1
|
Martin JV, Sarkar PK. Nongenomic roles of thyroid hormones and their derivatives in adult brain: are these compounds putative neurotransmitters? Front Endocrinol (Lausanne) 2023; 14:1210540. [PMID: 37701902 PMCID: PMC10494427 DOI: 10.3389/fendo.2023.1210540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023] Open
Abstract
We review the evidence regarding the nongenomic (or non-canonical) actions of thyroid hormones (thyronines) and their derivatives (including thyronamines and thyroacetic acids) in the adult brain. The paper seeks to evaluate these compounds for consideration as candidate neurotransmitters. Neurotransmitters are defined by their (a) presence in the neural tissue, (b) release from neural tissue or cell, (c) binding to high-affinity and saturable recognition sites, (d) triggering of a specific effector mechanism and (e) inactivation mechanism. Thyronines and thyronamines are concentrated in brain tissue and show distinctive patterns of distribution within the brain. Nerve terminals accumulate a large amount of thyroid hormones in mature brain, suggesting a synaptic function. However, surprisingly little is known about the potential release of thyroid hormones at synapses. There are specific binding sites for thyroid hormones in nerve-terminal fractions (synaptosomes). A notable cell-membrane binding site for thyroid hormones is integrin αvβ3. Furthermore, thyronines bind specifically to other defined neurotransmitter receptors, including GABAergic, catecholaminergic, glutamatergic, serotonergic and cholinergic systems. Here, the thyronines tend to bind to sites other than the primary sites and have allosteric effects. Thyronamines also bind to specific membrane receptors, including the trace amine associated receptors (TAARs), especially TAAR1. The thyronines and thyronamines activate specific effector mechanisms that are short in latency and often occur in subcellular fractions lacking nuclei, suggesting nongenomic actions. Some of the effector mechanisms for thyronines include effects on protein phosphorylation, Na+/K+ ATPase, and behavioral measures such as sleep regulation and measures of memory retention. Thyronamines promptly regulate body temperature. Lastly, there are numerous inactivation mechanisms for the hormones, including decarboxylation, deiodination, oxidative deamination, glucuronidation, sulfation and acetylation. Therefore, at the current state of the research field, thyroid hormones and their derivatives satisfy most, but not all, of the criteria for definition as neurotransmitters.
Collapse
Affiliation(s)
- Joseph V. Martin
- Biology Department, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Pradip K. Sarkar
- Department of Basic Sciences, Parker University, Dallas, TX, United States
| |
Collapse
|
2
|
Ahamad Tarmizi AA, Nik Ramli NN, Adam SH, Abdul Mutalib M, Mokhtar MH, Tang SGH. Phytofabrication of Selenium Nanoparticles with Moringa oleifera (MO-SeNPs) and Exploring Its Antioxidant and Antidiabetic Potential. Molecules 2023; 28:5322. [PMID: 37513196 PMCID: PMC10384841 DOI: 10.3390/molecules28145322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The advancement in nanotechnology is the trigger for exploring the synthesis of selenium nanoparticles and their use in biomedicine. Therefore, this study aims to synthesize selenium nanoparticles using M. oleifera as a reducing agent and evaluate their antioxidant and antidiabetic potential. Our result demonstrated a change in the color of the mixture from yellow to red, and UV-Vis spectrometry of the suspension solution confirmed the formation of MO-SeNPs with a single absorbance peak in the range of 240-560 nm wavelength. FTIR analysis revealed several bioactive compounds, such as phenols and amines, that could possibly be responsible for the reduction and stabilization of the MO-SeNPs. FESEM + EDX analysis revealed that the amorphous MO-SeNPs are of high purity, have a spherical shape, and have a size of 20-250 nm in diameter, as determined by HRTEM. MO-SeNPs also exhibit the highest DPPH scavenging activity of 84% at 1000 μg/mL with an IC50 of 454.1 μg/mL and noteworthy reducing ability by reducing power assay. Furthermore, MO-SeNPs showed promising antidiabetic properties with dose-dependent inhibition of α-amylase (26.7% to 44.53%) and α-glucosidase enzyme (4.73% to 19.26%). Hence, these results demonstrated that M. oleifera plant extract possesses the potential to reduce selenium ions to SeNPs under optimized conditions with notable antioxidant and antidiabetic activities.
Collapse
Affiliation(s)
| | - Nik Nasihah Nik Ramli
- School of Graduate Studies (SGS), Management and Science University, Shah Alam 40100, Malaysia
| | - Siti Hajar Adam
- Pre-Clinical Department, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Maisarah Abdul Mutalib
- School of Graduate Studies (SGS), Management and Science University, Shah Alam 40100, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
3
|
Copur S, Yavuz F, Kanbay M. Thyroid hormone Beta receptor agonists for treatment of kidney disease: A promising agent? Eur J Clin Invest 2023; 53:e13939. [PMID: 36537819 DOI: 10.1111/eci.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Chronic kidney disease is a common disorder affecting a significant portion of the adult population with high mortality and morbidity. Obesity and hyperlipidemia are prevalent in chronic kidney disease, and they may trigger fat accumulation in renal parenchyma and eventually fatty kidney. Chronic kidney disease and fatty kidney are also strongly associated with nonalcoholic fatty liver disease. Because they both lead to detrimental effects on organ function, they both need to be treated effectively to improve the outcome. AIM In this narrative review, we have hypothesized that thyroid hormone beta receptor agonists, a novel drug group, may potentially be beneficial in the management of chronic kidney disease due to its promising outcomes among patients with nonalcoholic fatty liver disease, a condition sharing multiple common underlying pathophysiological mechanisms. RESULTS AND CONCLUSION Thyroid hormone beta receptors are abundantly expressed in liver and kidney tissues, while both nonalcoholic fatty liver disease and chronic kidney disease share various similar pathophysiological mechanisms and triggers. Therefore, thyroid hormone beta receptor agonists may become a promising tool in the management of patients with chronic kidney disease.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Leemans M, Spirhanzlova P, Couderq S, Le Mével S, Grimaldi A, Duvernois-Berthet E, Demeneix B, Fini JB. A Mixture of Chemicals Found in Human Amniotic Fluid Disrupts Brain Gene Expression and Behavior in Xenopus laevis. Int J Mol Sci 2023; 24:ijms24032588. [PMID: 36768911 PMCID: PMC9916464 DOI: 10.3390/ijms24032588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Thyroid hormones (TH) are essential for normal brain development, influencing neural cell differentiation, migration, and synaptogenesis. Multiple endocrine-disrupting chemicals (EDCs) are found in the environment, raising concern for their potential effects on TH signaling and the consequences on neurodevelopment and behavior. While most research on EDCs investigates the effects of individual chemicals, human health may be adversely affected by a mixture of chemicals. The potential consequences of EDC exposure on human health are far-reaching and include problems with immune function, reproductive health, and neurological development. We hypothesized that embryonic exposure to a mixture of chemicals (containing phenols, phthalates, pesticides, heavy metals, and perfluorinated, polychlorinated, and polybrominated compounds) identified as commonly found in the human amniotic fluid could lead to altered brain development. We assessed its effect on TH signaling and neurodevelopment in an amphibian model (Xenopus laevis) highly sensitive to thyroid disruption. Fertilized eggs were exposed for eight days to either TH (thyroxine, T4 10 nM) or the amniotic mixture (at the actual concentration) until reaching stage NF47, where we analyzed gene expression in the brains of exposed tadpoles using both RT-qPCR and RNA sequencing. The results indicate that whilst some overlap on TH-dependent genes exists, T4 and the mixture have different gene signatures. Immunohistochemistry showed increased proliferation in the brains of T4-treated animals, whereas no difference was observed for the amniotic mixture. Further, we demonstrated diminished tadpoles' motility in response to T4 and mixture exposure. As the individual chemicals composing the mixture are considered safe, these results highlight the importance of examining the effects of mixtures to improve risk assessment.
Collapse
|
5
|
Selenium and selenoproteins in thermogenic adipocytes. Arch Biochem Biophys 2022; 731:109445. [PMID: 36265651 PMCID: PMC9981474 DOI: 10.1016/j.abb.2022.109445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022]
Abstract
Selenium (Se) is involved in energy metabolism in the liver, white adipose tissue, and skeletal muscle, and may also play a role in thermogenic adipocytes, i.e. brown and beige adipocytes. Thereby this micronutrient is a key nutritional target to aid in combating obesity and metabolic diseases. In thermogenic adipocytes, particularly in brown adipose tissue (BAT), the selenoprotein type 2 iodothyronine deiodinase (DIO2) is essential for the activation of adaptive thermogenesis. Recent evidence has suggested that additional selenoproteins may also be participating in this process, and a role for Se itself through its metabolic pathways is also envisioned. In this review, we discuss the recognized effects and the knowledge gaps in the involvement of Se metabolism and selenoproteins in the mechanisms of adaptive thermogenesis in thermogenic (brown and beige) adipocytes.
Collapse
|
6
|
Yao B, Yang C, Pan C, Li Y. Thyroid hormone resistance: Mechanisms and therapeutic development. Mol Cell Endocrinol 2022; 553:111679. [PMID: 35738449 DOI: 10.1016/j.mce.2022.111679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/03/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
As an essential primary hormone, thyroid hormone (TH) is indispensable for human growth, development and metabolism. Impairment of TH function in several aspects, including TH synthesis, activation, transportation and receptor-dependent transactivation, can eventually lead to thyroid hormone resistance syndrome (RTH). RTH is a rare syndrome that manifests as a reduced target cell response to TH signaling. The majority of RTH cases are related to thyroid hormone receptor β (TRβ) mutations, and only a few RTH cases are associated with thyroid hormone receptor α (TRα) mutations or other causes. Patients with RTH suffer from goiter, mental retardation, short stature and bradycardia or tachycardia. To date, approximately 170 mutated TRβ variants and more than 20 mutated TRα variants at the amino acid level have been reported in RTH patients. In addition to these mutated proteins, some TR isoforms can also reduce TH function by competing with primary TRs for TRE and RXR binding. Fortunately, different treatments for RTH have been explored with structure-activity relationship (SAR) studies and drug design, and among these treatments. With thyromimetic potency but biochemical properties that differ from those of primary TH (T3 and T4), these TH analogs can bypass specific defective transporters or reactive mutant TRs. However, these compounds must be carefully applied to avoid over activating TRα, which is associated with more severe heart impairment. The structural mechanisms of mutation-induced RTH in the TR ligand-binding domain are summarized in this review. Furthermore, strategies to overcome this resistance for therapeutic development are also discussed.
Collapse
Affiliation(s)
- Benqiang Yao
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Chunyan Yang
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| | - Chengxi Pan
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| |
Collapse
|
7
|
Substantial impact of 3-iodothyronamine (T1AM) on the regulations of fluorescent thermoprobe-measured cellular temperature and natriuretic peptide expression in cardiomyocytes. Sci Rep 2022; 12:12740. [PMID: 35882940 PMCID: PMC9325765 DOI: 10.1038/s41598-022-17086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
There is growing interest in 3-iodothyronamine (T1AM), an active thyroid hormone metabolite, that induces negative inotropic and chronotropic actions in the heart and exerts systemic hypothermic action. We explored the direct impact of T1AM on cardiomyocytes with a focus on the regulation of the intracellular temperature and natriuretic peptide (NP) expression. A thermoprobe was successfully introduced into neonatal rat cardiomyocytes, and the temperature-dependent changes in the fluorescence intensity ratio were measured using a fluorescence microscope. After one-hour incubation with T1AM, the degree of change in the fluorescence intensity ratio was significantly lower in T1AM-treated cardiomyocytes than in equivalent solvent-treated controls (P < 0.01), indicating the direct hypothermic action of T1AM on cardiomyocytes. Furthermore, T1AM treatment upregulated B-type NP (BNP) gene expression comparable to treatment with endothelin-1 or phenylephrine. Of note, ERK phosphorylation was markedly increased after T1AM treatment, and inhibition of ERK phosphorylation by an MEK inhibitor completely cancelled both T1AM-induced decrease in thermoprobe-measured temperature and the increase in BNP expression. In summary, T1AM decreases fluorescent thermoprobe-measured temperatures (estimated intracellular temperatures) and increases BNP expression in cardiomyocytes by activating the MEK/ERK pathway. The present findings provide new insight into the direct myocardial cellular actions of T1AM in patients with severe heart failure.
Collapse
|
8
|
Bouazza A, Favier R, Fontaine E, Leverve X, Koceir EA. Potential Applications of Thyroid Hormone Derivatives in Obesity and Type 2 Diabetes: Focus on 3,5-Diiodothyronine (3,5-T2) in Psammomys obesus (Fat Sand Rat) Model. Nutrients 2022; 14:nu14153044. [PMID: 35893898 PMCID: PMC9329750 DOI: 10.3390/nu14153044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
3,5-Diiodothyronine (3,5-T2) has been shown to exert pleiotropic beneficial effects. In this study we investigated whether 3,5-T2 prevent several energy metabolism disorders related to type 2 diabetes mellitus (T2DM) in gerbils diabetes-prone P. obesus. 157 male gerbils were randomly to Natural Diet (ND-controlled) or a HED (High-Energy Diet) divided in: HED- controlled, HED-3,5-T2 and HED- Placebo groups. 3,5-T2 has been tested at 25 µg dose and was administered under subcutaneous pellet implant during 10 weeks. Isolated hepatocytes were shortly incubated with 3,5-T2 at 10−6 M and 10−9 M dose in the presence energetic substrates. 3,5-T2 treatment reduce visceral adipose tissue, prevent the insulin resistance, attenuated hyperglycemia, dyslipidemia, and reversed liver steatosis in diabetes P. obesus. 3,5-T2 decreased gluconeogenesis, increased ketogenesis and enhanced respiration capacity. 3,5-T2 potentiates redox and phosphate potential both in cytosol and mitochondrial compartment. The use of 3,5-T2 as a natural therapeutic means to regulate cellular energy metabolism. We suggest that 3,5-T2 may help improve the deleterious course of obesity and T2DM, but cannot replace medical treatment.
Collapse
Affiliation(s)
- Asma Bouazza
- Biology and Organisms Physiology Laboratory, Bioenergetics and Intermediary Metabolism Team, Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria;
| | - Roland Favier
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055, Univ. Grenoble Alpes, 16042 Grenoble, France; (R.F.); (E.F.); (X.L.)
| | - Eric Fontaine
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055, Univ. Grenoble Alpes, 16042 Grenoble, France; (R.F.); (E.F.); (X.L.)
| | - Xavier Leverve
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055, Univ. Grenoble Alpes, 16042 Grenoble, France; (R.F.); (E.F.); (X.L.)
| | - Elhadj-Ahmed Koceir
- Biology and Organisms Physiology Laboratory, Bioenergetics and Intermediary Metabolism Team, Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria;
- Correspondence: ; Tel.: +213-(0)6-6674-2770 or +213-(0)2124-7217; Fax: +213-(0)2124-7217
| |
Collapse
|
9
|
Borsò M, Agretti P, Zucchi R, Saba A. Mass spectrometry in the diagnosis of thyroid disease and in the study of thyroid hormone metabolism. MASS SPECTROMETRY REVIEWS 2022; 41:443-468. [PMID: 33238065 DOI: 10.1002/mas.21673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
The importance of thyroid hormones in the regulation of development, growth, and energy metabolism is well known. Over the last decades, mass spectrometry has been extensively used to investigate thyroid hormone metabolism and to discover and characterize new molecules involved in thyroid hormones production, such as thyrotropin-releasing hormone. In the earlier period, the quantification methods, usually based on gas chromatography-mass spectrometry, were complicated and time consuming. They were mainly focused on basic research, and were not suitable for clinical diagnostics on a routine basis. The development of the modern mass spectrometers, mainly coupled to liquid chromatography, enabled simpler sample preparation procedures, and the accurate quantification of thyroid hormones, of their precursors, and of their metabolites in biological fluids, tissues, and cells became feasible. Nowadays, molecules of physiological and pathological interest can be assayed also for diagnostic purposes on a routine basis, and mass spectrometry is slowly entering the clinical laboratory. This review takes stock of the advancements in the field of thyroid metabolism that were carried out with mass spectrometry, with special focus on the use of this technique for the quantification of molecules involved in thyroid diseases.
Collapse
Affiliation(s)
- Marco Borsò
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Patrizia Agretti
- Department of Laboratory Medicine, Laboratory of Chemistry and Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Riccardo Zucchi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Department of Laboratory Medicine, Laboratory of Clinical Pathology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Martínez Brito D, Botrè F, Romanelli F, de la Torre X. Thyroid metabolism and supplementation. A review framed in sports environment. Drug Test Anal 2022; 14:1176-1186. [PMID: 35315230 DOI: 10.1002/dta.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES This paper aimed to consider those features that may suggest a link between thyroid hormones pharmacology and athletes' health based on current consumption trends in a population of athletes. METHODS Methods used were observation, description, and synthesis, mainly. Among the documents reviewed were: books, scientific articles, and review articles peer-reviewed. The review covered sources published in the period 1961 to 2021. Only references with a traceable origin were accepted (DOI numbering, ISSN and ISBN, as well as peer-reviewed journals). The data on the consumption of thyroid hormones derivatives were extracted from the Doping Control Forms of athlete samples received at Laboratorio Antidoping FMSI of Rome from 2017 to 2021. RESULTS An overview of the biosynthesis, pharmacology, and metabolism of thyroid hormones, including thyronamines and thyronacetic acids, was presented. Likewise, a summary is presented on the relationship between thyroid hormones and ethnic and gender differences, their physiology in sport, and the reasons why their use could be considered attractive for athletes. CONCLUSION Today, thyroid hormones are not listed as a prohibited substance by the World Anti-Doping Agency. However, several requests to include levothyroxine on the prohibited list are documented. The observation that the number of athletes taking thyroid hormones is growing, particularly in sports such as cycling, triathlons, and skating, should prompt an update on this topic.
Collapse
Affiliation(s)
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Federazione Medico Sportiva Italiana, Rome, Italy.,REDs - Research and Expertise on Anti-Doping Sciences, Institute of Sport Science, University of Lausanne, Lausanne, Switzerland
| | - Francesco Romanelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Roma, Italy
| | - Xavier de la Torre
- Laboratorio Antidoping FMSI, Federazione Medico Sportiva Italiana, Rome, Italy
| |
Collapse
|
11
|
Louzada RA, Padron AS, Marques-Neto SR, Maciel L, Werneck-de-Castro JP, Ferreira ACF, Nascimento JHM, Carvalho DP. 3,5-Diiodothyronine protects against cardiac ischaemia-reperfusion injury in male rats. Exp Physiol 2021; 106:2185-2197. [PMID: 34605090 DOI: 10.1113/ep089589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? 3,5-Diiodothyronine (3,5-T2) administration increases resting metabolic rate, prevents or treats liver steatosis in rodent models, and ameliorates insulin resistance: what are its effects on cardiac electrical and contractile properties and autonomic regulation? What is the main finding and its importance? Chronic 3,5-T2 administration has no adverse effects on cardiac function. Remarkably, 3,5-T2 improves the autonomous control of the rat heart and protects against ischaemia-reperfusion injury. ABSTRACT The use of 3,5,3'-triiodothyronine (T3) and thyroxine (T4) to treat metabolic diseases has been hindered by potential adverse effects on liver, lipid metabolism and cardiac electrical properties. It is recognized that 3,5-diiodothyronine (3,5-T2) administration increases resting metabolic rate, prevents or treats liver steatosis in rodent models and ameliorates insulin resistance, suggesting 3,5-T2 as a potential therapeutic tool. However, a comprehensive assessment of cardiac electrical and contractile properties has not been made so far. Three-month-old Wistar rats were daily administered vehicle, 3,5-T2 or 3,5-T2+T4 and no signs of atrial or ventricular arrhythmia were detected in non-anaesthetized rats during 90 days. Cardiac function was preserved as heart rate, left ventricle diameter and shortening fraction in 3,5-T2-treated rats compared to vehicle and 3,5-T2+T4 groups. Power spectral analysis indicated an amelioration of the heart rate variability only in 3,5-T2-treated rats. An increased baroreflex sensitivity at rest was observed in both 3,5-T2-treated groups. Finally, 3,5-T2 Langendorff-perfused hearts presented a significant recovery of left ventricular function and remarkably smaller infarction area after ischaemia-reperfusion injury. In conclusion, chronic 3,5-T2 administration ameliorates tonic cardiac autonomic control and confers cardioprotection against ischaemia-reperfusion injury in healthy male rats.
Collapse
Affiliation(s)
- Ruy Andrade Louzada
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alvaro Souto Padron
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvio Rodrigues Marques-Neto
- Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Ciências da Atividade Física, Niterói, RJ, Brazil.,Universidade Estácio de Sá (UNESA), Laboratório de Fisiologia do Exercício (LAFIEX), Curso de Educação Física, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Pedro Werneck-de-Castro
- Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea Claudia Freitas Ferreira
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Hamilton Matheus Nascimento
- Laboratório de Eletrofisiologia Cardíaca Antonio Paes de Carvalho, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Pires Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Gilbert ME, O'Shaughnessy KL, Thomas SE, Riutta C, Wood CR, Smith A, Oshiro WO, Ford RL, Hotchkiss MG, Hassan I, Ford JL. Thyroid Disruptors: Extrathyroidal Sites of Chemical Action and Neurodevelopmental Outcome-An Examination Using Triclosan and Perfluorohexane Sulfonate. Toxicol Sci 2021; 183:195-213. [PMID: 34460931 PMCID: PMC9038230 DOI: 10.1093/toxsci/kfab080] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many xenobiotics are identified as potential thyroid disruptors due to their action to reduce circulating levels of thyroid hormone, most notably thyroxine (T4). Developmental neurotoxicity is a primary concern for thyroid disrupting chemicals yet correlating the impact of chemically induced changes in serum T4 to perturbed brain development remains elusive. A number of thyroid-specific neurodevelopmental assays have been proposed, based largely on the model thyroid hormone synthesis inhibitor propylthiouracil (PTU). This study examined whether thyroid disrupting chemicals acting distinct from synthesis inhibition would result in the same alterations in brain as expected with PTU. The perfluoroalkyl substance perfluorohexane sulfonate (50 mg/kg/day) and the antimicrobial Triclosan (300 mg/kg/day) were administered to pregnant rats from gestational day 6 to postnatal day (PN) 21, and a number of PTU-defined assays for neurotoxicity evaluated. Both chemicals reduced serum T4 but did not increase thyroid stimulating hormone. Both chemicals increased expression of hepatic metabolism genes, while thyroid hormone-responsive genes in the liver, thyroid gland, and brain were largely unchanged. Brain tissue T4 was reduced in newborns, but despite persistent T4 reductions in serum, had recovered in the PN6 pup brain. Neither treatment resulted in a low dose PTU-like phenotype in either brain morphology or neurobehavior, raising questions for the interpretation of serum biomarkers in regulatory toxicology. They further suggest that reliance on serum hormones as prescriptive of specific neurodevelopmental outcomes may be too simplistic and to understand thyroid-mediated neurotoxicity we must expand our thinking beyond that which follows thyroid hormone synthesis inhibition.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Susan E Thomas
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Cal Riutta
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Carmen R Wood
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Alicia Smith
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Wendy O Oshiro
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Richard L Ford
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Michelle Gatien Hotchkiss
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Jermaine L Ford
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
13
|
Coscia F, Taler-Verčič A. Cryo-EM: A new dawn in thyroid biology. Mol Cell Endocrinol 2021; 531:111309. [PMID: 33964321 PMCID: PMC8316605 DOI: 10.1016/j.mce.2021.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/09/2022]
Abstract
The thyroid gland accumulates the rare dietary element iodine and incorporates it into iodinated thyroid hormones, utilising several tightly regulated reactions and molecular mechanisms. Thyroid hormones are essential in vertebrates and play a central role in many biological processes, such as development, thermogenesis and growth. The control of these functions is exerted through the binding of hormones to nuclear thyroid hormone receptors that rule the transcription of numerous metabolic genes. Over the last 50 years, thyroid biology has been studied extensively at the cellular and organismal levels, revealing its multiple clinical implications, yet, a complete molecular understanding is still lacking. This includes the atomic structures of crucial pathway components that would be needed to elucidate molecular mechanisms. Here we review the currently known protein structures involved in thyroid hormone synthesis, regulation, transport, and actions. We also highlight targets for future investigations that will significantly benefit from recent advances in macromolecular structure determination by electron cryo-microscopy (cryo-EM). As an example, we demonstrate how cryo-EM was crucial to obtain the structure of the large thyroid hormone precursor protein, thyroglobulin. We discuss modern cryo-EM compared to other structure determination methods and how an integrated structural and cell biological approach will help filling the molecular knowledge gap in our understanding of thyroid hormone metabolism. Together with clinical, cellular and high-throughput 'omics' studies, atomic structures of thyroid components will provide an important framework to map disease mutations and to interpret and predict thyroid phenotypes.
Collapse
Affiliation(s)
- Francesca Coscia
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK; Human Technopole, Via Cristina Belgioioso 171, 20157, Milano, Italy.
| | - Ajda Taler-Verčič
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
14
|
Abstract
Selenium (Se) is an element commonly found in the environment at different levels. Its compounds are found in soil, water, and air. This element is also present in raw materials of plant and animal origin, so it can be introduced into human organisms through food. Selenium is a cofactor of enzymes responsible for the antioxidant protection of the body and plays an important role in regulating inflammatory processes in the body. A deficiency in selenium is associated with a number of viral diseases, including COVID-19. This element, taken in excess, may have a toxic effect in the form of joint diseases and diseases of the blood system. Persistent selenium deficiency in the body may also impact infertility, and in such cases supplementation is needed.
Collapse
|
15
|
Post-Translational Protein Deimination Signatures in Plasma and Plasma EVs of Reindeer ( Rangifer tarandus). BIOLOGY 2021; 10:biology10030222. [PMID: 33805829 PMCID: PMC7998281 DOI: 10.3390/biology10030222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Reindeer are an important wild and domesticated species of the Arctic, Northern Europe, Siberia and North America. As reindeer have developed various strategies to adapt to extreme environments, this makes them an interesting species for studies into diversity of immune and metabolic functions in the animal kingdom. Importantly, while reindeer carry natural infections caused by viruses (including coronaviruses), bacteria and parasites, they can also act as carriers for transmitting such diseases to other animals and humans, so called zoonosis. Reindeer are also affected by chronic wasting disease, a neuronal disease caused by prions, similar to scrapie in sheep, mad cows disease in cattle and Creutzfeldt-Jakob disease in humans. The current study assessed a specific protein modification called deimination/citrullination, which can change how proteins function and allow them to take on different roles in health and disease processes. Profiling of deiminated proteins in reindeer showed that many important pathways for immune defenses, prion diseases and metabolism are enriched in deiminated proteins, both in plasma, as well as in plasma extracellular vesicles. This study provides a platform for the development of novel biomarkers to assess wild life health status and factors relating to zoonotic disease. Abstract The reindeer (caribou) Rangifer tarandus is a Cervidae in the order Artiodactyla. Reindeer are sedentary and migratory populations with circumpolar distribution in the Arctic, Northern Europe, Siberia and North America. Reindeer are an important wild and domesticated species, and have developed various adaptive strategies to extreme environments. Importantly, deer have also been identified to be putative zoonotic carriers, including for parasites, prions and coronavirus. Therefore, novel insights into immune-related markers are of considerable interest. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which causes post-translational protein deimination by converting arginine into citrulline in target proteins. This affects protein function in health and disease. Extracellular vesicles (EVs) participate in cellular communication, in physiological and pathological processes, via transfer of cargo material, and their release is partly regulated by PADs. This study assessed deiminated protein and EV profile signatures in plasma from sixteen healthy wild female reindeer, collected in Iceland during screening for parasites and chronic wasting disease. Reindeer plasma EV profiles showed a poly-dispersed distribution from 30 to 400 nm and were positive for phylogenetically conserved EV-specific markers. Deiminated proteins were isolated from whole plasma and plasma EVs, identified by proteomic analysis and protein interaction networks assessed by KEGG and GO analysis. This revealed a large number of deimination-enriched pathways for immunity and metabolism, with some differences between whole plasma and EVs. While shared KEGG pathways for whole plasma and plasma EVs included complement and coagulation pathways, KEGG pathways specific for EVs were for protein digestion and absorption, platelet activation, amoebiasis, the AGE–RAGE signaling pathway in diabetic complications, ECM receptor interaction, the relaxin signaling pathway and the estrogen signaling pathway. KEGG pathways specific for whole plasma were pertussis, ferroptosis, SLE, thyroid hormone synthesis, phagosome, Staphylococcus aureus infection, vitamin digestion and absorption, and prion disease. Further differences were also found between molecular function and biological processes GO pathways when comparing functional STRING networks for deiminated proteins in EVs, compared with deiminated proteins in whole plasma. This study highlights deiminated proteins and EVs as candidate biomarkers for reindeer health and may provide information on regulation of immune pathways in physiological and pathological processes, including neurodegenerative (prion) disease and zoonosis.
Collapse
|
16
|
Shao L, Chen X, Lyu J, Zhao M, Li Q, Ji S, Sun Q, Tang D, Geng H, Guo M. Enrichment and Quantitative Determination of Free 3,5- Diiodothyronine, 3',5'-Diiodothyronine, and 3,5-Diiodothyronamine in Human Serum of Thyroid Cancer by Covalent Organic Hyper Cross-linked Poly-ionic Liquid. J Chromatogr A 2020; 1637:461821. [PMID: 33360433 DOI: 10.1016/j.chroma.2020.461821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023]
Abstract
The incidence of thyroid cancer is increasing worldwide. So far, still no non-invasive clinical test biomarkers were developed for the diagnosis of thyroid cancer. The diiodothyronines (T2s) are precursors and metabolites of thyroid hormone (T4). Some reports predict that T2s may be associated with several thyroid diseases, especially the thyroid cancer. Detecting free T2s in human serum may help the diagnosis of thyroid cancer. However, few works have reported the detection of T2s due to their trace amounts. Here we developed a novel hyper organic cross-linked poly ionic liquid (PIL) material for the enrichment of three main compounds in T2s family, including 3,5- diiodothyronine (3,5-T2), 3',5'-diiodothyronine (3',5'-T2), and 3,5-diiodothyronamine (3,5-T2AM). This PIL material provided specific enrichment superiority for three T2s. After enrichment, the signal intensity of 3,5-T2, 3',5'-T2, and 3,5-T2AM increased 14, 132 and 1.6 folds, respectively, with LOQ of 76, 87, and 107 fM, respectively. Finally, we successfully applied PIL material coupled with HPLC-ESI-MS/MS in enrichment and quantitative determination of free 3,5-T2, 3',5'-T2, and 3,5-T2AM in human serum of 45 thyroid cancer patients and 15 healthy people. We also used free thyroid hormone (FT4) as the calibration reference to eliminate individual differences. We found that the levels of 3,5-T2 (P < 0.001), and 3',5'-T2 (P = 0.001) in patients with thyroid cancer were significantly higher than those in healthy people. Additionally, we further investigated the power of different T2 thyroid hormones divided FT4 to classify thyroid cancer patients and healthy people. And 3,5-T2/FT4 had the highest classification performance for discriminating thyroid cancer patients from healthy people at certain threshold, indicating that 3,5-T2/FT4 in human serum can act as potential biomarkers for "non-invasive" clinical diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Lili Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xi Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinxiu Lyu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qing Li
- Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qiang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Houfa Geng
- Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
17
|
Giannocco G, Kizys MML, Maciel RM, de Souza JS. Thyroid hormone, gene expression, and Central Nervous System: Where we are. Semin Cell Dev Biol 2020; 114:47-56. [PMID: 32980238 DOI: 10.1016/j.semcdb.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Thyroid hormones (TH; T3 and T4) play a fundamental role in the fetal stage to the adult phase, controlling gene and protein expression in virtually all tissues. The endocrine and CNS systems have relevant interaction, and the TH are pivotal for the proper functioning of the CNS. A slight failure to regulate TH availability during pregnancy and/or childhood can lead to neurological disorders, for example, autism and cognitive impairment, or depression. In this review, we highlight how TH acts in controlling gene expression, its role in the CNS, and what substances widely found in the environment can cause in this tissue. We highlight the role of Endocrine Disruptors used on an everyday basis in the processing of mRNAs responsible for neurodevelopment. We conclude that TH, more precisely T3, acts mainly throughout its nuclear receptors, that the deficiency of this hormone, either due to the lack of its main substrate iodine, or by to incorrect organification of T4 and T3 in the gland, or by a mutation in transporters, receptors and deiodinases may cause mild (dysregulated mood in adulthood) to severe neurological impairment (Allan-Herndon-Dudley syndrome, presented as early as childhood); T3 is responsible for the expression of numerous CNS genes related to oxygen transport, growth factors, myelination, cell maturation. Substances present in the environment and widely used can interfere with the functioning of the thyroid gland, the action of TH, and the functioning of the CNS.
Collapse
Affiliation(s)
- Gisele Giannocco
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil; Departamento de Ciências Biológicas, Universidade Federal de São Paulo, UNIFESP, Diadema, SP 09920-000, Brazil
| | - Marina Malta Letro Kizys
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil
| | - Rui Monteiro Maciel
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil
| | - Janaina Sena de Souza
- Departamento de Medicina, Laboratório de Endocrinologia e Medicina Translacional, Universidade Federal de São Paulo, UNIFESP/EPM, Rua Pedro de Toledo, 669 - 11 andar, São Paulo, SP 04039-032, Brazil; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Abstract
The development of thyroid hormone (TH) analogues was prompted by the attempt to exploit the effects of TH on lipid metabolism, avoiding cardiac thyrotoxicosis. Analysis of the relative distribution of the α and β subtypes of nuclear TH receptors (TRα and TRβ) showed that TRα and TRβ are responsible for cardiac and metabolic responses, respectively. Therefore, analogues with TRβ selectivity were developed, and four different compounds have been used in clinical trials: GC-1 (sobetirome), KB-2115 (eprotirome), MB07344/VK2809, and MGL-3196 (resmetirom). Each of these compounds was able to reduce low-density lipoprotein cholesterol, but a phase 3 trial with eprotirome was interrupted because of a significant increase in liver enzymes and the contemporary report of cartilage side effects in animals. As a consequence, the other projects were terminated as well. However, in recent years, TRβ agonists have raised new interest for the treatment of nonalcoholic fatty liver disease (NAFLD). After obtaining excellent results in experimental models, clinical trials have been started with MGL-3196 and VK2809, and the initial reports are encouraging. Sobetirome turned out to be effective also in experimental models of demyelinating disease. Aside TRβ agonists, TH analogues include some TH metabolites that are biologically active on their own, and their synthetic analogues. 3,5,3'-triiodothyroacetic acid has already found clinical use in the treatment of some cases of TH resistance due to TRβ mutations, and interesting results have recently been reported in patients with the Allan-Herndon-Dudley syndrome, a rare disease caused by mutations in the TH transporter MCT8. 3,5-diiodothyronine (T2) has been used with success in rat models of dyslipidemia and NAFLD, but the outcome of a clinical trial with a synthetic T2 analogue was disappointing. 3-iodothyronamine (T1AM) is the last entry in the group of active TH metabolites. Promising results have been obtained in animal models of neurological injury induced by β-amyloid or by convulsive agents, but no clinical data are available so far.
Collapse
Affiliation(s)
- Riccardo Zucchi
- Department of Pathology, University of Pisa, Pisa, Italy
- Address correspondence to: Riccardo Zucchi, MD, PhD, Department of Pathology, University of Pisa, Via Roma 55, Pisa 56126, Italy
| |
Collapse
|
19
|
Saponaro F, Sestito S, Runfola M, Rapposelli S, Chiellini G. Selective Thyroid Hormone Receptor-Beta (TRβ) Agonists: New Perspectives for the Treatment of Metabolic and Neurodegenerative Disorders. Front Med (Lausanne) 2020; 7:331. [PMID: 32733906 PMCID: PMC7363807 DOI: 10.3389/fmed.2020.00331] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (THs) elicit significant effects on numerous physiological processes, such as growth, development, and metabolism. A lack of thyroid hormones is not compatible with normal health. Most THs effects are mediated by two different thyroid hormone receptor (TR) isoforms, namely TRα and TRβ, with the TRβ isoform known to be responsible for the main beneficial effects of TH on liver. In brain, despite the crucial role of TRα isoform in neuronal development, TRβ has been proposed to play a role in the remyelination processes. Consequently, over the past two decades, much effort has been applied in developing thyroid hormone analogs capable of uncoupling beneficial actions on liver (triglyceride and cholesterol lowering) and central nervous system (CNS) (oligodendrocyte proliferation) from deleterious effects on the heart, muscle and bone. Sobetirome (GC-1) and subsequently Eprotirome (KB2115) were the first examples of TRβ selective thyromimetics, with Sobetirome differing from the structure of thyronines because of the absence of halogens, biaryl ether oxygen, and amino-acidic side chain. Even though both thyromimetics showed encouraging actions against hypercholesterolemia, non-alcoholic steatohepatitis (NASH) and in the stimulation of hepatocytes proliferation, they were stopped after Phase 1 and Phase 2–3 clinical trials, respectively. In recent years, advances in molecular and structural biology have facilitated the design of new selective thyroid hormone mimetics that exhibit TR isoform-selective binding, and/or liver- and tissue-selective uptake, with Resmetirom (MGL-3196) and Hep-Direct prodrug VK2809 (MB07811) probably representing two of the most promising lipid lowering agents, currently under phase 2–3 clinical trials. More recently the application of a comprehensive panel of ADME-Toxicity assays enabled the selection of novel thyromimetic IS25 and its prodrug TG68, as very powerful lipid lowering agents both in vitro and in vivo. In addition to dyslipidemia and other liver pathologies, THs analogs could also be of value for the treatment of neurodegenerative diseases, such as multiple sclerosis (MS). Sob-AM2, a CNS- selective prodrug of Sobetirome has been shown to promote significant myelin repair in the brain and spinal cord of mouse demyelinating models and it is rapidly moving into clinical trials in humans. Taken together all these findings support the great potential of selective thyromimetics in targeting a large variety of human pathologies characterized by altered metabolism and/or cellular differentiation.
Collapse
Affiliation(s)
| | - Simona Sestito
- Department of Pathology, University of Pisa, Pisa, Italy
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | |
Collapse
|
20
|
Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci 2020; 21:ijms21114140. [PMID: 32532017 PMCID: PMC7312989 DOI: 10.3390/ijms21114140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.
Collapse
Affiliation(s)
- Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences (Discipline Chirurgiche, Oncologiche e Stomatologiche), University of Palermo, 90127 Palermo, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (Bi.N.D.)), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2389-7415 or +39-091-2389-7446
| |
Collapse
|
21
|
Teixeira PDFDS, dos Santos PB, Pazos-Moura CC. The role of thyroid hormone in metabolism and metabolic syndrome. Ther Adv Endocrinol Metab 2020; 11:2042018820917869. [PMID: 32489580 PMCID: PMC7238803 DOI: 10.1177/2042018820917869] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome (MetS) and thyroid dysfunction are common in clinical practice. The objectives of this review are to discuss some proposed mechanisms by which thyroid dysfunctions may lead to MetS, to describe the bidirectional relationship between thyroid hormones (THs) and adiposity and finally, to resume a list of recent studies in humans that evaluated possible associations between thyroid hormone status and MetS or its clinical components. Not solely THs, but also its metabolites regulate metabolic rate, influencing adiposity. The mechanisms enrolled are related to its direct effect on adenosine triphosphate (ATP) utilization, uncoupling synthesis of ATP, mitochondrial biogenesis, and its inotropic and chronotropic effects. THs also act controlling core body temperature, appetite, and sympathetic activity. In a bidirectional way, thyroid function is affected by adiposity. Leptin is one of the hallmarks, but the pro-inflammatory cytokines and also insulin resistance impact thyroid function and perhaps its structure. MetS development and weight gain have been positively associated with thyroid-stimulating hormone (TSH) in several studies. Adverse glucose metabolism may be related to hyperthyroidism, but also to reduction of thyroid function or higher serum TSH, as do abnormal serum triglyceride levels. Hypo- and hyperthyroidism have been related to higher blood pressure (BP), that may be consequence of genomic or nongenomic action of THs on the vasculature and in the heart. In summary, the interaction between THs and components of MetS is complex and not fully understood. More longitudinal studies controlling each of all confounding variables that interact with endpoints or exposure factors are still necessary.
Collapse
Affiliation(s)
- Patrícia de Fátima dos Santos Teixeira
- Endocrine Clinic, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Rocco, 255 – Cidade Universitária, Rio de Janeiro, RJ 21941-617, Brazil
| | - Patrícia Borges dos Santos
- Research Fellow, Medicine School, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Endocrinologist, Instituto Estadual de Endocrinologia Luiz Capriglione, Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Cardoso LF, de Carvalho Melo MC, Takahashi MH, Nascimento AS, Chiamolera MI, Maciel LMZ. Structural insights revealed by two novel THRB mutations. Endocrine 2020; 68:241-247. [PMID: 31902113 DOI: 10.1007/s12020-019-02177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/26/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Among the inheritable forms of impaired sensitivity to thyroid hormone, resistance to thyroid hormone (RTH) due to mutations in the thyroid hormone receptor beta gene (THRB) is the first and best known described defect, revealing a wide phenotypic variability with an incompletely understood physiopathology. The objective of this study was to evaluate two novel mutations in THRB, N331H and L346R, in an attempt to provide a rational understanding of the harmful effects caused by them. METHODS The mutations of two patients with RTHβ were reproduced for analysis of gene transactivation by dual-luciferase reporter assay, and for molecular modeling for crystallography-based structural assessment. Serum measurements of TSH and FT4 were performed to compare the thyrotrophic resistance to thyroid hormone between RTHβ patients and controls. RESULTS Both mutants showed impaired gene transactivation, with greater damage in L346R. Molecular modeling suggested that the damage occurring in N331H is primarily due to reduced strength of the hydrogen bonds that stabilize T3 in its ligand-binding cavity (LBC), whereas in L346R, the damage is more marked and is mainly due to changes in hydrophobicity and molecular volume inside the LBC. Hormonal dosages indicated that the L346R mutant exhibited greater thyrotrophic resistance than N331H. CONCLUSIONS This study provides a rational understanding of the effects of mutations, indicating deleterious structural changes in the LBC in both THR, and discloses that not only the position of the mutation but, notably, the nature of the amino acid exchange, has a cardinal role in the functional damage of the receptor.
Collapse
Affiliation(s)
- Ludmilla Ferreira Cardoso
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Clara de Carvalho Melo
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | - Maria Izabel Chiamolera
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Léa Maria Zanini Maciel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
3-Iodothyronamine and Derivatives: New Allies Against Metabolic Syndrome? Int J Mol Sci 2020; 21:ijms21062005. [PMID: 32183490 PMCID: PMC7139928 DOI: 10.3390/ijms21062005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
In the two decades since its discovery, a large body of evidence has amassed to highlight the potential of 3-iodothyronamine (T1AM) as an antiobesity drug, whose pleiotropic signaling actions profoundly impact energy metabolism. In the present review, we recapitulate the most relevant properties of T1AM, including its structural and functional relationship to thyroid hormone, its endogenous levels, molecular targets, as well as its genomic and non-genomic effects on metabolism elicited in experimental models after exogenous administration. The physiological and pathophysiological relevance of T1AM in the regulation of energy homeostasis and metabolism is also discussed, along with its potential therapeutic applications in metabolic disturbances. Finally, we examine a number of T1AM analogs that have been recently developed with the aim of designing novel pharmacological agents for the treatment of interlinked diseases, such as metabolic and neurodegenerative disorders, as well as additional synthetic tools that can be exploited to further explore T1AM-dependent mechanisms and the physiological roles of trace amine-associated receptor 1 (TAAR1)-mediated effects.
Collapse
|
24
|
Gachkar S, Oelkrug R, Herrmann B, Scanlan TS, Sun Q, Biebermann H, Hoefig CS, Schomburg L, Mittag J. N- and O-Acetylated 3-Iodothyronamines Have No Metabolic or Thermogenic Effects in Male Mice. Eur Thyroid J 2020; 9:57-66. [PMID: 32257954 PMCID: PMC7109410 DOI: 10.1159/000504887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Injection of 3-iodothyronamine into experimental animals profoundly affects their metabolism and body temperature. As 3-iodothyronamine is rapidly acetylated in vivo after injection, it was hypothesized that the metabolites N- or O-acetyl-3-iodothyronamines could constitute the active hormones. METHODS Adult male mice were injected once daily with one of the metabolites (5 mg/kg body weight intraperitoneally dissolved in 60% DMSO in PBS) or solvent. Metabolism was monitored by indirect calorimetry, body temperature by infrared thermography, and body composition by nuclear magnetic resonance analysis. Signaling activities in brown fat or liver were assessed by studying target gene transcription by qPCR including uncoupling protein 1 or deiodinase type 1 or 2, and Western blot. RESULTS The markers of metabolism, body composition, or temperature tested were similar in the mice injected with solvent and those injected with one of the acetylated 3-iodothyronamines. CONCLUSIONS In our experimental setup, N- and O-acetyl-3-iodothyronamine do not constitute compounds contributing to the metabolic or temperature effects described for 3-iodothyronamine. The acetylation of 3-iodothyronamine observed in vivo may thus rather serve degradation and elimination purposes.
Collapse
Affiliation(s)
- Sogol Gachkar
- Molecular Endocrinology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Molecular Endocrinology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Beate Herrmann
- Molecular Endocrinology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité − Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité − Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin S. Hoefig
- Institute for Experimental Endocrinology, Charité − Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité − Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Mittag
- Molecular Endocrinology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- *Prof. Dr. Jens Mittag, Center of Brain, Behavior and Metabolism, Ratzeburger Allee 160, Haus 66, DE–23562 Lübeck (Germany), E-Mail
| |
Collapse
|
25
|
Biebermann H, Kleinau G. 3-Iodothyronamine Induces Diverse Signaling Effects at Different Aminergic and Non-Aminergic G-Protein Coupled Receptors. Exp Clin Endocrinol Diabetes 2019; 128:395-400. [PMID: 31698479 DOI: 10.1055/a-1022-1554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The thyroid hormone metabolite 3-iodothyronamine (3-T1AM) exerts diverse physiological reactions such as a decrease of body temperature, and negative inotropic and chronotropic effects. This observed pleomorphic effect in physiology can be barely explained by interaction with only one target protein such as the trace-amine receptor 1 (TAAR1), a class A G-protein coupled receptor (GPCR). Moreover, Taar1 knock-out mice still react to 3-T1AM through physiological responses with a rapid decrease in body temperature. These facts propelled our group and others to search for further targets for this molecule.The group of TAARs evolved early in evolution and, according to sequence similarities, they are closely related to adrenoceptors and other aminergic receptors. Therefore, several of these receptors were characterized by their potential to interplay with 3-T1AM. Indeed, 3-T1AM acts as a positive allosteric modulator on the beta2-adrenoceptor (ADRB2) and as a biased agonist on the serotonin receptor 1B (5HT1b) and the alpha2-adrenoceptor (ADRA2A). In addition, 3-T1AM was reported to be a weak antagonist at a non-aminergic muscarinic receptor (M3).These findings impressively reflect that such trace amines can unselectively and simultaneously function at different receptors expressed by one cell or at different tissues. In conclusion, the role of 3-T1AM is hypothesized to concert the fine-tuning of specific cell reactions by the accentuation of certain pathways dependent on distinct receptors. 3-T1AM acts as a regulator of signals by blocking, modulating, or inducing simultaneously distinct intracellular signaling cascades via different GPCRs.
Collapse
Affiliation(s)
- Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|