1
|
Akhter T, Hedeland M, Bergquist J, Ubhayasekera K, Larsson A, Byström L, Kullinger M, Skalkidou A. Elevated Plasma Levels of Arginines During Labor Among Women with Spontaneous Preterm Birth: A Prospective Cohort Study. Am J Reprod Immunol 2024; 91:e13889. [PMID: 39031744 DOI: 10.1111/aji.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/22/2024] Open
Abstract
PROBLEM Preterm birth (PTB) is a leading cause of infant mortality and morbidity. The pathogenesis of PTB is complex and involves many factors, including socioeconomy, inflammation and infection. Asymmetric dimethylarginine, ADMA and symmetric dimethylarginine, SDMA are involved in labor as inhibitors of nitric oxide, a known relaxant of the uterine smooth muscles. Arginines are scarcely studied in relation to PTB and we aimed to investigate arginines (ADMA, SDMA and L-arginine) in women with spontaneous PTB and term birth. METHODS OF THE STUDY The study was based on data from the population-based, prospective cohort BASIC study conducted in Uppsala County, Sweden, between September 2009 and November 2018. Arginines were analyzed by Ultra-High Performance Liquid Chromatography using plasma samples taken at the onset of labor from women with spontaneous PTB (n = 34) and term birth (n = 45). We also analyzed the inflammation markers CRP, TNF-R1 and TNF-R2 and GDF-15. RESULTS Women with spontaneous PTB had higher plasma levels of ADMA (p < 0.001), and L-Arginine (p = 0.03). In addition, inflammation marker, TNF-R1 (p = 0.01) was higher in spontaneous PTB compared to term birth. Further, in spontaneous PTB, no significant correlations could be observed when comparing levels of arginines with inflammation markers, except ADMA versus CRP. CONCLUSIONS These findings provide novel evidence for the potential involvement of arginines in the pathogenesis of spontaneous PTB and it seems that arginine levels at labor vary independently of several inflammatory markers. Further research is warranted to investigate the potential of arginines as therapeutic targets in the prevention and management of spontaneous PTB.
Collapse
Affiliation(s)
- Tansim Akhter
- Department of Women's and Children's Health, Section of Obstetrics and Gynecology, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Kumari Ubhayasekera
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ludvig Byström
- Department of Women's and Children's Health, Section of Obstetrics and Gynecology, Uppsala University, Uppsala, Sweden
| | - Merit Kullinger
- Department of Women's and Children's Health, Section of Obstetrics and Gynecology, Uppsala University, Uppsala, Sweden
- Center for Clinical Research, Västmanland Hospital, Västerås, Sweden
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Section of Obstetrics and Gynecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Tain YL, Hsu CN. Melatonin Use during Pregnancy and Lactation Complicated by Oxidative Stress: Focus on Offspring's Cardiovascular-Kidney-Metabolic Health in Animal Models. Antioxidants (Basel) 2024; 13:226. [PMID: 38397824 PMCID: PMC10886428 DOI: 10.3390/antiox13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome has emerged as a major global public health concern, posing a substantial threat to human health. Early-life exposure to oxidative stress may heighten vulnerability to the developmental programming of adult diseases, encompassing various aspects of CKM syndrome. Conversely, the initiation of adverse programming processes can potentially be thwarted through early-life antioxidant interventions. Melatonin, originally recognized for its antioxidant properties, is an endogenous hormone with diverse biological functions. While melatonin has demonstrated benefits in addressing disorders linked to oxidative stress, there has been comparatively less focus on investigating its reprogramming effects on CKM syndrome. This review consolidates the current knowledge on the role of oxidative stress during pregnancy and lactation in inducing CKM traits in offspring, emphasizing the underlying mechanisms. The multifaceted role of melatonin in regulating oxidative stress, mediating fetal programming, and preventing adverse outcomes in offspring positions it as a promising reprogramming strategy. Currently, there is a lack of sufficient information in humans, and the available evidence primarily originates from animal studies. This opens up new avenues for novel preventive intervention in CKM syndrome.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Yen IW, Lin SY, Lin MW, Lee CN, Kuo CH, Chen SC, Tai YY, Kuo CH, Kuo HC, Lin HH, Juan HC, Lin CH, Fan KC, Wang CY, Li HY. The association between plasma angiopoietin-like protein 4, glucose and lipid metabolism during pregnancy, placental function, and risk of delivering large-for-gestational-age neonates. Clin Chim Acta 2024; 554:117775. [PMID: 38220135 DOI: 10.1016/j.cca.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Large-for-gestational-age (LGA) neonates have increased risk of adverse pregnancy outcomes and adult metabolic diseases. We aimed to investigate the relationship between plasma angiopoietin-like protein 4 (ANGPTL4), a protein involved in lipid and glucose metabolism during pregnancy, placental function, growth factors, and the risk of LGA. METHODS We conducted a prospective cohort study and recruited women with singleton pregnancies at the National Taiwan University Hospital between 2013 and 2018. First trimester maternal plasma ANGPTL4 concentrations were measured. RESULTS Among 353 pregnant women recruited, the LGA group had higher first trimester plasma ANGPTL4 concentrations than the appropriate-for-gestational-age group. Plasma ANGPTL4 was associated with hemoglobin A1c, post-load plasma glucose, plasma triglyceride, plasma free fatty acid concentrations, plasma growth hormone variant (GH-V), and birth weight, but was not associated with cord blood growth factors. After adjusting for age, body mass index, hemoglobin A1c, and plasma triglyceride concentrations, plasma ANGPTL4 concentrations were significantly associated with LGA risk, and its predictive performance, as measured by the area under the receiver operating characteristic curve, outperformed traditional risk factors for LGA. CONCLUSIONS Plasma ANGPTL4 is associated with glucose and lipid metabolism during pregnancy, plasma GH-V, and birth weight, and is an early biomarker for predicting the risk of LGA.
Collapse
Affiliation(s)
- I-Weng Yen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu County, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | | | - Yi-Yun Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Heng-Huei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yuan Wang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan
| | - Hung-Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|