1
|
Wang J, Chen Z, Zhang R, Wang Y, Li Y, Xu Z, Lin Q. PDGFR-α shRNA encoded nanoparticle with epithelial mesenchymal transformation interfering for corneal scarring treatment. Int J Pharm 2025; 671:125249. [PMID: 39842735 DOI: 10.1016/j.ijpharm.2025.125249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Maintaining the clarity of the cornea is crucial for optimal vision. Corneal scarring (CS), resulting from corneal inflammation, trauma, or surgery, can lead to a reduction in corneal transparency and visual impairment. While corneal transplantation is the primary method for restoring vision, the limited availability of corneal donor presents a significant challenge on a global scale. This study aimed to develop a non-viral gene complex utilizing gene silencing technology to deliver interfering fragments of the platelet-derived growth factor alpha receptor (PDGFR-α) to prevent CS. The hydrophilic segment of polyethylene glycol on the surface of the complex significantly improved its cellular safety as a delivery vehicle. The proton sponge effect of cationic carriers facilitates the escape of the target fragment from lysosomes and enables its entry into the cytoplasm for gene interference. In the TGF-β-induced epithelial-mesenchymal transition (EMT) cell model, it demonstrates remarkable capabilities in inhibiting cell fibrosis and migration. A mouse model was utilized to assess the gene complex's capacity to penetrate into the cornea and inhibit the production of corneal scar. This study highlights the significance of inhibiting the EMT process as a potential strategy for treating fibrosis, and has achieved technical success in intervening in corneal scarring.
Collapse
Affiliation(s)
- Jiahao Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Zhirong Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Renjie Zhang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Yajia Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Yijin Li
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Zhenbiao Xu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China.
| |
Collapse
|
2
|
Pike S, Wuest M, Lopez-Campistrous A, Hu MY, Derda R, Wuest F, McMullen T. First-Generation Radiolabeled Cyclic Peptides for Molecular Imaging of Platelet-Derived Growth Factor Receptor α. Mol Pharm 2024; 21:4648-4663. [PMID: 39152916 DOI: 10.1021/acs.molpharmaceut.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Occult nodal spread and metastatic disease require longstanding imaging and biochemical assessments for thyroid cancer, a disease that has a propensity for diffuse, small-volume disease. We have developed a 64Cu-labeled platelet-derived growth factor receptor α (PDGFRA) antibody for immuno-PET of PDGFRA in metastatic papillary thyroid cancer (PTC). The present work describes the discovery of small cyclic PDGFRA-targeting peptides, their binding features, and radiolabeling with positron emitter gallium-68 (68Ga) for in vitro and in vivo characterization in thyroid cancer models. Phage-display technology with two separate libraries and seven different cell lines was used through three rounds of biopanning as well as flow cytometry and comparative analysis with recombinant protein to select specific peptide sequences. Phenotypic binding analysis was completed by using phosphorylation and cell migration assays. In vitro protein binding was analyzed with thermophoresis and flow cytometry using the fluorescent-labeled PDGFRA peptide. Peptide candidates were modified with the NOTA chelator for radiolabeling with 68Ga. In vitro cell uptake was studied in various thyroid cancer cell lines. In vivo studies of 68Ga-labeled peptides included metabolic stability and PET imaging. From the original library (1013 compounds), five different peptide groups were identified based on biopanning experiments with and without the α subunit of PDGFR, leading to ∼50 peptides. Subsequent phenotypic screening revealed two core peptide sequences (CP16 and CP18) that demonstrated significant changes in the level of PDGFRA phosphorylation and cell migration. Alanine scan sublibraries were created from these two lead peptide sequences, and peptides were radiolabeled using 68Ga-GaCl3 at pH 4.5, resulting in RCP > 95% within 34-40 min, including SPE purification. Cyclic peptide CP18.5 showed the strongest effects on cell migration, flow cytometry, and binding by visual interference color assay. 68Ga-labeled PDGFRA-targeting peptides showed elevated cell and tumor uptake in models of thyroid cancer, with 68Ga-NOTA-CP18.5 being the lead candidate. However, metabolic stability in vivo was compromised for 68Ga-NOTA-CP18.5 vs 68Ga-NOTA-CP18 but without impacting tumor uptake or clearance profiles. First-generation radiolabeled cyclic peptides have been developed as novel radiotracers, particularly 68Ga-NOTA-CP18.5, for the molecular imaging of PDGFRA in thyroid cancer.
Collapse
Affiliation(s)
- Susan Pike
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | | | - Mi Yao Hu
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Canada T6G 2N4
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | - Todd McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada T6G 2B7
| |
Collapse
|
3
|
Mark ZA, Yu L, Castro L, Gao X, Rodriguez NR, Sutton D, Scappini E, Tucker CJ, Wine R, Yan Y, Motley E, Dixon D. Tobacco Smoke Condensate Induces Morphologic Changes in Human Papillomavirus-Positive Cervical Epithelial Cells Consistent with Epithelial to Mesenchymal Transition (EMT) with Activation of Receptor Tyrosine Kinases and Regulation of TGFB. Int J Mol Sci 2024; 25:4902. [PMID: 38732119 PMCID: PMC11084578 DOI: 10.3390/ijms25094902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10-6-100 μg/mL). We found CSC (10-3 or 10 μg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC.
Collapse
Affiliation(s)
- Zaniya A. Mark
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Linda Yu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Lysandra Castro
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Xiaohua Gao
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Noelle R. Rodriguez
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Deloris Sutton
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA
| | - Erica Scappini
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA; (E.S.); (C.J.T.); (R.W.)
| | - Charles J. Tucker
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA; (E.S.); (C.J.T.); (R.W.)
| | - Rob Wine
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA; (E.S.); (C.J.T.); (R.W.)
| | - Yitang Yan
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Evangeline Motley
- Department of Microbiology, Immunology, Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| |
Collapse
|
4
|
Song Y, Bai G, Li X, Zhou L, Si Y, Liu X, Deng Y, Shi Y. Bioinformatics analysis of human kallikrein 5 ( KLK5) expression in metaplastic triple-negative breast cancer. CANCER INNOVATION 2023; 2:376-390. [PMID: 38090381 PMCID: PMC10686124 DOI: 10.1002/cai2.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2024]
Abstract
Background Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype; most cases are triple-negative breast cancers (TNBCs) and are poorly responsive to conventional systemic therapy. Few potential diagnostic and prognostic markers for distinguishing between metaplastic TNBC and nonmetaplastic TNBC have been discovered. We performed bioinformatic analysis to explore the underlying mechanism by which metaplastic TNBC differs from nonmetaplastic TNBC and provides potential pathogenic genes of metaplastic TNBC. Methods Differentially expressed genes (DEGs) in metaplastic tumors and nonmetaplastic tumors from TNBC patients were screened using GSE165407. The GSE76275 data set and The Cancer Genome Atlas (TCGA) database were used to screen DEGs in TNBC and non-TNBC. Metascape and DAVID were used for the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) analysis of DEGs. Online databases, including UALCAN, GEPIA, HPA, Breast Cancer Gene-Expression Miner, and quantitative PCR and western blot, were used to examine KLK5 messenger RNA and protein expression in breast cancer. Analysis of KLK5‑associated genes was performed with TCGA data, and the LinkedOmics database was used to detect the genes co-expressed with KLK5. STRING (Search Tool for the Retrieval of Interacting Genes) and Cytoscape were used to screen for hub genes. Kaplan‑Meier plotter was used for survival analysis. Results KLK5 was identified among the DEGs in nonmetaplastic TNBC and metaplastic TNBC. The KLK5 gene was overexpressed in nonmetaplastic TNBC but downregulated in metaplastic TNBC. KEGG and GO analyses revealed that epithelial-to-mesenchymal transition was a pathogenic mechanism in metaplastic TNBC and an important pathway by which KLK5 and its associated genes DSG1 and DSG3 influence metaplastic TNBC progression. Prognosis analysis showed that only low expression of KLK5 in metaplastic TNBC had clinical significance. Conclusion Our research indicated that KLK5 may be a pivotal molecule with a key role in the mechanism of tumorigenesis in metaplastic TNBC.
Collapse
Affiliation(s)
- Yue Song
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Guiying Bai
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaoqing Li
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Liyan Zhou
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yiran Si
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaohui Liu
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yilin Deng
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yehui Shi
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
- Medical Oncology Department of Breast CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- National Clinical Research Center for CancerTianjinChina
| |
Collapse
|
5
|
Steinhäuser S, Silva P, Lenk L, Beder T, Hartmann A, Hänzelmann S, Fransecky L, Neumann M, Bastian L, Lipinski S, Richter K, Bultmann M, Hübner E, Xia S, Röllig C, Vogiatzi F, Schewe DM, Yumiceba V, Schultz K, Spielmann M, Baldus CD. Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia 2023; 37:134-142. [PMID: 36411356 PMCID: PMC9883162 DOI: 10.1038/s41375-022-01751-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by complex molecular alterations and driver mutations. Elderly patients show increased frequencies of IDH mutations with high chemoresistance and relapse rates despite recent therapeutic advances. Besides being associated with global promoter hypermethylation, IDH1 mutation facilitated changes in 3D DNA-conformation by CTCF-anchor methylation and upregulated oncogene expression in glioma, correlating with poor prognosis. Here, we investigated the role of IDH1 p.R132H mutation in altering 3D DNA-architecture and subsequent oncogene activation in AML. Using public RNA-Seq data, we identified upregulation of tyrosine kinase PDGFRA in IDH1-mutant patients, correlating with poor prognosis. DNA methylation analysis identified CpG hypermethylation within a CTCF-anchor upstream of PDGFRA in IDH1-mutant patients. Increased PDGFRA expression, PDGFRA-CTCF methylation and decreased CTCF binding were confirmed in AML CRISPR cells with heterozygous IDH1 p.R132H mutation and upon exogenous 2-HG treatment. IDH1-mutant cells showed higher sensitivity to tyrosine kinase inhibitor dasatinib, which was supported by reduced blast count in a patient with refractory IDH1-mutant AML after dasatinib treatment. Our data illustrate that IDH1 p.R132H mutation leads to CTCF hypermethylation, disrupting DNA-looping and insulation of PDGFRA, resulting in PDGFRA upregulation in IDH1-mutant AML. Treatment with dasatinib may offer a novel treatment strategy for IDH1-mutant AML.
Collapse
Affiliation(s)
- Sophie Steinhäuser
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Patricia Silva
- Department of Hematology and Oncology, Charité University Hospital, Berlin, Germany
| | - Lennart Lenk
- Department of Pediatrics I, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Beder
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina Hartmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sonja Hänzelmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Fransecky
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martin Neumann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lorenz Bastian
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Simone Lipinski
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kathrin Richter
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miriam Bultmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Emely Hübner
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shuli Xia
- Kennedy Krieger Institute, Baltimore, MD, USA
- School of Medicine, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Fotini Vogiatzi
- Department of Pediatrics I, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Veronica Yumiceba
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Kristin Schultz
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Malte Spielmann
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Claudia Dorothea Baldus
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany.
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
6
|
Identification of Ferroptosis-Associated Long Noncoding RNA Prognostic Model and Tumor Immune Microenvironment in Thyroid Cancer. J Immunol Res 2022; 2022:5893998. [PMID: 35915656 PMCID: PMC9338734 DOI: 10.1155/2022/5893998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background Thyroid cancer (TC) is a rapidly increasing incidence of endocrine malignancies, occupying 3% of new cancer incidence, of which 10% has a heterogeneous prognosis. Ferroptosis is a form of cell death distinct from apoptosis, which involves antitumor drug-related research. Long noncoding RNAs (lncRNAs) could affect cancer prognosis by regulating the ferroptosis; thus, ferroptosis-associated lncRNAs are emerging as prospective biomarkers for cancer therapy and prognosis. However, the prognostic factors of ferroptosis-associated lncRNAs in this solid tumor and their mechanisms remain unknown. Methods The TC lncRNA data were extracted from RNA sequencing files of The Cancer Genome Atlas (TCGA). Then, we performed a two-cluster analysis and grouped 502 patients with TC in a 7 : 3 ratio. Both the least absolute shrinkage and selection operator (LASSO) regression and Cox regression analysis were conducted to create and validate the ferroptosis-associated lncRNA prognostic model (Ferr-LPM). Based on the median Ferr-LPM-based risk score (LPM_score) of the training cohort, we categorized patients into high and low LPM_score groups, which were then subjected to prognostic correlation and difference analysis. We also created a nomogram and assessed its predictive ability. Furthermore, immune-related mechanisms were investigated by analyzing the tumor immune microenvironment (TIME) and applying algorithms such as CIBERSROT. Results We built a highly accurate nomogram to promote the clinical applicability of Ferr-LPM. The area under the receiver operating characteristic curve (AUC-ROC) reached above 0.9. Survival analysis suggested that when the Ferr-LPM score was higher, the overall survival (OS) of patients within this group was shorter. Meanwhile, we found a strong association between Ferr-LPM and TIME. Interestingly, the LPM_score was inversely proportional to the tumor purity but positively related to immune checkpoint blockade (ICB) response. Conclusion We constructed a novel ferroptosis-associated lncRNA nomogram that could highly predict the prognosis of TC patients. Ferroptosis-associated lncRNAs might possess potential functions in regulating TIME, and lncRNAs provide TC patients with new prognostic biomarkers and therapeutic targets.
Collapse
|
7
|
Characterization and clinical relevance of PDGFRA pathway copy number variation gains across human cancers. Mol Genet Genomics 2022; 297:561-571. [PMID: 35212838 PMCID: PMC8960564 DOI: 10.1007/s00438-022-01860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/22/2022] [Indexed: 12/04/2022]
Abstract
We investigated the copy number variation (CNV) of PDGFRA pathway across all common cancer types as well as its clinical relevance. This study included a total of 10,678 patients with pan-cancerous species involving 33 types of cancers and patient information was obtained from The Cancer Genome Atlas. According to the PDGFRA pathway CNV, all samples were divided into copy number gain (CN gain) group and No CN gain group. The analysis of loss of heterozygosity (LOH) fraction, CNV burden, tumor mutation burden (TMB), and the number of immunogenic mutations were performed, as well as the correlation analysis of PDGFRA pathway CN gain with tumor-related signaling pathways and tumor-infiltrating immune cell subpopulations. The results showed that CN gain of PDGFRA pathway in the cancer patients was associated with significantly shorter overall survival. The CN gain of PDGFRA pathway was identified as a prognostic risk factor for some tumors. CN gain was accompanied by an altered percentage of LOH, CNV burden, TMB, the number of immunogenic mutations were increased and tumor-infiltrating immune cell subpopulations were less. While certain tumor-related signaling pathways, such as hypoxia, cell cycle, DNA repair, and epithelial-mesenchymal transition were more enriched in the CN gain group, quiescence, and inflammation pathways were more enriched in the No CN gain group. In conclusion, PDGFRA pathway CNV gain may be a poor prognostic factor in cancer patients.
Collapse
|
8
|
Gao X, Le Y, Geng C, Jiang Z, Zhao G, Zhang P. DPP4 Is a Potential Prognostic Marker of Thyroid Carcinoma and a Target for Immunotherapy. Int J Endocrinol 2022; 2022:5181386. [PMID: 36467461 PMCID: PMC9715318 DOI: 10.1155/2022/5181386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/24/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
DPP4 (dipeptidyl peptidase 4) is expressed in many cancers, but the relationship between DPP4 and thyroid carcinoma (THCA) is incompletely understood. We aim to explore the expression of DPP4 in THCA and the correlation between DPP4 expression with the prognosis of THCA and antitumor immunity. We systematically analyzed data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases and explored DPP4 expression, its impact on prognosis, and its relationship with antitumor immunity in THCA. Next, we collected 18 pairs of fresh THCA and adjacent paracancerous tissues and performed RT-qPCR to validate the DPP4 mRNA level. Concurrently, immunohistochemistry (IHC) analysis was performed on 12 pairs of paraffin-embedded tissues of medullary thyroid carcinoma (MTC) and paracancerous tissues to validate the DPP4 protein level. Bioinformatics analysis showed that DPP4 mRNA expression in THCA was significantly higher than that in paracancerous tissues (p < 0.01). DPP4 was expressed at the highest levels in MTC than in other pathological types. The DPP4 expression level was different between groups with different clinical characteristics. The higher the DPP4 expressed in THCA, the lower the disease-free survival (DFS) was (HR = 1.8, p=0.048). DPP4 was significantly correlated with immune cell infiltration and immune response and was positively associated with 21 immune checkpoint genes (ICGs) in THCA (p < 0.05). The results of RT-qPCR showed that the relative mRNA expression of DPP4 was significantly upregulated in 18 THCA tissues compared to that in paracancerous tissues (p=0.011). IHC results showed that the DPP4 protein level was higher in 12 MTC tissues than in paracancerous tissues (p=0.011). In conclusion, DPP4 is a potential prognostic marker of THCA and may become an effective target for immunotherapy.
Collapse
Affiliation(s)
- Xiaoqian Gao
- Department of Ultrasound, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Yali Le
- Health Management Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Chenchen Geng
- Department of Ultrasound, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Zhen Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Guanghui Zhao
- Medical Laboratory Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Ping Zhang
- Department of Ultrasound, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
- Health Management Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|