1
|
Jacobsen KK, Laborie LB, Kristiansen H, Schäfer A, Gundersen T, Zayats T, Rosendahl K. Genetics of hip dysplasia - a systematic literature review. BMC Musculoskelet Disord 2024; 25:762. [PMID: 39354451 PMCID: PMC11445845 DOI: 10.1186/s12891-024-07795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a congenital condition affecting 2-3% of all newborns. DDH increases the risk of osteoarthritis and is the cause of 30% of all total hip arthroplasties in adults < 40 years of age. We aim to explore the genetic background of DDH in order to improve diagnosis and personalize treatment. METHODS We conducted a structured literature review using PRISMA guidelines searching the Medline, Embase and Cochrane databases. We included 31 case control studies examining single nucleotide polymorphisms (SNPs) in non-syndromic DDH. RESULTS A total of 73 papers were included for full text review, of which 31 were single nucleotide polymorphism (SNP) case/control association studies. The literature review revealed that the majority of published papers on the genetics of DDH were mostly underpowered for detection of any significant association. One large genome wide association study has been published (N = 9,915), establishing GDF5 as a plausible risk factor. CONCLUSIONS DDH is known to be congenital and heritable, with family occurrence of DDH already included as a risk factor in most screening programs. Despite this, high quality genetic research is scarce and no genetic risk factors have been soundly established, prompting the need for more research.
Collapse
Affiliation(s)
- Kaya Kvarme Jacobsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Department of Orthopedic Surgery, District General Hospital of Førde, Førde, Norway.
| | - Lene Bjerke Laborie
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Section for pediatric radiology, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Hege Kristiansen
- Department of Paediatrics, District General Hospital of Førde, Førde, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annette Schäfer
- Department of Paediatrics, District General Hospital of Førde, Førde, Norway
| | - Trude Gundersen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychology, PROMENTA, University of Oslo, Oslo, Norway
| | - Karen Rosendahl
- Department of Radiology, University Hospital of North-Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Zhao X, Liu S, Yang Z, Li Y. Molecular mechanisms and genetic factors contributing to the developmental dysplasia of the hip. Front Genet 2024; 15:1413500. [PMID: 39156961 PMCID: PMC11327038 DOI: 10.3389/fgene.2024.1413500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
The most prevalent hip disease in neonates is developmental dysplasia of the hip (DDH). A timely and accurate diagnosis is required to provide the most effective treatment for pediatric patients with DDH. Heredity and gene variation have been the subject of increased attention and research worldwide as one of the factors contributing to the pathogenesis of DDH. Genome-wide association studies (GWAS), genome-wide linkage analyses (GWLA), and exome sequencing (ES) have identified variants in numerous genes and single-nucleotide polymorphisms (SNPs) as being associated with susceptibility to DDH in sporadic and DDH family patients. Furthermore, the DDH phenotype can be observed in animal models that exhibit susceptibility genes or loci, including variants in CX3CR1, KANSL1, and GDF5. The dentification of noncoding RNAs and de novo gene variants in patients with DDH-related syndrome has enhanced our understanding of the genes implicated in DDH. This article reviews the most recent molecular mechanisms and genetic factors that contribute to DDH.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Pediatric Orthopaedics, Shenyang Orthopaedic Hospital, Shenyang, China
| | - Shuai Liu
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Jiang H, Xie Y, Lu J, Li H, Zeng K, Hu Z, Wu D, Yang J, Yao Z, Chen H, Gong X, Yu X. Pristimerin suppresses AIM2 inflammasome by modulating AIM2-PYCARD/ASC stability via selective autophagy to alleviate tendinopathy. Autophagy 2024; 20:76-93. [PMID: 37647255 PMCID: PMC10761048 DOI: 10.1080/15548627.2023.2249392] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Macroautophagy/autophagy plays an important role in regulating cellular homeostasis and influences the pathogenesis of degenerative diseases. Tendinopathy is characterized by tendon degeneration and inflammation. However, little is known about the role of selective autophagy in tendinopathy. Here, we find that pristimerin (PM), a quinone methide triterpenoid, is more effective in treating tendinopathy than the first-line drug indomethacin. PM inhibits the AIM2 inflammasome and alleviates inflammation during tendinopathy by promoting the autophagic degradation of AIM2 through a PYCARD/ASC-dependent manner. A mechanistic study shows that PM enhances the K63-linked ubiquitin chains of PYCARD/ASC at K158/161, which serves as a recognition signal for SQSTM1/p62-mediated autophagic degradation of the AIM2-PYCARD/ASC complex. We further identify that PM binds the Cys53 site of deubiquitinase USP50 through the Michael-acceptor and blocks the binding of USP50 to PYCARD/ASC, thereby reducing USP50-mediated cleavage of K63-linked ubiquitin chains of PYCARD/ASC. Finally, PM treatment in vivo generates an effect comparable to inflammasome deficiency in alleviating tendinopathy. Taken together, these findings demonstrate that PM alleviates the progression of tendinopathy by modulating AIM2-PYCARD/ASC stability via SQSTM1/p62-mediated selective autophagic degradation, thus providing a promising autophagy-based therapeutic for tendinopathy.Abbreviations: 3-MA: 3-methyladenine; AIM2: absent in melanoma 2; AT: Achilles tenotomy; ATP: adenosine triphosphate; BMDMs: bone marrow-derived macrophages; CHX: cycloheximide; Col3a1: collagen, type III, alpha 1; CQ: chloroquine; Cys: cysteine; DARTS: drug affinity responsive target stability; DTT: dithiothreitol; DUB: deubiquitinase; gDNA: genomic DNA; GSH: glutathione; His: histidine; IL1B/IL-1β: interleukin 1 beta; IND: indomethacin; IP: immunoprecipitation; LPS: lipopolysaccharide; MMP: mitochondrial membrane potential; NLRP3: NLR family, pyrin domain containing 3; PM: pristimerin; PYCARD/ASC: PYD and CARD domain containing; SN: supernatants; SOX9: SRY (sex determining region Y)-box 9; SQSTM1: sequestosome 1; Tgfb: transforming growth factor, beta; TIMP3: tissue inhibitor of metalloproteinase 3; TNMD: tenomodulin; TRAF6: TNF receptor-associated factor 6; Ub: ubiquitin; USP50: ubiquitin specific peptidase 50; WCL: whole cell lysates.
Collapse
Affiliation(s)
- Huaji Jiang
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwu Yang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenxia Yao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huadan Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqian Gong
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Demirel E, Şenocak E, Şenocak GNC, Şahin A, Kadıoğlu BG, Gündüz Ö. Investigation of Igf-1, Igf-Bp3 and Igf-Bp5 levels in umbilical cord blood of infants with developmental dysplasia of the hip. Turk J Med Sci 2023; 53:659-665. [PMID: 37476901 PMCID: PMC10388068 DOI: 10.55730/1300-0144.5628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/28/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND IGF-1 (insulin-like growth factor-1) is an important regulator of bone formation. Its deficiency has been associated with fetal growth disorders and hip dysplasia. The aim of this study was to evaluate whether IGF-1, IGF-BP3 (insulin like growth factorbinding protein 3), and IGF-BP5 levels in the umbilical cord blood can be predictive for early diagnosis of DDH. METHODS Umbilical cord blood samples were collected from 860 mothers with pregnancies at high risk for DDH between October 2020 and January 2021. Mothers at 37-42 weeks of gestation, with risk factors for DDH, who delivered healthy infants were included. Blood samples were collected during delivery. Each eligible infant was medically followed up and underwent a hip ultrasound in the postnatal 2nd or 3rd month. Infants diagnosed with DDH were matched with a healthy cohort in terms of sex, birth weight, maternal age, and gestational week, and the IGF-1, IGF-BP3 and IGF-BP5 levels were studied and compared. RESULTS Evaluation was made of 20 infants diagnosed with DDH and 60 healthy infants. Of the total 80 infants, 72.5% were female.The umbilical cord blood levels of IGF-1 and IGF-BP3 were similar in both groups. The IGF-BP5 values were significantly lower in the DDH patient group. Except for DDH diagnosis, the other categorical variables of the study did not appear to influence the levels of any of the IGFs. DISCUSSION Umbilical blood samples could potentially help diagnose DDH. The levels of IGF-BP5 were shown to be significantly lower in infants with DDH.
Collapse
Affiliation(s)
- Esra Demirel
- Department of Orthopedics and Traumatology, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - Eyüp Şenocak
- Department of Orthopedics and Traumatology, Erzurum Training and Research Hospital, Erzurum, Turkey
| | | | - Ali Şahin
- Department of Orthopedics and Traumatology, Ankara City Hospital, Ankara, Turkey
| | - Berrin Göktuğ Kadıoğlu
- Department of Obstetrics and Gynecology, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - Özlem Gündüz
- Department of Obstetrics and Gynecology, Erzurum Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
5
|
Wen J, Ping H, Kong X, Chai W. Developmental dysplasia of the hip: A systematic review of susceptibility genes and epigenetics. Gene 2023; 853:147067. [PMID: 36435507 DOI: 10.1016/j.gene.2022.147067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a complex developmental deformity whose pathogenesis and susceptibility-related genes have yet to be elucidated. This systematic review summarizes the current literature on DDH-related gene mutations, animal model experiments, and epigenetic changes in DDH. METHODS We performed a comprehensive search of relevant documents in the Medline, Scopus, Cochrane, and ScienceDirect databases covering the period from October 1991 to October 2021. We analyzed basic information on the included studies and summarized the DDH-related mutation sites, animal model experiments, and epigenetic changes associated with DDH. RESULTS A total of 63 studies were included in the analysis, of which 54 dealt with the detection of gene mutations, 7 presented details of animal experiments, and 6 were epigenetic studies. No genetic mutations were clearly related to the pathogenesis of DDH, including the most frequently studied genes on chromosomes 1, 17, and 20. Most gene-related studies were performed in Han Chinese or North American populations, and the quality of these studies was medium or low. GDF5 was examined in the greatest number of studies, and mutation sites with odds ratios > 10 were located on chromosomes 3, 9, and 13. Six mutations were found in animal experiments (i.e., CX3CR1, GDF5, PAPPA2, TENM3, UFSP2, and WISP3). Epigenetics research on DDH has focused on GDF5 promoter methylation, three microRNAs (miRNAs), and long noncoding RNAs. In addition, there was also a genetic test for miRNA and mRNA sequencing. CONCLUSIONS DDH is a complex joint deformity with a considerable genetic component whose early diagnosis is significant for preventing disease. At present, no genes clearly involved in the pathogenesis of DDH have been identified. Research on mutations associated with this condition is progressing in the direction of in vivo experiments in animal models to identify DDH susceptibility genes and epigenetics analyses to provide novel insights into its pathogenesis. In the future, genetic profiling may improve matters.
Collapse
Affiliation(s)
- Jiaxin Wen
- School of Medicine, Nankai University, Tianjin, China
| | - Hangyu Ping
- School of Medicine, Nankai University, Tianjin, China
| | | | - Wei Chai
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Cao S, Xiao Y, Huang R, Zhao D, Xu W, Li S, Tang J, Qu F, Jin J, Xie S, Liu Z. Dietary Supplementation With Hydroxyproline Enhances Growth Performance, Collagen Synthesis and Muscle Quality of Carassius auratus Triploid. Front Physiol 2022; 13:913800. [PMID: 35721560 PMCID: PMC9198714 DOI: 10.3389/fphys.2022.913800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 01/26/2023] Open
Abstract
An eight-week experiment was undertaken to examine the effect of dietary hydroxyproline (Hyp) supplementation on growth performance, collagen synthesis, muscle quality of an improved triploid crucian carp (Carassius auratus Triploid) (ITCC). Six isonitrogenous (340 g/kg diet), isolipidic (60 g/kg diet) and isocaloric (17.80 MJ/kg diet) diets were formulated containing a certain amount of Hyp: 0.09% (the control group), 0.39, 0.76, 1.14, 1.53 and 1.90%. Each diet was randomly assigned to three tanks and each group was fed two times daily until apparent satiation. The results showed that growth performance and feed utilization of ITCC were significantly improved with the dietary Hyp level was increased from 0.09 to 0.76%. Crude protein, threonine and arginine content in the dorsal muscle in 0.76% hydroxyproline group were significantly higher than those in basic diet group (p < 0.05). The muscle textural characteristics increased remarkably with the amount of Hyp in the diet rising from 0.09 to 1.53% (p < 0.05). Meanwhile, the contents of type I collagen (Col I) and Pyridinium crosslink (PYD) in the muscle of fish were significantly increased by dietary Hyp (p < 0.05). The muscle fiber diameter and density of the fish were significantly increased when fed with 0.76% Hyp (p < 0.05). Furthermore, dietary supplementation with an appropriate concentration of Hyp substantially increased the expression of genes involved in collagen synthesis (col1a1, col1a2, p4hα1, p4hβ, smad4, smad5, smad9, and tgf-β) and muscle growth (igf-1, tor, myod, myf5, and myhc) (p < 0.05). In conclusion, dietary supplementation of Hyp can enhance fish growth performance, collagen production, muscle textural characteristics and muscle growth of ITCC. According to the SGR broken-line analysis, the recommended supplementation level of Hyp was 0.74% in the diet for ITCC, corresponding to 2.2% of dietary protein.
Collapse
Affiliation(s)
- Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yangbo Xiao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Rong Huang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Shitao Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
- *Correspondence: Zhen Liu,
| |
Collapse
|
7
|
Zhou W, Luo W, Liu D, Canavese F, Li L, Zhao Q. Fluoride increases the susceptibility of developmental dysplasia of the hip via increasing capsular laxity triggered by cell apoptosis and oxidative stress in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113408. [PMID: 35298972 DOI: 10.1016/j.ecoenv.2022.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The etiology of developmental dysplasia of the hip (DDH) is multifactorial, including breech presentation and hip capsular laxity. In particular, hip laxity is the main contributor to DDH by changing the ratio and distribution of collagens. Also, fluoride (F) affects collagens from various tissue besides bone and tooth. To investigate the association of DDH and excessive F intake, we conducted this research in lab on cell and animal model simultaneously. We established animal model of combination of DDH and F toxicity. The incidence of DDH in each group was calculated, and hip capsules were collected for testing histopathological and ultrastructural changes. The primary fibroblasts were further extracted from hip capsule and treated with F. The expression of collagen type I and III was both examined in vivo and in vitro, and the level of oxidative stress and apoptosis was also tested identically. We revealed that the incidence of DDH increased with F concentration. Furthermore, the oxidative stress and apoptosis levels of hip capsules and fibroblasts both increased after F exposure. Therefore, this study shows that excessive F intake increases susceptibility to DDH by altering hip capsular laxity in vivo and in vitro respectively. We believe that F might be a risk factor for DDH by increasing hip laxity induced by triggering fibroblast oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Weizheng Zhou
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Federico Canavese
- Department of Pediatric Orthopedics, Lille University Center, Jeanne de Flandres Hospital, Avenue Eugène-Avinée, Lille 59037, France
| | - Lianyong Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Qun Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| |
Collapse
|
8
|
Genetic Study of IL6, GDF5 and PAPPA2 in Association with Developmental Dysplasia of the Hip. Genes (Basel) 2021; 12:genes12070986. [PMID: 34203285 PMCID: PMC8303839 DOI: 10.3390/genes12070986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Developmental dysplasia of the hip (DDH) is one of the most prevalent skeletal disorders. DDH is considered a pathologic condition with polygenic background, but environmental and mechanic factors significantly contribute to its multifactorial etiology. Inheritance consistent with autosomal dominant type has also been observed. Single-nucleotide polymorphisms (SNPs) in various genes mostly related to formation of connective tissue are studied for a possible association with DDH. Methods: We genotyped three SNPs, rs1800796 located in the promoter region of the IL6 gene, rs143383 located in the 5′ untranslated region (UTR) of the GDF5 gene and rs726252 located in the fifth intron of the PAPPA2 gene. The study consisted of 45 subjects with DDH and 85 controls from all regions of Slovakia. Results: Association between DDH occurrence and studied genotypes affected by aforementioned polymorphisms was confirmed in the case of rs143383 in the GDF5 gene (p = 0.047), where the T allele was over-expressed in the study group. Meanwhile, in the matter of IL6 and PAPPA2, we found no association with DDH (p = 0.363 and p = 0.478, respectively). Conclusions: These results suggest that there is an association between DDH and GDF5 polymorphisms and that the T allele is more frequently presents in patients suffering from DDH.
Collapse
|
9
|
Xu X, Wang B, Chen Y, Zhou W, Li L. Replicative verification of susceptibility genes previously identified from families with segregating developmental dysplasia of the hip. Ital J Pediatr 2021; 47:140. [PMID: 34174923 PMCID: PMC8234666 DOI: 10.1186/s13052-021-01087-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a complex hip joint deformity with effects ranging from acetabulum malformation to irreversible hip dislocation. Previous studies suggest a significant association of four variations, teneurin transmembrane protein 3 (TENM3, OMIM * 610083) (chr4:183721398), heparan sulfate proteoglycan 2 (HSPG2, OMIM * 142461) (chr1:22201470), ATPase plasma membrane Ca2+ transporting 4 (ATP2B4, OMIM * 108732) (chr1:203682345), and prostaglandin F receptor (PTGFR, OMIM * 600563) (chr1:79002214), with DDH susceptibility in families with segregating DDH. However, the association was not validated in sporadic cases and remains controversial. To confirm the association of the reported variations in these four genes with DDH, we conducted replicative verification in 250 sporadic samples with DDH from a Chinese Han population. METHODS We conducted Sanger sequencing after amplifying the variation sites. The results were compared with the reference sequence from the GRCh37 assembly in UCSC ( http://genome.ucsc.edu ). RESULTS Replication analysis of 250 sporadic samples by Sanger sequencing indicated that the four variations, TENM3 (OMIM * 610083, chr4:183721398), HSPG2 (OMIM * 142461, chr1:22201470), ATP2B4 (OMIM * 108732, chr1:203682345), and PTGFR (OMIM * 600563, chr1:79002214), were not associated with the susceptibility to DDH in the Chinese Han population. CONCLUSIONS Further studies should be performed to identify other variations of these four genes that are potentially associated with DDH by whole-exome sequencing and the results should be verified in different populations.
Collapse
Affiliation(s)
- Xiaowen Xu
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian District, Beijing, 100081, China
| | - Yufan Chen
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Weizheng Zhou
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
10
|
Liu X, Deng X, Ding R, Cheng X, Jia J. Chondrocyte suppression is mediated by miR-129-5p via GDF11/SMAD3 signaling in developmental dysplasia of the hip. J Orthop Res 2020; 38:2559-2572. [PMID: 32396235 DOI: 10.1002/jor.24713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/04/2023]
Abstract
Recent studies have shown that developmental dysplasia of the hip (DDH) during childhood and in animal models is associated with impaired endochondral ossification of the roof of the acetabulum, yet the molecular mechanism of this pathology remains unknown. To address this, an animal model of DDH was established in 4-week-old New Zealand white rabbits by cast immobilization of knee extension. Fifty-six rabbits of DDH were involved in this study, including 21 male rabbits and 25 female rabbits. High-throughput RNA sequencing identified 18 differentially expressed microRNAs; miR-129-5p downregulation was further confirmed by quantitative polymerase chain reaction. Bioinformatics and luciferase reporter assay identified growth differentiation factor 11 (GDF11) as the target gene of miR-129-5p in vitro. miR-129-5p downregulation increased GDF11 expression, which induced the phosphorylation of SMAD family member 3. As a result, the expression of runt-related transcription factor 2, Indian hedgehog homolog, and collagen type X was inhibited in vitro. Meanwhile, Alizarin Red S and Von Kossa staining revealed reduced formation of mineralized nodules by chondrocytes after miR-129-5P downregulation compared with the control. Additionally, proliferation assays and flow cytometry confirmed the suppression of chondrocyte proliferation and G1 cell cycle arrest following miR-129-5p downregulation. These findings indicate that miR-129-5p is able to suppress chondrocyte proliferation and hypertrophic differentiation and decrease mineralization via the miR-129-5p/GDF11/SMAD3 axis. This could present the underlying cause for the observed DDH-associated ossification impairment of the acetabular roof.
Collapse
Affiliation(s)
- Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xueqiang Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Rui Ding
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jingyu Jia
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|
11
|
Ohde D, Walz M, Walz C, Noce A, Brenmoehl J, Langhammer M, Hoeflich A. Sex-Specific Control of Muscle Mass: Elevated IGFBP Proteolysis and Reductions of IGF-1 Levels Are Associated with Substantial Loss of Carcass Weight in Male DU6PxIGFBP-2 Transgenic Mice. Cells 2020; 9:cells9102174. [PMID: 32993096 PMCID: PMC7600981 DOI: 10.3390/cells9102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
In farmed animals, carcass weight represents an important economic trait. Since we had demonstrated that IGFBP-2 represents a potent inhibitor of muscle accretion in inbred mice, we wanted to quantify the inhibitory effects of IGFBP-2 under conditions of elevated protein mass in growth selected non-inbred mice (DU6P). Therefore, we crossed male DU6P mice with female IGFBP-2 transgenic mice. Male IGFBP-2 transgenic offspring (DU6P/IGFBP-2) were characterized by more than 20% reductions of carcass mass compared to male non-transgenic littermates. The carcass mass in males was also significantly lower (p < 0.001) than in transgenic female DU6P/IGFBP-2 mice, which showed a reduction of less than 10% (p < 0.05) compared to non-transgenic female DU6P/IGFBP-2 mice. Although transgene expression was elevated in the muscle of both sexes (p < 0.001), serum levels were normal in female, but significantly reduced in male transgenic DU6P/IGFBP-2 mice (p < 0.001). In this group, also IGFBP-3 and IGFBP-4 were significantly reduced in the circulation (p < 0.01). Particularly in male transgenic mice, we were able to identify proteolytic activity against recombinant IGFBP-2 included in diluted serum. IGFBP-proteolysis in males correlated with massive reductions of IGF-1 in serum samples and the presence of elevated levels of IGFBP-2 fragments. From our data, we conclude that elevated tissue expression of IGFBP-2 is an essential effector of muscle accretion and may block more than 20% of carcass mass. However, in the circulation, intact IGFBP-2 contained no reliable biomarker content. Notably, for the estimation of breeding values in meat-producing animal species, monitoring of IGFBP-2 expression in muscle appears to be supported by the present study in a model system.
Collapse
Affiliation(s)
- Daniela Ohde
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Michael Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Christina Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Antonia Noce
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Julia Brenmoehl
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Martina Langhammer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
- Correspondence: ; Tel.: +49-38208-68744
| |
Collapse
|
12
|
Luo W, Dong Y, Hu T, Liu D, Wei X, Ma W, Yuan Z, Zhao Q. 25(OH)D status and expression of miR-140 in the serum of patients with developmental dysplasia of the hip. Nutrition 2020; 81:110896. [PMID: 32739657 DOI: 10.1016/j.nut.2020.110896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Developmental dysplasia of the hip (DDH) is one of the most common orthopedic birth defects in newborn infants, for whom early detection and treatment are critical. MiR-140 plays an important role in bone development and was found to be regulated by vitamin D receptors in our previous study. This study aimed to investigate vitamin D status and miR-140 expression in the circulation of patients with orthopedic conditions, including DDH. METHODS The 25-hydroxyvitamin D (25[OH]D) status and miR-140 expression were determined in the serum of 120 patients with orthopedic conditions. Receiver operating characteristic curves were used to evaluate the potential diagnosis capability of 25(OH)D status and miR-140 expression in DDH. A DDH rat model was also used to verify miR-140 expression in vivo. RESULTS We found that most patients with orthopedic conditions have vitamin D insufficiency and deficiency, and patients with DDH are in the insufficiency range. MiR-140 was downregulated in the serum of patients with DDH patients and in the hip joints of rats with DDH. A panel of 25(OH)D and miR-140 showed robust performance in distinguishing DDH from controls. CONCLUSIONS Our results indicate that miR-140 may play an important role in DDH, with the potential capability of being a biomarker for the diagnosis of DDH.
Collapse
Affiliation(s)
- Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yaping Dong
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Tao Hu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qun Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Williams AE, Watt J, Robertson LW, Gadupudi G, Osborn ML, Soares MJ, Iqbal K, Pedersen KB, Shankar K, Littleton S, Maimone C, Eti NA, Suva LJ, Ronis MJJ. Skeletal Toxicity of Coplanar Polychlorinated Biphenyl Congener 126 in the Rat Is Aryl Hydrocarbon Receptor Dependent. Toxicol Sci 2020; 175:113-125. [PMID: 32119087 PMCID: PMC7197949 DOI: 10.1093/toxsci/kfaa030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence links polychlorinated biphenyls (PCBs) to skeletal toxicity, however mechanisms whereby PCBs affect bone are poorly studied. In this study, coplanar PCB 126 (5 μmol/kg) or corn oil vehicle was administered to N = 5 and 6 male and female, wild type (WT) or AhR -/- rats via intraperitoneal injection. Animals were sacrificed after 4 weeks. Bone length was measured; bone morphology was assessed by microcomputed tomography and dynamic histomorphometry. Reduced bone length was the only genotype-specific effect and only observed in males (p < .05). WT rats exposed to PCB 126 had reduced serum calcium, and smaller bones with reduced tibial length, cortical area, and medullary area relative to vehicle controls (p < .05). Reduced bone formation rate observed in dynamic histomorphometry was consistent with inhibition of endosteal and periosteal bone growth. The effects of PCB 126 were abolished in AhR -/- rats. Gene expression in bone marrow and shaft were assessed by RNA sequencing. Approximately 75% of the PCB-regulated genes appeared AhR dependent with 89 genes significantly (p < .05) regulated by both PCB 126 and knockout of the AhR gene. Novel targets significantly induced by PCB 126 included Indian hedgehog (Ihh) and connective tissue growth factor (Ctgf/Ccn2), which regulate chondrocyte proliferation and differentiation in the bone growth plate and cell-matrix interactions. These data suggest the toxic effects of PCB 126 on bone are mediated by AhR, which has direct effects on the growth plate and indirect actions related to endocrine disruption. These studies clarify important mechanisms underlying skeletal toxicity of dioxin-like PCBs and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Ashlee E Williams
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - James Watt
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - Larry W Robertson
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Gopi Gadupudi
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Michele L Osborn
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Michael J Soares
- Department of Pathology, University of Kansas Medical Center, Kansas City, Missouri
| | - Khursheed Iqbal
- Department of Pathology, University of Kansas Medical Center, Kansas City, Missouri
| | - Kim B Pedersen
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - Kartik Shankar
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Shana Littleton
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - Cole Maimone
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - Nazmin A Eti
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Larry J Suva
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Martin J J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| |
Collapse
|
14
|
Harsanyi S, Zamborsky R, Krajciova L, Kokavec M, Danisovic L. Developmental Dysplasia of the Hip: A Review of Etiopathogenesis, Risk Factors, and Genetic Aspects. MEDICINA-LITHUANIA 2020; 56:medicina56040153. [PMID: 32244273 PMCID: PMC7230892 DOI: 10.3390/medicina56040153] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
As one of the most frequent skeletal anomalies, developmental dysplasia of the hip (DDH) is characterized by a considerable range of pathology, from minor laxity of ligaments in the hip joint to complete luxation. Multifactorial etiology, of which the candidate genes have been studied the most, poses a challenge in understanding this disorder. Candidate gene association studies (CGASs) along with genome-wide association studies (GWASs) and genome-wide linkage analyses (GWLAs) have found numerous genes and loci with susceptible DDH association. Studies put major importance on candidate genes associated with the formation of connective tissue (COL1A1), osteogenesis (PAPPA2, GDF5), chondrogenesis (UQCC1, ASPN) and cell growth, proliferation and differentiation (TGFB1). Recent studies show that epigenetic factors, such as DNA methylation affect gene expression and therefore could play an important role in DDH pathogenesis. This paper reviews all existing risk factors affecting DDH incidence, along with candidate genes associated with genetic or epigenetic etiology of DDH in various studies.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University in Bratislava, 811-08 Bratislava, Slovakia; (L.K.); (L.D.)
- Correspondence: ; Tel.: +421-2-59357-299
| | - Radoslav Zamborsky
- Department of Orthopedics, Faculty of Medicine, Comenius University and National Institute of Children’s Diseases, 833-40 Bratislava, Slovakia; (R.Z.); (M.K.)
| | - Lubica Krajciova
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University in Bratislava, 811-08 Bratislava, Slovakia; (L.K.); (L.D.)
| | - Milan Kokavec
- Department of Orthopedics, Faculty of Medicine, Comenius University and National Institute of Children’s Diseases, 833-40 Bratislava, Slovakia; (R.Z.); (M.K.)
| | - Lubos Danisovic
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University in Bratislava, 811-08 Bratislava, Slovakia; (L.K.); (L.D.)
| |
Collapse
|