated with different antihyperglycemic agents, and further investigate the impact of these changes on metabolic indices, β-cell function and insulin resistance (IR). Methods Four hundred and sixteen patients with newly diagnosed T2DM from 25 centers in China randomly received 48-week intervention with exenatide, insulin or pioglitazone. Anthropometric and laboratory data, indices of β-cell function and IR, and levels of AIDCs, including interleukin-1 beta (IL-1β), interferon-gamma (IFN-γ), leptin, and fibroblast growth factor 21 (FGF21) were detected at baseline and the end of the study. Results In total, 281 participants (68 % male, age: 50.3 ± 9.4 years) completed the study. After 48- week treatment, IL-1β and IFN-γ were significantly decreased with exenatide treatment (P < 0.001 and P = 0.001, respectively), but increased with insulin (P = 0.009 and P = 0.026, respectively). However, pioglitazone treatment had no impact on ADICs. No significant change in leptin or FGF21 was detected with any of the treatments. After adjustment for baseline values and changes of body weight, waist and HbA1c, the between-group differences were found in ΔIL-1β (exenatide vs. insulin: P = 0.048; and exenatide vs. pioglitazone: P = 0.003, respectively) and ΔIFN-γ (exenatide vs. insulin: P = 0.049; and exenatide vs. pioglitazone: P < 0.001, respectively). Multiple linear regression analysis indicated that Δweight was associated with ΔIL-1β (β = 0.753; 95 % CI, 0.137-1.369; P = 0.017). After adjusting for treatment effects, Δweight was also be correlated with ΔFGF21 (β = 1.097; 95%CI, 0.250-1.944; P = 0.012); furthermore, ΔHOMA-IR was correlated with Δleptin (β = 0.078; 95%CI, 0.008-0.147; P = 0.029) as well. However, ΔHOMA-IR was not significantly associated with ΔIL-1β after adjusting for treatment effects (P = 0.513). Conclusion Exenatide treatment led to significant changes of inflammatory cytokines levels (IL-1β and IFN-γ), but not adipokines (leptin and FGF21), in newly diagnosed T2DM patients. The exenatide-mediated improvement in weight and IR may be associated with a decrease in inflammatory cytokine levels.
Collapse
Affiliation(s)
- Xubin Yang
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Hongrong Deng
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jing Lv
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Xueyan Chen
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
2
|
Ren X, Sun Y, Guo Q, Liu H, Jiang H, He X, Li X, Shi X, Xiu Z, Dong Y. Ameliorating Effect of the Total Flavonoids of Morus nigra L. on Prediabetic Mice Based on Regulation of Inflammation and Insulin Sensitization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12484-12501. [PMID: 36150176 DOI: 10.1021/acs.jafc.2c04970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Prediabetes is a critical stage characterized by insulin resistance. Morus nigra L., an edible plant, is widely used in food and nutritive supplements and exhibits various pharmacological activities; however, its therapeutic effects and mechanisms on prediabetes have rarely been reported. In this research, the major components of total flavonoids of M. nigra L. (TFM) were identified, and TFM treatment was found to reduce prediabetes progressing to type 2 diabetes mellitus (T2DM) from 93.75 to 18.75%. The microbiota and next-generation sequencing combined with western blotting in vivo and in vitro demonstrated that TFM and its components ameliorated insulin resistance mediated by the suppressor of cytokine signaling and protein tyrosine phosphatase 1B, which benefited by maintaining intestinal homeostasis and restraining plasma levels of inflammatory factors. This study confirmed the T2DM prevention effect of TFM and revealed the underlying mechanism, setting the stage for the design of functional foods for diabetes prevention.
Collapse
Affiliation(s)
- Xinxiu Ren
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yu Sun
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Qinfeng Guo
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Haodong Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Hui Jiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiaoshi He
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xia Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xuan Shi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
3
|
Li Z, Zhang PX, Li ZZ, Zhang XL, Cao HY, Gao YN, Bian M, Chen HY, Liu ZJ. Diastereoselective Synthesis of Chromeno[3,2- d]isoxazoles via Brønsted Acid Catalyzed Tandem 1,6-Addition/Double Annulations of o-Hydroxyl Propargylic Alcohols. Org Lett 2022; 24:6863-6868. [PMID: 36102802 DOI: 10.1021/acs.orglett.2c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Brønsted acid catalyzed tandem process to access densely functionalized chromeno[3,2-d]isoxazoles with good to excellent yields and diastereoselectivities was disclosed. The procedure is proposed to involve a 1,6-conjugate addition/electrophilic addition/double annulations process of alkynyl o-quinone methides (o-AQMs) in situ generated from o-hydroxyl propargylic alcohols with nitrones. Mild conditions, good functional group compatibility, easy scale-up of the reaction, and further product transformation demonstrated its potential application.
Collapse
Affiliation(s)
- Zhu Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Pei-Xu Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhao-Zhao Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Xing-Lu Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Hong-Yuan Cao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Yu-Ning Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Ming Bian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Hui-Yu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Chen MT, Huang JS, Gao DD, Li YX, Wang HY. Combined treatment with FABP4 inhibitor ameliorates rosiglitazone-induced liver steatosis in obese diabetic db/db mice. Basic Clin Pharmacol Toxicol 2021; 129:173-182. [PMID: 34128319 DOI: 10.1111/bcpt.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/06/2021] [Indexed: 11/28/2022]
Abstract
Rosiglitazone has been reported to exert dual effects on liver steatosis, and it could exacerbate liver steatosis in obese animal models, which was suggested to be closely related to the elevated hepatic expression of FABP4. This study aimed to investigate whether combined treatment with FABP4 inhibitor I-9 could alleviate rosiglitazone-induced liver steatosis in obese diabetic db/db mice. Male C57BL/KsJ-db/db mice were orally treated with rosiglitazone, rosiglitazone combined with I-9 daily for 8 weeks. The liver steatosis was evaluated by triglyceride content and H&E staining. The expression of hepatic lipogenic genes or proteins in liver tissue or in FFA-treated hepatocytes and PMA-stimulated macrophages were determined by real-time quantitative polymerase chain reaction (RT-qPCR) or western blotting. Results showed that combined treatment with I-9 decreased rosiglitazone-induced increase in serum FABP4 level and expression of lipogenic genes in liver, especially FABP4, and ameliorated liver steatosis in db/db mice. Rosiglitazone-induced intracellular TG accumulation and increased expression of FABP4 in the cultured hepatocytes and macrophages were also suppressed by combined treatment. We concluded that combined treatment with FABP4 inhibitor I-9 could ameliorate rosiglitazone-exacerbated elevated serum FABP4 level and ectopic liver fat accumulation in obese diabetic db/db mice without affecting its anti-diabetic efficacy.
Collapse
Affiliation(s)
- Meng-Ting Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Shang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Ding Gao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Ying-Xia Li
- School of Pharmacy, Fudan University, Shanghai, China
| | - He-Yao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Huang JS, Guo BB, Lin FF, Zeng LM, Wang T, Dang XY, Yang Y, Hu YH, Liu J, Wang HY. A novel low systemic diacylglycerol acyltransferase 1 inhibitor, Yhhu2407, improves lipid metabolism. Eur J Pharm Sci 2020; 158:105683. [PMID: 33347980 DOI: 10.1016/j.ejps.2020.105683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/27/2023]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) plays a pivotal role in lipid metabolism by catalyzing the committed step in triglyceride (TG) synthesis and has been considered as a potential therapeutic target of multiple metabolic diseases, including dyslipidemia, obesity and type 2 diabetes. Here we report a novel DGAT1 inhibitor, Yhhu2407, which showed a stronger DGAT1 inhibitory activity (IC50 = 18.24 ± 4.72 nM) than LCQ908 (IC50 = 78.24 ± 8.16 nM) in an enzymatic assay and led to a significant reduction in plasma TG after an acute lipid challenge in mice. Pharmacokinetic studies illustrated that Yhhu2407 displayed a low systemic, liver- and intestine-targeted distribution pattern, which is consistent with the preferential tissue expression pattern of DGAT1 and therefore might help to maximize the beneficial pharmacological effects and prevent the occurrence of side effects. Cell-based investigations demonstrated that Yhhu2407 inhibited free fatty acid (FFA)-induced TG accumulation and apolipoprotein B (ApoB)-100 secretion in HepG2 cells. In vivo study also disclosed that Yhhu2407 exerted a beneficial effect on regulating plasma TG and lipoprotein levels in rats, and effectively ameliorated high-fat diet (HFD)-induced dyslipidemia in hamsters. In conclusion, we identified Yhhu2407 as a novel DGAT1 inhibitor with potent efficacy on improving lipid metabolism in rats and HFD-fed hamsters without causing obvious adverse effects.
Collapse
Affiliation(s)
- Jun-Shang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Bin Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei-Fei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li-Min Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang-Yu Dang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Hong Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - He-Yao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Won YS, Seo KI. Sanggenol L promotes apoptotic cell death in melanoma skin cancer cells through activation of caspase cascades and apoptosis-inducing factor. Food Chem Toxicol 2020; 138:111221. [PMID: 32084496 DOI: 10.1016/j.fct.2020.111221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
Sanggenol L is one component of root bark of Morus alba. The molecular and cellular mechanisms of sanggenol L effects on melanoma cells are not well known. Recently, melanoma is the most common skin cancer with a high mortality rate not only in United States, but also in East Asia. Therefore, safe and effective treatments for melanoma treatment are required. In this study, we investigated whether or not sanggenol L possesses anti-cancer activity in human and mouse melanoma skin cancer cells. Sanggenol L treatment exerted significant cell growth inhibitory effects and inhibited colony formation capacity against B16, SK-MEL-2, and SK-MEL-28 melanoma skin cancer cells, whereas HaCaT human epithelial keratinocyte cells was unaffected by sanggenol L treatment. Sanggenol L treatment resulted in apoptotic cell death in melanoma skin cancer cells, which was characterized by accumulation of apoptotic cells, nuclear condensation, and apoptotic bodies. We also showed that sanggenol L treatment induced caspase-dependent apoptosis (up-regulation of Bax and cleaved-PARP or down-regulation of Bid, Bcl-2, procaspse-3, -8, and -9), induction of caspase-independent apoptosis (up-regulation of AIF and Endo G on cytosol) in melanoma skin cancer cells. These results suggest that sanggenol L induces caspase-dependent and -independent apoptosis in melanoma skin cancer cells.
Collapse
Affiliation(s)
- Yeong-Seon Won
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Kwon-Il Seo
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
7
|
Yaribeygi H, Simental-Mendía LE, Barreto GE, Sahebkar A. Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. J Cell Physiol 2019; 234:16987-16997. [PMID: 30825205 DOI: 10.1002/jcp.28420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Several classes of antidiabetic agents have been developed that achieve their hypoglycemic outcomes via various molecular mechanisms. Adipose tissue is a major metabolic and energy-storing tissue and plays an important role in many metabolic pathways, including insulin signaling and insulin sensitivity. Adipose tissue monitors and regulates whole body homeostasis via production and release of potent proteins, such as adipokine and adiponectin, into the circulation. Therefore, any agent that can modulate adipocyte metabolism can, in turn, affect metabolic and glucose homeostatic pathways. Antidiabetic drugs are not only recognized primarily as hypoglycemic agents but may also alter adipose tissue itself, as well as adipocyte-derived adipokine expression and secretion. In the current review, we present the major evidence concerning routinely used antidiabetic agents on adipocyte metabolism and adipokine expression.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, México, México
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Ha MT, Seong SH, Nguyen TD, Cho WK, Ah KJ, Ma JY, Woo MH, Choi JS, Min BS. Chalcone derivatives from the root bark of Morus alba L. act as inhibitors of PTP1B and α-glucosidase. PHYTOCHEMISTRY 2018; 155:114-125. [PMID: 30103164 DOI: 10.1016/j.phytochem.2018.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/24/2018] [Accepted: 08/04/2018] [Indexed: 05/18/2023]
Abstract
As part of our continuing research to obtain pharmacologically active compounds from Morus alba L. (Moraceae), four Diels-Alder type adducts (DAs) [morusalbins A-D], one isoprenylated flavonoid [albanin T], together with twenty-one known phenolic compounds were isolated from its root bark. The chemical structures were established using NMR, MS, and ECD spectra. The DAs including morusalbins A-D, albasin B, macrourin G, yunanensin A, mulberrofuran G and K, and albanol B exhibited strong inhibitory activities against both protein tyrosine phosphatase 1B (PTP1B) (IC50, 1.90-9.67 μM) and α-glucosidase (IC50, 2.29-5.91 μM). In the kinetic study, morusalbin D, albasin B, and macrourin G showed noncompetitive PTP1B inhibition, with Ki values of 0.33, 1.00, and 1.09 μM, respectively. In contrast, these DAs together with yunanensin A produced competitive inhibition of α-glucosidase, with Ki values of 0.64, 0.42, 2.42, and 1.19 μM, respectively. Furthermore, molecular docking studies revealed that these active DAs have high affinity and tight binding capacity towards the active site of PTP1B and α-glucosidase.
Collapse
Affiliation(s)
- Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea; Laboratory of Research and Applied Biochemistry, Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Tien Dat Nguyen
- Laboratory of Research and Applied Biochemistry, Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Won-Kyung Cho
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Kim Jeong Ah
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea.
| |
Collapse
|
9
|
Isoprenylated flavonoids from Morus nigra and their PPAR γ agonistic activities. Fitoterapia 2018; 127:109-114. [DOI: 10.1016/j.fitote.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/26/2018] [Accepted: 02/03/2018] [Indexed: 01/28/2023]
|
10
|
Gao DD, Dou HX, Su HX, Zhang MM, Wang T, Liu QF, Cai HY, Ding HP, Yang Z, Zhu WL, Xu YC, Wang HY, Li YX. From hit to lead: Structure-based discovery of naphthalene-1-sulfonamide derivatives as potent and selective inhibitors of fatty acid binding protein 4. Eur J Med Chem 2018; 154:44-59. [DOI: 10.1016/j.ejmech.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 01/05/2023]
|
11
|
Huang QH, Lei C, Wang PP, Li JY, Li J, Hou AJ. Isoprenylated phenolic compounds with PTP1B inhibition from Morus alba. Fitoterapia 2017; 122:138-143. [DOI: 10.1016/j.fitote.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 11/28/2022]
|
12
|
|
13
|
Su SY, Xue JJ, Yang GY, Lei C, Hou AJ. New Cytotoxic Alkylated Chalcones from Fatoua villosa. Chem Biodivers 2017; 14. [PMID: 28371315 DOI: 10.1002/cbdv.201700076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/27/2017] [Indexed: 11/11/2022]
Abstract
Three new alkylated chalcones, villosins A - C (1 - 3), five known analogues, together with ten known coumarins, were isolated from Fatoua villosa. The structures of the new compounds were elucidated by extensive spectroscopic analysis, including 1D-, 2D-NMR, and MS data. Compounds 1 - 3 showed cytotoxicity against five kinds of human tumor cell lines (NB4, A549, SHSY5Y, PC3, and MCF7) with IC50 values ranging from 1.4 ± 0.1 to 5.7 ± 0.3 μm.
Collapse
Affiliation(s)
- Shi-Yun Su
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Jing-Jing Xue
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Guang-Yu Yang
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650231, P. R. China
| | - Chun Lei
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Ai-Jun Hou
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|