1
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS, Bhatti JS. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci 2023; 332:122110. [PMID: 37734434 DOI: 10.1016/j.lfs.2023.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future.
Collapse
Affiliation(s)
- Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
2
|
Long non-coding ROR promotes the progression of papillary thyroid carcinoma through regulation of the TESC/ALDH1A1/TUBB3/PTEN axis. Cell Death Dis 2022; 13:157. [PMID: 35173149 PMCID: PMC8850450 DOI: 10.1038/s41419-021-04210-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Papillary thyroidal carcinoma (PTC) is a common endocrine cancer that plagues people across the world. The potential roles of long non-coding RNAs (lncRNAs) in PTC have gained increasing attention. In this study, we aimed to explore whether lncRNA ROR affects the progression of PTC, with the involvement of tescalcin (TESC)/aldehyde dehydrogenase isoform 1A1 (ALDH1A1)/βIII-tubulin (TUBB3)/tensin homolog (PTEN) axis. PTC tumor and adjacent tissues were obtained, followed by measurement of lncRNA ROR and TESC, ALDH1A1, and TUBB3 expression. Interactions among lncRNA ROR, TESC, ALDH1A1, TUBB3, and PTEN were evaluated by ChIP assay, RT-qPCR, or western blot analysis. After ectopic expression and depletion experiments in PTC cells, MTT and colony formation assay, Transwell assay, and flow cytometry were performed to detect cell viability and colony formation, cell migration and invasion, and apoptosis, respectively. In addition, xenograft in nude mice was performed to test the effects of lncRNA ROR and PTEN on tumor growth in PTC in vivo. LncRNA ROR, TESC, ALDH1A1, and TUBB3 were highly expressed in PTC tissues and cells. Overexpression of lncRNA ROR activated TESC by inhibiting the G9a recruitment on the promoter of TESC and histone H3-lysine 9me methylation. Moreover, TESC upregulated ALDH1A1 expression to increase TUBB3 expression, which then reduced PTEN expression. Overexpression of lncRNA ROR, TESC, ALDH1A1 or TUBB3 and silencing of PTEN promoted PTC cell viability, colony formation, migration, and invasion while suppressing apoptosis. Moreover, overexpression of lncRNA ROR increased tumor growth by inhibiting PTEN in vivo. Taken together, the current study demonstrated that lncRNA ROR mediated TESC/ALDH1A1/TUBB3/PTEN axis, thereby facilitating the development of PTC.
Collapse
|
3
|
Liang Y, Zhang Q, Xin T, Zhang DL. A four-enhancer RNA-based prognostic signature for thyroid cancer. Exp Cell Res 2022; 412:113023. [PMID: 35033555 DOI: 10.1016/j.yexcr.2022.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
Enhancer RNAs (eRNAs) can serve as an independent prognostic factor for poor outcomes of cancer patients. The purpose of this study was to identify a vital eRNA signature that has prognostic value for thyroid cancer based on GTEx and TCGA screening. We downloaded gene expression data and clinical data of thyroid cancer included in the GTEx and TCGA databases and conducted data consolidation. eRNA expression data were extracted, and subjected to differential analysis and cluster analysis. Univariate Cox regression was used to screen the prognostic factors of thyroid cancer. Multivariate Cox regression was applied for prognostic risk assessment model construction, with the efficacy evaluated by receiver operating characteristic (ROC) curve. Downstream regulatory genes of candidate eRNAs were determined using correlation analysis. There were 79 differentially expressed eRNAs associated with thyroid cancer. These differentially expressed eRNAs could assign all thyroid cancer samples into three molecular subtypes, which showed a strong link to lymph node metastasis (N stage) of thyroid cancer patients. Additionally, four key eRNAs AC141930.1, NBDY, MEG3 and AP002358.1 closely related to the prognosis of thyroid cancer patients. The risk model based on the four eRNAs predicted the prognosis of thyroid cancer patients effectively. TPO, MGST2, THBS2 and SLC25A47P1 were potential downstream regulators of the four eRNAs involved in the development of thyroid cancer. Collectively, our data suggest that a four-eRNA signature consisting of AC141930.1, NBDY, MEG3 and AP002358.1 can accurately predict the prognosis of thyroid cancer patients.
Collapse
Affiliation(s)
- Yuan Liang
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China
| | - Qi Zhang
- Criminal Investigation Police University of China, Shenyang, 110854, China
| | - Tian Xin
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China
| | - Da-Lin Zhang
- Department of Thyroid Surgery, The 1st Affiliated Hospital, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
4
|
Emerging Biomarkers in Thyroid Practice and Research. Cancers (Basel) 2021; 14:cancers14010204. [PMID: 35008368 PMCID: PMC8744846 DOI: 10.3390/cancers14010204] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumor biomarkers are molecules at genetic or protein level, or certain evaluable characteristics. These help in perfecting patient management. Over the past decade, advanced and more sensitive techniques have led to the identification of many new biomarkers in the field of oncology. A knowledge of the recent developments is essential for their application to clinical practice, and furthering research. This review provides a comprehensive account of such various markers identified in thyroid carcinoma, the most common endocrine malignancy. While some of these have been brought into use in routine patient management, others are novel and need more research before clinical application. Abstract Thyroid cancer is the most common endocrine malignancy. Recent developments in molecular biological techniques have led to a better understanding of the pathogenesis and clinical behavior of thyroid neoplasms. This has culminated in the updating of thyroid tumor classification, including the re-categorization of existing and introduction of new entities. In this review, we discuss various molecular biomarkers possessing diagnostic, prognostic, predictive and therapeutic roles in thyroid cancer. A comprehensive account of epigenetic dysregulation, including DNA methylation, the function of various microRNAs and long non-coding RNAs, germline mutations determining familial occurrence of medullary and non-medullary thyroid carcinoma, and single nucleotide polymorphisms predisposed to thyroid tumorigenesis has been provided. In addition to novel immunohistochemical markers, including those for neuroendocrine differentiation, and next-generation immunohistochemistry (BRAF V600E, RAS, TRK, and ALK), the relevance of well-established markers, such as Ki-67, in current clinical practice has also been discussed. A tumor microenvironment (PD-L1, CD markers) and its influence in predicting responses to immunotherapy in thyroid cancer and the expanding arena of techniques, including liquid biopsy based on circulating nucleic acids and plasma-derived exosomes as a non-invasive technique for patient management, are also summarized.
Collapse
|
5
|
Li H, Hardin H, Zaeem M, Huang W, Hu R, Lloyd RV. LncRNA expression and SDHB mutations in pheochromocytomas and paragangliomas. Ann Diagn Pathol 2021; 55:151801. [PMID: 34461576 DOI: 10.1016/j.anndiagpath.2021.151801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
Although pheochromocytomas and paragangliomas (PPGLs) are usual low-grade neoplasms, the metastatic forms of these lesions are associated with high morbidity and mortality. Recent studies have discovered multiple aberrantly expressed long non-coding RNAs (lncRNAs) in cancers that may have regulatory roles in tumor pathogenesis and metastasis; however, the roles of some lncRNAs in PPGLs are still unknown. The expression levels of lncRNAs including metastasis-associated lung adenocarcinoma transcript (MALAT1), prostate cancer antigen 3 (PCA3), and HOX transcript antisense intergenic RNA (HOTAIR) in PPGLs were analyzed by in situ hybridization, using two tissue microarrays (TMAs). The pheochromocytoma (PCC) TMA consisted of normal adrenal medulla (N = 25), non-metastatic PCCs (N = 76) and metastatic PCCs (N = 5) while the paraganglioma (PGL) TMA had 73 non-metastatic PGLs and 5 metastatic PGLs. Immunohistochemical staining was performed on all samples with an anti-SDHB antibody. The correlations between lncRNA expression, loss of SDHB expression and clinical characteristics including tumor progression and disease prognosis were investigated. The expression levels of MALAT1 and PCA3 were significantly elevated (2.5-3.9 folds) in both non-metastatic and metastatic PCCs compared to normal adrenal medulla, although there were no significant differences between the non-metastatic and metastatic neoplasms. In contrast to non-metastatic PGLs, metastatic PGLs had significantly upregulated expression of MALAT1, PCA3, and HOTAIR. SDHB loss was more frequently observed in PGLs (25 of 78), especially in metastatic PGLs (5 of 5), compared to PCCs (2 of 81) and in 0 of 5 metastatic PCCs. Patients with SDHB loss, in contrast to SDHB retained, were younger at diagnosis, had higher rates of tumor recurrence, metastatic disease, and mortality. In addition, PGLs with SDHB loss had significantly increased expression of PCA3 compared to tumors with intact SDHB expression. Our findings suggest that specific lncRNAs may be involved in the SDHx signaling pathways in the tumorigenesis and in the development of PPGL.
Collapse
Affiliation(s)
- Huihua Li
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA.
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Misbah Zaeem
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA.
| |
Collapse
|
6
|
Epigenetic regulation of papillary thyroid carcinoma by long non-coding RNAs. Semin Cancer Biol 2021; 83:253-260. [PMID: 33785446 DOI: 10.1016/j.semcancer.2021.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Thyroid cancer is the most common primary endocrine malignancy with papillary thyroid carcinoma (PTC) its most common subtype. The jump in diagnoses over last many years has prompted re-assessment of molecularly targeted therapies and the discovery of novel targets. Long non-coding RNAs (lncRNAs) are increasingly being assessed for their expression in various PTC models. Interestingly, in addition to cell line models, a large proportion of the reported studies have evaluated lncRNA levels in PTC patient samples providing an immediate clinical relevance of their findings. While most lncRNAs either promote or suppress PTC pathogenesis, data on individual lncRNAs is not very clear. As expected, lncRNAs function in PTC through sponging of microRNAs as well as modulation of several signaling pathways. The process of epithelial-mesenchymal transition and the PI3K/Akt and wnt signaling pathways have emerged as the primary targets of lncRNAs in PTC. This comprehensive review discusses all the information that is available on lncRNAs in PTC, ranging from in vitro and in vivo findings to the possible role of lncRNAs as diagnostic and/or prognostic biomarkers.
Collapse
|
7
|
Zheng Q, Zhang Q, Yu X, He Y, Guo W. FENDRR: A pivotal, cancer-related, long non-coding RNA. Biomed Pharmacother 2021; 137:111390. [PMID: 33761608 DOI: 10.1016/j.biopha.2021.111390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have more than 200 nucleotides and do not encode proteins. Based on numerous studies, lncRNAs have emerged as new and crucial regulators of biological function and have been implicated in the pathogenesis of a variety of diseases, especially cancers. Specific lncRNAs have been identified as novel molecular biomarkers for cancer diagnosis, prognosis, and treatment efficacy. Fetal-lethal non-coding developmental regulatory RNA (FENDRR, also known as FOXF1-AS1) is a novel lncRNA that is located at chr3q13.31 and has four exons and 3099 nucleotides, and its genomic site is located at chr3q13.31. FENDRR is abnormally expressed in a variety of cancers and is significantly associated with different clinical characteristics. In addition, FENDRR has shown potential as a biomarker for cancer diagnosis, prognosis, and treatment. In this review, we summarize the current understanding of FENDRR and its mechanistic role in cancer progression. We also discuss recent insights into the clinical significance of FENDRR for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
8
|
Gao J, Qin Y, Luo K, Wang X, Yu C, Zhang A, Pan X. Downregulation of miR-4755-5p promotes fluoride-induced osteoblast activation via tageting Cyclin D1. J Trace Elem Med Biol 2020; 62:126626. [PMID: 32731110 DOI: 10.1016/j.jtemb.2020.126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endemic fluorosis remains a major public health issue in many countries. Fluoride can cause abnormalities in osteoblast proliferation and activation, leading to skeletal fluorosis. However, its detailed molecular mechanism remains unclear. Based on a previous study, the aim of this study is to explore the role of miRNA in osteoblast activation of skeletal fluorosis via targeting of Cyclin D1. METHODS A population study of coal-burning fluorosis and in vitro experiments were performed in this study. Urine fluoride (UF) concentrations of the participants were determined using a national standardized ion selective electrode approach. Based on our previous miRNA sequence results, bioinformatic analysis was used to predict miR-4755-5p targeting Cyclin D1. Quantitative real-time PCR (qRT-PCR) was used to verify the expression of miR-4755-5p. The expression of Cyclin D1 mRNA was detected by qRT-PCR. The expression of Cyclin D1 protein was detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. Cell viability was detected by CCK-8 method. The distribution of the cell cycle was analyzed by flow cytometry. The alkaline phosphatase (ALP) activity and bone Gla protein (BGP) content were detected by micronutrient enzymes standard method and ELISA. The target binding between miR-4755-5p and Cyclin D1 was verified using dual-luciferase reporter assay. RESULTS In the fluoride-exposed population, the results showed that with the increase in UF content, the expression of miR-4755-5p decreased gradually, while the mRNA transcription and protein expression of Cyclin D1 increased gradually. The relative miR-4755-5p expression showed a negative correlation with Cyclin D1 expression. Subsequently, in human osteoblasts treated with sodium fluoride (NaF), the results also showed that NaF caused low expression of miR-4755-5p and increased expression of Cyclin D1. Further, the results of miR-4755-5p mimic transfection confirmed that under the action of NaF, miR-4755-5p overexpression reduced Cyclin D1 protein expression within osteoblasts and further inhibited cell proliferation and activation. Simultaneously, luciferase reporter assays verified that Cyclin D1 was the miR-4755-5p direct target. CONCLUSION The results demonstrate that fluoride exposure induced the downregulation of miR-4755-5p and downregulated miR-4755-5p promoted fluoride-induced osteoblast activation by increasing Cyclin D1 protein expression. This study sheds new light on biomarkers and potential treatment for endemic fluorosis.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Qin
- Guizhou Orthopedics Hospital, Guiyang, 550007, China
| | - Keke Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xilan Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chun Yu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xueli Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Shiyanbola O, Hardin H, Hu R, Eickhoff JC, Lloyd RV. Long Noncoding RNA Expression in Adrenal Cortical Neoplasms. Endocr Pathol 2020; 31:385-391. [PMID: 32725507 DOI: 10.1007/s12022-020-09642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) consist of nucleic acid molecules that are greater than 200 nucleotides in length and they do not code for specific proteins. A growing body of evidence indicates that these lncRNAs have important roles in tumorigenesis. Separating adrenal cortical adenomas from carcinomas is often a difficult problem for the surgical pathologist. This is especially true when only small needle biopsies are available for examination. We used in situ hybridization (ISH) analysis to study normal adrenal cortical tissues and adrenal cortical tumors to determine the role of specific lncRNAs in tumor development and classification. The lncRNAS studied included metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), psoriasis susceptibility-related RNA gene induced by stress (PRINS), and HOX antisense intergenic RNA myeloid 1 (HAM1). We constructed a tissue microarray (TMA) for the studies and also analyzed a subset of cases by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Two 1-mm duplicate cores of normal adrenal cortex (NAC) (n = 23), adrenal cortical adenomas (ACAs) (n = 95), and adrenal cortical carcinomas (ACCs), (n = 20) were used on the TMA. The results of ISH were analyzed by image analysis. ISH showed predominantly nuclear expression of lncRNAs in adrenal cortical tissues. MALAT1 showed more expression in ACCs than in NAC and ACA (p < 0.05). PRINS had higher expression in NACs and ACAs than in ACCs. The lncRNAs MALAT1, PRINS, and HAM1 are all expressed in normal and neoplastic adrenal cortical tissues. MALAT1 had the highest expression in ACC compared to ACAs and may have a role in ACC development.
Collapse
Affiliation(s)
- Oyewale Shiyanbola
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
10
|
Xin S, Ye X. Knockdown of long non‑coding RNA CCAT2 suppresses the progression of thyroid cancer by inhibiting the Wnt/β‑catenin pathway. Int J Mol Med 2020; 46:2047-2056. [PMID: 33125134 PMCID: PMC7595661 DOI: 10.3892/ijmm.2020.4761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer (TC) is one of the most common malignancies with a high mortality rate. Long non-coding RNA CCAT2 (CCAT2) participates in the occurrence and development of certain human cancers; however, whether it is involved in TC remains unclear. Thus, the present study investigated the role of CCAT2 in TC and the underlying mechanism. CCAT2 expression in both TC tissues and cell lines was examined by reverse transcription-quantitative PCR. CCAT2 expression was silenced in TC cell lines by a specific small interfering (si)RNA against CCAT2 (si-CCAT2). The effects of CCAT2 silencing on TC cell proliferation were detected by CCK-8 and colony formation assays. Cell cycle and apoptosis of the treated TC cells were assessed by flow cytometry. Wound healing and Transwell assays were performed to detect the effects of si-CCAT2 on the migration and invasion of TC cells. Apoptosis-related proteins and Wnt/β-catenin cascade-associated agents were examined by western blotting. The interaction between CCAT2 and the Wnt/β-catenin pathway in the transfected cells was detected by performing a dual-luciferase reporter assay. CCAT2 expression was increased in TC tissue samples and cell lines compared with the controls. Tissue CCAT2 level was associated with T stage and tumor-node-metastasis stage of TC. Silencing CCAT2 inhibited TC cell proliferation, migration and invasion, and promoted TC cell cycle arrest and apoptosis. Furthermore, CCAT2 knockdown suppressed the activity of the Wnt/β-catenin cascade in TC cells treated with lithium chloride. In summary, the present study demonstrated that CCAT2 knockdown suppresses TC progression via inactivating the Wnt/β-catenin cascade, indicating that suppressing CCAT2 and the Wnt/β-catenin signaling pathway may be a promising therapeutic strategy for treating TC.
Collapse
Affiliation(s)
- Suping Xin
- Department of Endocrinology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xinhua Ye
- Department of Endocrinology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
11
|
Nylén C, Mechera R, Maréchal-Ross I, Tsang V, Chou A, Gill AJ, Clifton-Bligh RJ, Robinson BG, Sywak MS, Sidhu SB, Glover AR. Molecular Markers Guiding Thyroid Cancer Management. Cancers (Basel) 2020; 12:cancers12082164. [PMID: 32759760 PMCID: PMC7466065 DOI: 10.3390/cancers12082164] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of thyroid cancer is rapidly increasing, mostly due to the overdiagnosis and overtreatment of differentiated thyroid cancer (TC). The increasing use of potent preclinical models, high throughput molecular technologies, and gene expression microarrays have provided a deeper understanding of molecular characteristics in cancer. Hence, molecular markers have become a potent tool also in TC management to distinguish benign from malignant lesions, predict aggressive biology, prognosis, recurrence, as well as for identification of novel therapeutic targets. In differentiated TC, molecular markers are mainly used as an adjunct to guide management of indeterminate nodules on fine needle aspiration biopsies. In contrast, in advanced thyroid cancer, molecular markers enable targeted treatments of affected signalling pathways. Identification of the driver mutation of targetable kinases in advanced TC can select treatment with mutation targeted tyrosine kinase inhibitors (TKI) to slow growth and reverse adverse effects of the mutations, when traditional treatments fail. This review will outline the molecular landscape and discuss the impact of molecular markers on diagnosis, surveillance and treatment of differentiated, poorly differentiated and anaplastic follicular TC.
Collapse
Affiliation(s)
- Carolina Nylén
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna L1:00, 171 76 Stockholm, Sweden
| | - Robert Mechera
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Department of Visceral Surgery, Clarunis University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Isabella Maréchal-Ross
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
| | - Venessa Tsang
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- Department of Endocrinology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Angela Chou
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Anthony J. Gill
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Roderick J. Clifton-Bligh
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- Department of Endocrinology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
- Cancer Genetics Unit, Kolling Institute, Sydney, NSW 2010, Australia
| | - Bruce G. Robinson
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- Department of Endocrinology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
- Cancer Genetics Unit, Kolling Institute, Sydney, NSW 2010, Australia
| | - Mark S. Sywak
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
| | - Stan B. Sidhu
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- Cancer Genetics Unit, Kolling Institute, Sydney, NSW 2010, Australia
| | - Anthony R. Glover
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Faculty of Medicine, St. Vincent’s Clinical School, University of New South Wales Sydney, Sydney, NSW 2010, Australia
- Correspondence: ; Tel.: +61-2-9463-1477
| |
Collapse
|
12
|
Samimi H, Sajjadi-Jazi SM, Seifirad S, Atlasi R, Mahmoodzadeh H, Faghihi MA, Haghpanah V. Molecular mechanisms of long non-coding RNAs in anaplastic thyroid cancer: a systematic review. Cancer Cell Int 2020; 20:352. [PMID: 32760219 PMCID: PMC7392660 DOI: 10.1186/s12935-020-01439-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND anaplastic thyroid cancer (ATC) is one of the most lethal and aggressive cancers. Evidence has shown that the tumorigenesis of ATC is a multistep process involving the accumulation of genetic and epigenetic changes. Several studies have suggested that long non-coding RNAs (lncRNAs) may play an important role in the development and progression of ATC. In this article, we have collected the published reports about the role of lncRNAs in ATC. METHODS "Scopus", "Web of Science", "PubMed", "Embase", etc. were systematically searched for articles published since 1990 to 2020 in English language, using the predefined keywords. RESULTS 961 papers were reviewed and finally 33 papers which fulfilled the inclusion and exclusion criteria were selected. Based on this systematic review, among a lot of evidences on examining the function of lncRNAs in thyroid cancer, there are only a small number of studies about the role of lncRNAs and their molecular mechanisms in the pathogenesis of ATC. CONCLUSIONS lncRNAs play a crucial role in regulation of different processes involved in the development and progression of ATC. Currently, just a few lncRNAs have been identified in ATC that may serve as prognosis markers such as GAS5, MIR22HG, and CASC2. Also, because of the dysregulation of Klhl14-AS, HOTAIRM1, and PCA3 during ATC development and progression, they may act as therapeutic targets. However, for most lncRNAs, only a single experiment has evaluated the expression profile in ATC tissues/cells. Therefore, further functional studies and expression profiling is needed to resolve this limitation and identify novel and valid biomarkers.
Collapse
Affiliation(s)
- Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Seifirad
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, PERFUSE Study Group, Boston, MA USA
| | - Rasha Atlasi
- Evidence Based Practice Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Iranian National Cancer Institute, Imam Khomeini Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Dr. Faghihi’s Medical Genetic Center, Shiraz, Iran
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center (EMRC), Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114 Iran
| |
Collapse
|
13
|
Sheikholeslami S, Shabani N, Shivaee S, Tavangar SM, Yeganeh M, Hedayati M, Lotfi J, Gholami H. Overexpression of mir-129-1, miR-146b, mir-183, and mir-197 in follicular thyroid carcinoma and adenoma tissues. Mol Cell Probes 2020; 51:101536. [PMID: 32081771 DOI: 10.1016/j.mcp.2020.101536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/05/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
Follicular thyroid carcinoma (FTC) is responsible for approximately 10% of thyroid malignancies. Since this type of malignancy indicates no capsular and vascular invasions, adenoma and follicular carcinoma of thyroid are not distinguishable. It has been proved that microRNAs, which regulate approximately 30% of coding proteins, have an association with follicular thyroid adenoma (FTA) and carcinoma of the thyroid. Therefore, the aim of this study was to assess the expression of some miRNAs for detecting the most appropriate miRNA as potential biomarker in the diagnosis of FTA and FTC patients. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was applied to determine the expression levels of miR-129-1, miR-146b,-183 and miR-197 in 48 cases (16 FTC, 16 FTA and 16 hyperplasia/multinodular goiter (MNG) cases). The significance of miRNA differential expression levels among groups were assessed using Multivariate test by Statistical Package for Science Software (SPSS v.20) and Graph Pad Prism v.8. Results indicated that all of the miRNAs had significant overexpression in FTC and FTA versus MNG cases, and also increased expression level in FTC in comparison with FTA, however it was not significant. The results of ROC curve analysis determined the significant overexpression and prognostic value of miR-129-1 in FTA cases and miR-146b in both FTA and FTC cases compared to MNG group. Although all of the earlier mentioned microRNAs were overexpressed in FTC and FTA cases, the ROC curve results demonstrated that miR-129-1 had agreeable AUC for FTA cases. Therefore, it seems that it's cut-off point could be helpful in distinguishing between FTA and multinodular goiter cases. On the other hand, although miR-146b has excellent diagnostic value in both FTA and FTC groups, it seems that this microRNA is unable to act as a specific biomarker to discriminate between FTA and FTC cases. This data need to be confirmed in a large cohort study and other biological samples such as plasma.
Collapse
Affiliation(s)
- Sara Sheikholeslami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Shabani
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Setareh Shivaee
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - MarjanZarif Yeganeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran.
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, TarbiatModares University, Tehran, Iran
| | - Hanieh Gholami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Yang G, He F, Duan H, Shen J, Dong Q. lncRNA FLVCR-AS1 promotes osteosarcoma growth by targeting miR381-3p/CCND1. Onco Targets Ther 2020; 13:163-172. [PMID: 32021264 PMCID: PMC6966140 DOI: 10.2147/ott.s214813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose This article reports on FLVCR-AS1 effects on osteosarcoma (OS) growth. Methods Tumor tissue and adjacent normal tissue of 48 OS patients were collected. HOS and 143B cells were transfected. Gene expression was examined with qRT-PCR and Western blot. CCK8 assays and cell cloning was performed to measure cell proliferation. Cell cycle and apoptosis were assessed. Luciferase-reporter gene assays and RNA pull-down tests were used to detect targeting relationships between genes. Results Prominently higher FLVCR-AS1 expression was found in OS tissue and cells, and was associated with poor prognosis (P<0.05, P<0.01, or P<0.001). Compared with the siCtrl group, 143B and HOS cells of the siFLVCR-AS1 group had significantly lower OD450 values and clone numbers and obviously higher percentages of cells in the G1 phase and apoptosis (P<0.01 or P<0.001). miR381-3p expression was directly inhibited by FLVCR-AS1, and CCND1 expression was directly suppressed by miR381-3p. Compared with the FLVCR-AS1 group, 143B cells of the FLVCR-AS1+ miR381-3p mimic group and FLVCR-AS1+ siCCND1 group showed remarkably lower OD450 values and clone numbers obviously higher apoptosis and percentage of cells in the G1 phase (P<0.05, P<0.01, or P<0.001). Conclusion FLVCR-AS1 promoted OS growth by upregulating CCND1 expression via downregulation of miR381-3p.
Collapse
Affiliation(s)
- Guang Yang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming 650200, China
| | - Fei He
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming 650200, China
| | - Hao Duan
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming 650200, China
| | - Jianlin Shen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian 351100, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
15
|
He J, Tian Z, Yao X, Yao B, Liu Y, Yang J. A novel RNA sequencing-based risk score model to predict papillary thyroid carcinoma recurrence. Clin Exp Metastasis 2019; 37:257-267. [DOI: 10.1007/s10585-019-10011-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
|
16
|
Wang Y, Hardin H, Chu YH, Esbona K, Zhang R, Lloyd RV. Long Non-coding RNA Expression in Anaplastic Thyroid Carcinomas. Endocr Pathol 2019; 30:262-269. [PMID: 31468286 DOI: 10.1007/s12022-019-09589-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) participate in transcription and in epigenetic or post-transcriptional regulation of gene expression. They also have roles in epithelial to mesenchymal transition and in carcinogenesis. Because lncRNAs may also have a role in thyroid cancer progression, we examined a group of thyroid tumors which included papillary thyroid carcinomas and anaplastic thyroid carcinomas to determine the specific lncRNAs that were upregulated during thyroid tumor progression. An RT2 Profiler PCR Array Human Cancer Pathway Finder consisting of 84 lncRNAs (Qiagen) and fresh tissues of normal thyroid, PTCs, and ATCs with gene expression profiling was used to determine genes upregulated and downregulated in ATCs. Two of the most highly upregulated genes, prostate cancer antigen 3 (PCA3) and HOX antisense intergenic RNA myeloid 1 (HOTAIRM1 or HAM-1), were selected for further studies using a thyroid tissue microarray(TMA) with formalin-fixed paraffin-embedded tissues of normal thyroid (NT, n = 10), nodular goiters (NG, n = 10), follicular adenoma (FA, n = 32), follicular carcinoma (FCA, n = 28), papillary thyroid carcinoma (PTC, n = 28), follicular variant of papillary thyroid carcinoma (FVPTC, n = 28), and anaplastic thyroid carcinoma (ATC, n = 10). TMA sections were analyzed by in situ hybridization (ISH) using RNAscope technology. The results of ISH analyses were imaged with Vectra imaging technology and quantified with Nuance® and inForm® software. The TMA analysis was validated by qRT-PCR using FFPE tissues for RNA preparation. Cultured thyroid carcinoma cell lines (n = 7) were also used to analyze for lncRNAs by qRT-PCR. The results showed 11 lncRNAs upregulated and 7 downregulated lncRNAs more than twofold in the ATCS compared with PTCs. Two of the upregulated lncRNAs, PCA3 and HAM-1, were analyzed on a thyroid carcinoma TMA. There was increased expression of both lncRNAs in ATCs and PTCs compared with NT after TMA analysis. qRT-PCR analyses showed increased expression of both lncRNAs in ATCs compared with NT and PTCs. Analyses of these lncRNAs from cultured thyroid carcinoma cell lines by qRT-PCR showed the highest levels of lncRNA expression in ATCs. TGF-β treatment of cultured PTC and ATC cells for 21 days led to increased expression of PCA3 lncRNA in both cell lines by day 14. These results show that the lncRNAs PCA3 and HAM-1 are upregulated during thyroid tumor development and progression and may function as oncogenes during tumor progression.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Karla Esbona
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|
17
|
Luzón-Toro B, Fernández RM, Villalba-Benito L, Torroglosa A, Antiñolo G, Borrego S. Influencers on Thyroid Cancer Onset: Molecular Genetic Basis. Genes (Basel) 2019; 10:E913. [PMID: 31717449 PMCID: PMC6895808 DOI: 10.3390/genes10110913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Thyroid cancer, a cancerous tumor or growth located within the thyroid gland, is the most common endocrine cancer. It is one of the few cancers whereby incidence rates have increased in recent years. It occurs in all age groups, from children through to seniors. Most studies are focused on dissecting its genetic basis, since our current knowledge of the genetic background of the different forms of thyroid cancer is far from complete, which poses a challenge for diagnosis and prognosis of the disease. In this review, we describe prevailing advances and update our understanding of the molecular genetics of thyroid cancer, focusing on the main genes related with the pathology, including the different noncoding RNAs associated with the disease.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Our understanding of the molecular pathology events involved in thyroid cancer initiation and progression and its subtypes has markedly improved as a result of multiomic studies. Recently, long noncoding RNA (lncRNA) have been shown to have a role in cancer initiation and progression and have also been studied in thyroid cancer. RECENT FINDINGS lncRNA are dysregulated in thyroid cancer. lncRNA have tumor suppressive and oncogenic function in thyroid cancer cells and play a role in some of the established genetic drivers of thyroid cancer initiation and progression. Lastly, some lncRNA are associated with clinicopathologic features of thyroid cancer and circulating blood lncRNA could potentially detect the presence of thyroid cancer. SUMMARY We highlight the possible clinical utility of analyzing lncRNAs as biomarkers for thyroid cancer diagnosis and prognosis and their association with common genetic changes associated with thyroid cancer.
Collapse
Affiliation(s)
- Mahsa Sedaghati
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | | |
Collapse
|
19
|
Chen L, Zhu J, Zhang LJ. Long non-coding RNA small nucleolar RNA host gene 7 is upregulated and promotes cell proliferation in thyroid cancer. Oncol Lett 2019; 18:4726-4734. [PMID: 31611982 PMCID: PMC6781492 DOI: 10.3892/ol.2019.10782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid cancer (THCA) is one of the most common types of endocrine cancer worldwide. However, the mechanisms underlying THCA progression have not been fully elucidated. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are dysregulated in human diseases, and are involved in regulating various biological processes. Furthermore, several reports have indicated that lncRNAs serve important roles in THCA. In the present study, a dataset from The Cancer Genome Atlas was used to analyze the expression levels and the clinical information of small nucleolar RNA host gene 7 (SNHG7) in THCA. Starbase was used to construct the competing endogenous RNA network. The Molecule Annotation System was used to analyze the data from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Furthermore, cell proliferation and cell cycle assays were used to detect the functions of SNHG7 in THCA. The present study revealed for the first time, to the best of our knowledge, that SNHG7 is markedly upregulated in THCA samples following analysis of The Cancer Genome Atlas datasets. SNHG7 expression was higher in advanced stage compared with early stage THCA samples. In addition, high expression levels of SNHG7 were associated with shorter survival times in THCA patients compared with low expression levels. Bioinformatics analysis revealed that SNHG7 was associated with the processes of ‘protein translation’, ‘viral life cycle’, ‘RNA processing’, ‘mRNA splicing’, ‘histone ubiquitination’, ‘endoplasmic reticulum-to-Golgi vesicle-mediated transport’, ‘sister chromatid cohesion’, ‘DNA damage checkpoint regulation’, ‘translation’ and ‘the spliceosome’. Additionally, knockdown of SNHG7 significantly inhibited thyroid cancer cell proliferation and cell cycle progression in vitro. Taken together, the results obtained in the present study suggested that SNHG7 may serve as a novel therapeutic and prognostic target for THCA.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Jing Zhu
- Department of Clinical Laboratory, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Ling-Jie Zhang
- Department of Anesthesiology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
20
|
Varricchi G, Loffredo S, Marone G, Modestino L, Fallahi P, Ferrari SM, de Paulis A, Antonelli A, Galdiero MR. The Immune Landscape of Thyroid Cancer in the Context of Immune Checkpoint Inhibition. Int J Mol Sci 2019; 20:E3934. [PMID: 31412566 PMCID: PMC6720642 DOI: 10.3390/ijms20163934] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Immune cells play critical roles in tumor prevention as well as initiation and progression. However, immune-resistant cancer cells can evade the immune system and proceed to form tumors. The normal microenvironment (immune cells, fibroblasts, blood and lymphatic vessels, and interstitial extracellular matrix (ECM)) maintains tissue homeostasis and prevents tumor initiation. Inflammatory mediators, reactive oxygen species, cytokines, and chemokines from an altered microenvironment promote tumor growth. During the last decade, thyroid cancer, the most frequent cancer of the endocrine system, has emerged as the fifth most incident cancer in the United States (USA), and its incidence is steadily growing. Inflammation has long been associated with thyroid cancer, raising critical questions about the role of immune cells in its pathogenesis. A plethora of immune cells and their mediators are present in the thyroid cancer ecosystem. Monoclonal antibodies (mAbs) targeting immune checkpoints, such as mAbs anti-cytotoxic T lymphocyte antigen 4 (anti-CTLA-4) and anti-programmed cell death protein-1/programmed cell death ligand-1 (anti-PD-1/PD-L1), have revolutionized the treatment of many malignancies, but they induce thyroid dysfunction in up to 10% of patients, presumably by enhancing autoimmunity. Combination strategies involving immune checkpoint inhibitors (ICIs) with tyrosine kinase (TK) or serine/threonine protein kinase B-raf (BRAF) inhibitors are showing considerable promise in the treatment of advanced thyroid cancer. This review illustrates how different immune cells contribute to thyroid cancer development and the rationale for the antitumor effects of ICIs in combination with BRAF/TK inhibitors.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
- WAO Center of Excellence, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
- WAO Center of Excellence, 80131 Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, 56126 Pisa, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, 56126 Pisa, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
- WAO Center of Excellence, 80131 Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, 56126 Pisa, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| |
Collapse
|
21
|
Chu YH, Hardin H, Zhang R, Guo Z, Lloyd RV. In situ hybridization: Introduction to techniques, applications and pitfalls in the performance and interpretation of assays. Semin Diagn Pathol 2019; 36:336-341. [PMID: 31227426 DOI: 10.1053/j.semdp.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In situ hybridization (ISH) has become a common laboratory technique used for the analysis of gene expression and for the localization of specific DNA and RNA molecules in cells. Many different methods of performing ISH have been described. These techniques have evolved into important tools in basic scientific research and in clinical diagnoses. One of the goals of ISH is to localize gene sequences in situ and to visualize the products within cells while preserving cell integrity. This allows for meaningful anatomical and histological interpretation of the localized product(s) within heterogeneous tissues. Because of the possibility of false positive and false negative results that may occur with ISH assays, familiarity with the pathophysiology of the molecules that are analyzed and the cellular processes involved as well as with limitations of the assays can help to avoid erroneous diagnoses with clinical specimens.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Hangzhou, China
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Hangzhou, China
| | - Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Hangzhou, China
| | - Zhenying Guo
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Hangzhou, China.
| |
Collapse
|
22
|
Yu Q, Hardin H, Chu YH, Rehrauer W, Lloyd RV. Parathyroid Neoplasms: Immunohistochemical Characterization and Long Noncoding RNA (lncRNA) Expression. Endocr Pathol 2019; 30:96-105. [PMID: 31119524 DOI: 10.1007/s12022-019-9578-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Parathyroid adenomas are slow growing benign neoplasms associated with hypercalcemia, while atypical parathyroid adenomas and parathyroid carcinomas are uncommon tumors and their histologic features may overlap with parathyroid adenomas. LncRNAs participate in transcription and in epigenetic or post-transcriptional regulation of gene expression, and probably contribute to carcinogenesis. We analyzed a group of normal, hyperplastic, and neoplastic parathyroid lesions to determine the best immunohistochemical markers to characterize these lesions and to determine the role of selected lncRNAs in tumor progression. A tissue microarray consisting of 111 cases of normal parathyroid (n = 14), primary hyperplasia (n = 15), secondary hyperplasia (n = 10), tertiary hyperplasia (n = 11), adenomas (n = 50), atypical adenomas (n = 7), and carcinomas (n = 4) was used. Immunohistochemical staining with antibodies against chromogranin A, synaptophysin, parathyroid hormone, and insulinoma-associated protein 1(INSM1) was used. Expression of lncRNAs including metastasis-associated lung adenocarcinoma transcript one (MALAT1), HOX transcript antisense intergenic RNA (HOTAIR), and long intergenic non-protein coding regulator of reprograming (Linc-ROR or ROR) was also analyzed by in situ hybridization and RT-PCR. All of the parathyroid tissues were positive for parathyroid hormone, while most cases were positive for chromogranin A (98%). Synaptophysin was expressed in only 12 cases (11%) and INMS1 was negative in all cases. ROR was significantly downregulated during progression from normal, hyperplastic, and adenomatous parathyroid to parathyroid carcinomas. These results show that parathyroid hormone and chromogranin A are useful markers for parathyroid neoplasms, while synaptophysin and INSM1 are not very sensitive broad-spectrum markers for these neoplasms. LincRNA ROR may function as a tumor suppressor during parathyroid tumor progression.
Collapse
Affiliation(s)
- Qiqi Yu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - William Rehrauer
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
23
|
Samimi H, Haghpanah V, Irani S, Arefian E, Sohi AN, Fallah P, Soleimani M. Transcript-level regulation of MALAT1-mediated cell cycle and apoptosis genes using dual MEK/Aurora kinase inhibitor "BI-847325" on anaplastic thyroid carcinoma. ACTA ACUST UNITED AC 2019; 27:1-7. [PMID: 31077090 DOI: 10.1007/s40199-018-0231-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is the most lethal malignancy in thyroid carcinomas. Long non-coding RNAs (lncRNAs) are a member of non-coding RNAs, regulating the expression of gene. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an onco-lncRNA that is overexpressed in several carcinomas including ATC. Evidence showed that MALAT1 has a crucial function in apoptosis, and cell cycle progression. OBJECTIVES In order to take advantage of 3D cell culture system in cancer investigation, we have used a 3D in vitro ATC model to determine the effect of dual MEK/Aurora kinase inhibitor BI-847325 anticancer drug on the fundamental molecular mechanisms of MALAT1-mediated gene regulation in ATC. METHODS In this study, ATC cell lines (C643 and SW1736) were grown in alginate scaffold. Encapsulated cells were treated by BI-847325. Changes in expression of MALAT1, Mcl1, miR-363-3p, and cyclinD1 were measured by qRT-PCR. RESULTS AND CONCLUSION MALAT1 gene expression following BI-847325 treatment was significantly downregulated in C643 and SW1736 cell lines. Reversely, miR-363-3p expression was significantly upregulated by BI-847325 in both ATC cell lines. Mcl1 expression was significantly downregulated after treatment in C643 cell lines. Moreover, the expression of this gene was not significantly reduced following BI-847325 treatment in SW1736 cell line. Additionally, cyclin D1 expression was significantly downregulated after treatment in both ATC cell lines. Altogether, the result of this study was the first report of MALAT1's molecular function in ATC and suggested that BI-847325 which inhibits both MEK and Aurora kinase family could be effective against ATC by regulating the genes involved in cell cycle and apoptosis including MALAT1and its downstream genes. Graphical abstract Schematic representation of the biological role of MALAT1 in cyclin D1, miR-363-3p and Mcl1 gene regulations. Stimulation of receptor tyrosine kinase (RTK) by growth factors (GFs) phosphorylates RAS that subsequently activates RAF. Then, RAF phosphorylates MEK. Consequently, activated MEK phosphorylates ERK downstream effector, leading to the MALAT1 gene expression. MALAT1 is a negative regulator of Mcl1 mRNA by sponging of miR-363-3p. In addition, MALAT1 leads to Axin1 and APC downregulation and Wnt/β-catenin signaling pathway activation. Stable β-catenin translocates from the cytoplasm to the nucleus and promotes cyclin D1 gene expression.
Collapse
Affiliation(s)
- Hilda Samimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Parviz Fallah
- Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran.
| |
Collapse
|
24
|
Wei W, Hardin H, Luo QY. Targeting autophagy in thyroid cancers. Endocr Relat Cancer 2019; 26:R181-R194. [PMID: 30667364 DOI: 10.1530/erc-18-0502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Thyroid cancer is one of the most common endocrine malignancies. Although the prognosis for the majority of thyroid cancers is relatively good, patients with metastatic, radioiodine-refractory or anaplastic thyroid cancers have an unfavorable outcome. With the gradual understanding of the oncogenic events in thyroid cancers, molecularly targeted therapy using tyrosine kinase inhibitors (TKIs) is greatly changing the therapeutic landscape of radioiodine-refractory differentiated thyroid cancers (RR-DTCs), but intrinsic and acquired drug resistance, as well as adverse effects, may limit their clinical efficacy and use. In this setting, development of synergistic treatment options is of clinical significance, which may enhance the therapeutic effect of current TKIs and further overcome the resultant drug resistance. Autophagy is a critical cellular process involved not only in protecting cells and organisms from stressors but also in the maintenance and development of various kinds of cancers. Substantial studies have explored the complex role of autophagy in thyroid cancers. Specifically, autophagy plays important roles in mediating the drug resistance of small-molecular therapeutics, in regulating the dedifferentiation process of thyroid cancers and also in affecting the treatment outcome of radioiodine therapy. Exploring how autophagy intertwines in the development and dedifferentiation process of thyroid cancers is essential, which will enable a more profound understanding of the physiopathology of thyroid cancers. More importantly, these advances may fuel future development of autophagy-targeted therapeutic strategies for patients with thyroid cancers. Herein, we summarize the most recent evidence uncovering the role of autophagy in thyroid cancers and highlight future research perspectives in this regard.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
25
|
Zarkesh M, Zadeh-Vakili A, Azizi F, Foroughi F, Akhavan MM, Hedayati M. Altered Epigenetic Mechanisms in Thyroid Cancer Subtypes. Mol Diagn Ther 2018; 22:41-56. [PMID: 28986854 DOI: 10.1007/s40291-017-0303-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thyroid carcinoma (TC) is the most frequent malignant neoplasm of the endocrine system. Molecular methods for diagnosis of invasive thyroid disease can be effectively adopted. Epigenetic factors play an important role in the diversity patterns of gene expression and the phenotypic and biological characteristics of TC subtypes. We aimed to review epigenetic changes in the main subtypes of TC, along with a presentation of the methods that have examined these changes, and active clinical trials for the treatment of advanced TCs targeting epigenetic changes. A literature analysis was performed in MEDLINE using PubMed, Elsevier, and Google Scholar for studies published up to 2016, using the keywords: "Epigenetic alterations" OR "Epigenetic changes", "thyroid cancers", "papillary thyroid cancer", "medullary thyroid cancer", "follicular thyroid cancer", and "anaplastic thyroid cancer", which resulted in 310 articles in English. All related abstracts were reviewed and studies were included that were published in English, had available full text, and determined the details of the methods and materials associated with the epigenetic patterns of TC and its subtypes (100 articles). Analysis of epigenetic alterations in TC subtypes helps to identify pathogenesis and can play an important role in the classification and diagnosis of tumors. Epigenetic mechanisms, especially aberrant methylation of DNA and microRNAs (miRs), are likely to play an important role in thyroid tumorigenesis. Further studies are required to elucidate the role of histone modification mechanisms in TC development.
Collapse
Affiliation(s)
- Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foroughi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Mohammad Akhavan
- Skin Research Center School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| |
Collapse
|
26
|
Zhou T, Zhong M, Zhang S, Wang Z, Xie R, Xiong C, Lv Y, Chen W, Yu J. LncRNA CASC2 expression is down- regulated in papillary thyroid cancer and promotes cell invasion by affecting EMT pathway. Cancer Biomark 2018; 23:185-191. [DOI: 10.3233/cbm-181198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
You X, Zhao Y, Sui J, Shi X, Sun Y, Xu J, Liang G, Xu Q, Yao Y. Integrated analysis of long noncoding RNA interactions reveals the potential role in progression of human papillary thyroid cancer. Cancer Med 2018; 7:5394-5410. [PMID: 30318850 PMCID: PMC6246933 DOI: 10.1002/cam4.1721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022] Open
Abstract
Recent scientific evidence has suggested that long noncoding RNAs (lncRNAs) play an important part in tumorigenesis as an important member of competing endogenous RNAs (ceRNAs). Hundreds of RNA sequence data and relevant clinic information are freely accessible in The Cancer Genome Atlas (TCGA) datasets. However, the role of cancer‐related lncRNAs in papillary thyroid cancer (PTC) is not fully understood yet. In this study, we identified 461 RNA sequencing data from TCGA. Subsequently, 45 lncRNAs, 21 miRNAs, and 78 mRNAs were chosen to construct a ceRNA network of PTC. Then, we analyzed the correlation between these 45 PTC‐specific lncRNAs and clinic features and patient outcome. Thirty‐seven of these lncRNAs were found to be closely related to age, race, gender, lymph node metastasis, TNM staging system, and patient outcome. Additionally, three of them were linked to PTC patient overall survival. Eventually, we selected eight lncRNAs randomly and performed quantificational real‐time polymerase chain reaction (qRT‐PCR) in 28 newly diagnosed patients with PTC to verify the reliability of the above results. The results of qRT‐PCR are totally in agreement with the bioinformatics analysis. Additionally, it was found that HAND2‐AS1 was negatively related to tumor size (P < 0.05). The results were consistent with the bioinformatics analysis in TCGA. Taken together, we identified the differentially expressed lncRNAs and constructed a PTC ceRNA network. The study provides a new perspective and supplement for our understanding of lncRNAs in PTC development and reveals potential diagnostic and prognostic markers in PTC.
Collapse
Affiliation(s)
- Xin You
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yixin Zhao
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xianbiao Shi
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yulu Sun
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jiahan Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Qingxiang Xu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yongzhong Yao
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Sasanakietkul T, Murtha TD, Javid M, Korah R, Carling T. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer. Mol Cell Endocrinol 2018; 469:23-37. [PMID: 28552796 DOI: 10.1016/j.mce.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 12/25/2022]
Abstract
Well-differentiated thyroid cancer accounts for the majority of endocrine malignancies and, in general, has an excellent prognosis. In contrast, the less common poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are two of the most aggressive human malignancies. Recently, there has been an increased focus on the epigenetic alterations underlying thyroid carcinogenesis, including those that drive PDTC and ATC. Dysregulated epigenetic candidates identified include the Aurora group, KMT2D, PTEN, RASSF1A, multiple non-coding RNAs (ncRNA), and the SWI/SNF chromatin-remodeling complex. A deeper understanding of the signaling pathways affected by epigenetic dysregulation may improve prognostic testing and support the advancement of thyroid-specific epigenetic therapies. This review outlines the current understanding of epigenetic alterations observed in PDTC and ATC and explores the potential for exploiting this understanding in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Thanyawat Sasanakietkul
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Timothy D Murtha
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mahsa Javid
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Reju Korah
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tobias Carling
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Zhang R, Hardin H, Huang W, Buehler D, Lloyd RV. Long Non-coding RNA Linc-ROR Is Upregulated in Papillary Thyroid Carcinoma. Endocr Pathol 2018; 29:1-8. [PMID: 29280051 DOI: 10.1007/s12022-017-9507-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) may contribute to carcinogenesis and tumor progression by regulating transcription and gene expression. The role of lncRNAs in the regulation of thyroid cancer progression is being extensively examined. Here, we analyzed three lncRNAs that were overexpressed in papillary thyroid carcinomas, long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR, ROR) PVT1 oncogene (PVT1), and HOX transcript antisense intergenic RNA (HOTAIR) to determine their roles in thyroid tumor development and progression. ROR expression has not been previously examined in thyroid carcinomas. Tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue sections from 129 thyroid cases of benign and malignant tissues were analyzed by in situ hybridization (ISH), automated image analysis, and real-time PCR. All three lncRNAs were most highly expressed in the nuclei of PTCs. SiRNA experiments with a PTC cell line, TPC1, showed inhibition of proliferation with siRNAs for all three lncRNAs while invasion was inhibited with siRNAs for ROR and HOTAIR. SiRNA experiments with ROR also led to increased expression of miR-145, supporting the role of ROR as an endogenous miR-145 sponge. After treatment with TGF-β, there was increased expression of ROR, PVT1, and HOTAIR in the PTC1 cell line compared to control groups, indicating an induction of their expression during epithelial to mesenchymal transition (EMT). These results indicate that ROR, PVT1, and HOTAIR have important regulatory roles during the development of PTCs.
Collapse
Affiliation(s)
- Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|
30
|
Penha RCC, Pellecchia S, Pacelli R, Pinto LFR, Fusco A. Ionizing Radiation Deregulates the MicroRNA Expression Profile in Differentiated Thyroid Cells. Thyroid 2018; 28:407-421. [PMID: 29397781 DOI: 10.1089/thy.2017.0458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ionizing radiation (IR) is a well-known risk factor for papillary thyroid cancer, and it has been reported to deregulate microRNA expression, which is important to thyroid carcinogenesis. Therefore, this study investigated the impact of IR on microRNA expression profile of the normal thyroid cell line (FRTL-5 CL2), as well as its effect on radiosensitivity of thyroid cancer cell lines, especially the human anaplastic thyroid carcinoma cell line (8505c). METHODS The global microRNA expression profile of irradiated FRTL-5 CL2 cells (5 Gy X-ray) was characterized, and data were confirmed by quantitative real-time polymerase chain reaction evaluating the expression of rno-miR-10b-5p, rno-miR-33-5p, rno-miR-128-1-5p, rno-miR-199a-3p, rno-miR-296-5p, rno-miR-328a-3p, and rno-miR-541-5p in irradiated cells. The miR-199a-3p and miR-10b-5p targets were validated by quantitative real-time polymerase chain reaction, Western blot, and luciferase target assays. The effects of miR-199a-3p and miR-10b-5p on DNA repair were determined by evaluating the activation of the protein kinases ataxia-telangiectasia mutated, ataxia telangiectasia, and Rad3-related and the serine 39 phosphorylation of variant histone H2AX as an indirect measure of double-strand DNA breaks in irradiated FRTL-5 CL2 cells. The impact of miR-10b-5p on radiosensitivity was analyzed by cell counting and MTT assays in FRTL-5 CL2, Kras-transformed FRTL-5 CL2 (FRTL KiKi), and 8505c cell lines. RESULTS The results reveal that miR-10b-5p and miR-199a-3p display the most pronounced alterations in expression in irradiated FRTL-5 CL2 cells. Dicer1 and Lin28b were validated as targets of miR-10b-5p and miR-199a-3p, respectively. Functional studies demonstrate that miR-10b-5p increases the growth rate of FRTL-5 CL2 cells, while miR-199a-3p inhibits their proliferation. Moreover, both of these microRNAs negatively affect homologous recombination repair, reducing activated ataxia-telangiectasia mutated and Rad3-related protein levels, consequently leading to an accumulation of the serine 39 phosphorylation of variant histone H2AX. Interestingly, the overexpression of miR-10b-5p decreases the viability of the irradiated FRTL5-CL2 and 8505c cell lines. Consistent with this observation, its inhibition in FRTL KiKi cells, which display high basal expression levels of miR-10b-5p, leads to the opposite effect. CONCLUSIONS These results demonstrate that IR deregulates microRNA expression, affecting the double-strand DNA breaks repair efficiency of irradiated thyroid cells, and suggest that miR-10b-5p overexpression may be an innovative approach for anaplastic thyroid cancer therapy by increasing cancer cell radiosensitivity.
Collapse
Affiliation(s)
- Ricardo Cortez Cardoso Penha
- 1 Istituto di Endocrinologia ed Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
- 2 Instituto Nacional de Câncer-INCA , CPQ, Rio de Janeiro, Brazil
| | - Simona Pellecchia
- 1 Istituto di Endocrinologia ed Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Roberto Pacelli
- 3 Dipartimento di Diagnostica per Immagini e Radioterapia, Università degli Studi di Napoli "Federico II," Naples, Italy
| | | | - Alfredo Fusco
- 1 Istituto di Endocrinologia ed Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
- 2 Instituto Nacional de Câncer-INCA , CPQ, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Murugan AK, Munirajan AK, Alzahrani AS. Long noncoding RNAs: emerging players in thyroid cancer pathogenesis. Endocr Relat Cancer 2018; 25:R59-R82. [PMID: 29146581 DOI: 10.1530/erc-17-0188] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
Abstract
Thyroid cancer continues to be the most common malignancy of endocrine glands. The incidence of thyroid cancer has risen significantly over the past 4 decades and has emerged as a major health issue. In recent years, significant progress has been achieved in our understanding of the molecular mechanisms of thyroid carcinogenesis, resulting in significant diagnostic, prognostic and therapeutic implications; yet, it has not reached a satisfactory level. Identifying novel molecular therapeutic targets and molecules for diagnosis and prognosis is expected to advance the overall management of this common malignancy. Long noncoding RNAs (lncRNAs) are implicated in the regulation of various key cellular genes involved in cell differentiation, proliferation, cell cycle, apoptosis, migration and invasion mainly through modulation of gene expression. Recent studies have established that lncRNAs are deregulated in thyroid cancer. In this review, we discuss extensively the tumor-suppressive (for example, LINC00271, MEG3, NAMA, PTCSC1/2/3, etc.) and oncogenic (for example, ANRIL, FAL1, H19, PVT1, etc.) roles of various lncRNAs and their possible disease associations implicated in thyroid carcinogenesis. We briefly summarize the strategies and mechanisms of lncRNA-targeting agents. We also describe the potential role of lncRNAs as prospective novel therapeutic targets, and diagnostic and prognostic markers in thyroid cancer.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Division of Molecular EndocrinologyDepartment of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arasambattu Kannan Munirajan
- Department of GeneticsDr ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India
| | - Ali S Alzahrani
- Division of Molecular EndocrinologyDepartment of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Lu M, Xu X, Xi B, Dai Q, Li C, Su L, Zhou X, Tang M, Yao Y, Yang J. Molecular Network-Based Identification of Competing Endogenous RNAs in Thyroid Carcinoma. Genes (Basel) 2018; 9:E44. [PMID: 29351231 PMCID: PMC5793195 DOI: 10.3390/genes9010044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
RNAs may act as competing endogenous RNAs (ceRNAs), a critical mechanism in determining gene expression regulations in many cancers. However, the roles of ceRNAs in thyroid carcinoma remains elusive. In this study, we have developed a novel pipeline called Molecular Network-based Identification of ceRNA (MNIceRNA) to identify ceRNAs in thyroid carcinoma. MNIceRNA first constructs micro RNA (miRNA)-messenger RNA (mRNA)long non-coding RNA (lncRNA) networks from miRcode database and weighted correlation network analysis (WGCNA), based on which to identify key drivers of differentially expressed RNAs between normal and tumor samples. It then infers ceRNAs of the identified key drivers using the long non-coding competing endogenous database (lnCeDB). We applied the pipeline into The Cancer Genome Atlas (TCGA) thyroid carcinoma data. As a result, 598 lncRNAs, 1025 mRNAs, and 90 microRNA (miRNAs) were inferred to be differentially expressed between normal and thyroid cancer samples. We then obtained eight key driver miRNAs, among which hsa-mir-221 and hsa-mir-222 were key driver RNAs identified by both miRNA-mRNA-lncRNA and WGCNA network. In addition, hsa-mir-375 was inferred to be significant for patients' survival with 34 associated ceRNAs, among which RUNX2, DUSP6 and SEMA3D are known oncogenes regulating cellular proliferation and differentiation in thyroid cancer. These ceRNAs are critical in revealing the secrets behind thyroid cancer progression and may serve as future therapeutic biomarkers.
Collapse
Affiliation(s)
- Minjia Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xingyu Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Baohang Xi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Qi Dai
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chenli Li
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Li Su
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Xiaonan Zhou
- Institute of Basic Medical Sciences, Wannan Medical College, Hefei 241000, China.
| | - Min Tang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Jialiang Yang
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| |
Collapse
|
33
|
Xue S, Wang P, Hurst ZA, Chang YS, Chen G. Active Surveillance for Papillary Thyroid Microcarcinoma: Challenges and Prospects. Front Endocrinol (Lausanne) 2018; 9:736. [PMID: 30619082 PMCID: PMC6302022 DOI: 10.3389/fendo.2018.00736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Active surveillance (AS) can be considered as an alternative to immediate surgery in low-risk papillary thyroid microcarcinoma (PTMC) without clinically apparent lymph nodes, gross extrathyroidal extension (ETE), and/or distant metastasis according to American Thyroid Association. However, in the past AS has been controversial, as evidence supporting AS in the management of PTMC was scarce. The most prominent of these controversies included, the limited accuracy and utility of ultrasound (US) in the detection of ETE, malignant lymph node involvement or the advent of novel lymph node malignancy during AS, and disease progression. We summarized publications and indicated: (1) US, performer-dependent, could not accurately diagnose gross ETE or malignant lymph node involvement in PTMC. However, the combination of computed tomography and US provided more accurate diagnostic performance, especially in terms of selection sensitivity. (2) Compared to immediate surgery patients, low-risk PTMC patients had a slightly higher rate of lymph node metastases (LNM), although the overall rate for both groups remained low. (3) Recent advances in the sensitivity and specificity of imaging and incorporation of diagnostic biomarkers have significantly improved confidence in the ability to differentiate indolent vs. aggressive PTMCs. Our paper reviewed current imagings and biomarkers with initial promise to help select AS candidates more safely and effectively. These challenges and prospects are important areas for future research to promote AS in PTMC.
Collapse
Affiliation(s)
- Shuai Xue
- Thyroid Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Peisong Wang
- Thyroid Surgery Department, The First Hospital of Jilin University, Changchun, China
| | - Zachary A. Hurst
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Yi Seok Chang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Guang Chen
- Thyroid Surgery Department, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Guang Chen
| |
Collapse
|
34
|
Wang X, Zhang Q, Cai Z, Dai Y, Mou L. Identification of novel diagnostic biomarkers for thyroid carcinoma. Oncotarget 2017; 8:111551-111566. [PMID: 29340074 PMCID: PMC5762342 DOI: 10.18632/oncotarget.22873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Abstract
Thyroid carcinoma (THCA) is the most universal endocrine malignancy worldwide. Unfortunately, a limited number of large-scale analyses have been performed to identify biomarkers for THCA. Here, we conducted a meta-analysis using 505 THCA patients and 59 normal controls from The Cancer Genome Atlas. After identifying differentially expressed long non-coding RNA (lncRNA) and protein coding genes (PCG), we found vast difference in various lncRNA-PCG co-expressed pairs in THCA. A dysregulation network with scale-free topology was constructed. Four molecules (LA16c-380H5.2, RP11-203J24.8, MLF1 and SDC4) could potentially serve as diagnostic biomarkers of THCA with high sensitivity and specificity. We further represent a diagnostic panel with expression cutoff values. Our results demonstrate the potential application of those four molecules as novel independent biomarkers for THCA diagnosis.
Collapse
Affiliation(s)
- Xiliang Wang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.,Department of Biochemistry in Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
35
|
Chu YH, Hardin H, Schneider DF, Chen H, Lloyd RV. MicroRNA-21 and long non-coding RNA MALAT1 are overexpressed markers in medullary thyroid carcinoma. Exp Mol Pathol 2017; 103:229-236. [PMID: 29107050 DOI: 10.1016/j.yexmp.2017.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/24/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are well-recognized post-transcriptional regulators of gene expression. This study examines the expression of microRNA-21 (miR-21) and lncRNA MALAT1 in medullary thyroid carcinomas (MTCs) and their effects on tumor behavior. METHODS Tissue microarrays (TMAs) were constructed using normal thyroid (n=39), primary tumors (N=39) and metastatic MTCs (N=18) from a total of 42 MTC cases diagnosed between 1987 and 2016. In situ hybridization with probes for miR-21 and MALAT1 was performed. PCR quantification of expression was performed in a subset of normal thyroid (N=10) and primary MTCs (N=32). An MTC-derived cell line (MZ-CRC-1) was transfected with small interfering RNAs (siRNAs) targeting miR-21 and MALAT1 to determine the effects on cell proliferation and invasion. RESULTS In situ hybridization (ISH) showed strong (2+ to 3+) expression of miR-21 in 17 (44%) primary MTCs and strong MALAT1 expression in 37 (95%) primary MTCs. Real-time PCR expression of miR-21 (P<0.001) and MALAT1 (P=0.038) in primary MTCs were significantly higher than in normal thyroid, supporting the ISH findings. Experiments with siRNAs showed inhibition of miR-21 and MALAT1 expression in the MTC-derived cell line, leading to significant decreases in cell proliferation (P<0.05) and invasion (P<0.05). CONCLUSION There is increased expression of miR-21 and MALAT1 in MTCs. This study also showed an in vitro pro-oncogenic effect of MALAT1 and miR-21 in MTCs. The results suggest that overexpression of miR-21 and MALAT1 may regulate MTC progression.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - David F Schneider
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States.
| |
Collapse
|
36
|
The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors. J Transl Med 2017; 97:1142-1151. [PMID: 28394318 DOI: 10.1038/labinvest.2017.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022] Open
Abstract
The cancer stem-like cell (CSC) hypothesis postulates that a small population of cells in a cancer has self-renewal and clonal tumor initiation properties. These cells are responsible for tumor initiation, growth, recurrence and for resistance to chemotherapy and radiation therapy. CSCs can be characterized using markers such as SSEA-1, SSEA-4, CD44, CD24, ALDEFLUOR and others. CSCs form spheres when they are cultured in serum-free condition in low attachment plates and can generate tumors when injected into immune-deficient mice. During epithelial to mesenchymal transition (EMT), cells lose cellular adhesion and polarity and acquire an invasive phenotype. Recent studies have established a relationship between EMT and increased numbers of CSCs in some solid malignancies. Non-coding RNAs such as microRNAs and long non-coding RNAs (lncRNAs) have been shown to have important roles during EMT and some of these molecules also have regulatory roles in the proliferation of CSCs. Specific lncRNAs enhanced cell migration and invasion in breast carcinomas, which was associated with the generation of stem cell properties. The tumor microenvironment of CSCs also has an important role in tumor progression. Recent studies have shown that the interaction between tumor cells and the local microenvironment at the metastatic site leads to the development of premetastatic niche(s) and allows for the proliferation of the metastatic cells during colonization. The role of exosomes in the microenvironment during the EMT program is currently a major area of research. This review examines CSCs and the relationship between EMT and CSCs in solid tumors with emphasis on thyroid CSCs. The role of non-coding RNAs and of the microenvironment in EMT and in tumor progression are also examined. This review also highlights the growing number of studies that show the close association of EMT and CSCs and the role of exosomes and other elements of the tissue microenvironment in CSC metastasis. A better understanding of these mechanisms will lead to more effective targeting of primary and metastatic malignancies.
Collapse
|
37
|
Luo YH, Liang L, He RQ, Wen DY, Deng GF, Yang H, He Y, Ma W, Cai XY, Chen JQ, Chen G. RNA-sequencing investigation identifies an effective risk score generated by three novel lncRNAs for the survival of papillary thyroid cancer patients. Oncotarget 2017; 8:74139-74158. [PMID: 29088774 PMCID: PMC5650329 DOI: 10.18632/oncotarget.18274] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022] Open
Abstract
Scholars are striving to apply molecular biology involving long non-coding RNA (lncRNA) in the prognostication of papillary thyroid cancer (PTC). However, the clinical role of lncRNAs in the prognostic setting of PTC is still unclear. Herein, a comprehensive inquiry was performed to screen lncRNA expression profiling with 507 PTC patients from The Cancer Genome Atlas RNA-sequencing datasets. A total of 734 lncRNAs were detected to be aberrantly expressed, among which three novel lncRNAs including AC079630.2, CRNDE and CTD-2171N6.1 were markedly related to the progression and survival of PTC. Furthermore, the aberrant expression of these lncRNAs could be verified by other cohorts from gene expression omnibus (GEO) as detected by microarrays. Next, we established a three-lncRNA signature and divided the PTC patients into two subgroups of high- and low-risk. Interestingly, patients with high-risk tended to gain obviously poorer outcome. Most importantly, this three-lncRNA signature was an independent biomarker to predict the patient survival of PTC. The accurate molecular roles of these three lncRNAs remains unclarified and warrants further characterization, but our current data propose that they might play pivotal roles in PTC tumorigenesis and more importantly, these novel lncRNAs are closely related to patients' survival. These discoveries will have far-reaching consequences with respect to molecular prediction of PTC.
Collapse
Affiliation(s)
- Yi-Huan Luo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Dong-Yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Guo-Fei Deng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Wei Ma
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West Branch), Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
38
|
Xiong X, Zhu H, Chen X. Low expression of long noncoding RNA CASC2 indicates a poor prognosis and promotes tumorigenesis in thyroid carcinoma. Biomed Pharmacother 2017; 93:391-397. [DOI: 10.1016/j.biopha.2017.06.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 01/08/2023] Open
|
39
|
Covach A, Patel S, Hardin H, Lloyd RV. Phosphorylated Mechanistic Target of Rapamycin (p-mTOR) and Noncoding RNA Expression in Follicular and Hürthle Cell Thyroid Neoplasm. Endocr Pathol 2017; 28:207-212. [PMID: 28660408 DOI: 10.1007/s12022-017-9490-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oncocytic (Hürthle cell) and follicular neoplasms are related thyroid tumors with distinct molecular profiles. Diagnostic criteria separating adenomas and carcinomas for these two types of neoplasms are similar, but there may be some differences in the biological behavior of Hürthle cell and follicular carcinomas. Recent studies have shown that noncoding RNAs may have diagnostic and prognostic utility in separating benign and malignant Hürthle cell and follicular neoplasms. In this study, we examined expression of various noncoding RNAs including metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and miR-RNA-885-5p (miR-885) in distinguishing between benign and malignant neoplasms. In addition, the expression of phosphorylated mechanistic receptor of rapamycin (p-mTOR) was also analyzed in these two groups of tumors. Tissue microarrays (TMAs) with archived tissue samples were analyzed using in situ hybridization (ISH) for MALAT1 and miR-885 and immunohistochemistry (IHC) for p-mTOR. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was also performed on a subset of the cases.MALAT1 and miR-885 were increased in all neoplastic groups compared to the normal thyroid tissues (p < 0.05). MALAT1 was more highly expressed in HCCs compared to FTCs, although the differences were not statistically significant (p = 0.06). MiR-885 was expressed at similar levels in FTCs and HCCs. P-mTOR protein was more highly expressed in FTCs than in HCCs (p<0.001). qRT-PCR analysis of noncoding RNAs supported the ISH findings. These results indicate that the noncoding RNAs MALAT1 and miR-885 show increased expression in neoplastic follicular and Hürthle cell thyroid neoplasms compared to normal thyroid tissues. P-mTOR was most highly expressed in FTC but was also increased in HCC, suggesting that drugs targeting this pathway may be useful for treatment of tumors unresponsive to conventional therapies.
Collapse
Affiliation(s)
- Adam Covach
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, 600 Highland Ave, Box 8550, Madison, WI, 53792, USA
| | - Sanjay Patel
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, 600 Highland Ave, Box 8550, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, 600 Highland Ave, Box 8550, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, 600 Highland Ave, Box 8550, Madison, WI, 53792, USA.
| |
Collapse
|
40
|
Mahmoudian-sani MR, Mehri-Ghahfarrokhi A, Asadi-Samani M, Mobini GR. Serum miRNAs as Biomarkers for the Diagnosis and Prognosis of Thyroid Cancer: A Comprehensive Review of the Literature. Eur Thyroid J 2017; 6:171-177. [PMID: 28868257 PMCID: PMC5567107 DOI: 10.1159/000468520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/02/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND/OBJECTIVES Thyroid cancer is the most common endocrine malignancy and accounts for 1% of cancers. In recent years, there has been much interest in the feasibility of using miRNAs or miRNA panels as biomarkers for the diagnosis of thyroid cancer. miRNAs are noncoding RNAs with 21-23 nucleotides that are highly conserved during evolution. They have been proposed as regulators of gene expression, apoptosis, cancer, and cell growth and differentiation. METHODS The Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO), and Web of Science were searched. RESULTS The serum level of miRNAs (miRNA-375, 34a, 145b, 221, 222, 155, Let-7, 181b) can be used as molecular markers for the diagnosis and prognosis of thyroid cancer in the serum samples of patients with thyroid glands. CONCLUSIONS Given that most common methods for the screening of thyroid cancer cannot detect the disease in its early stages, identifying miRNAs that are released in the bloodstream during the gradual progression of the disease is considered a key method in the early diagnosis of thyroid cancers.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoudian-sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Majid Asadi-Samani
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
- *Dr Gholam-Reza Mobini, Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Rahmatieh, Shahrekord (Iran), E-Mail
| |
Collapse
|
41
|
Hu AX, Huang ZY, Zhang L, Shen J. Potential prognostic long non-coding RNA identification and their validation in predicting survival of patients with multiple myeloma. Tumour Biol 2017; 39:1010428317694563. [PMID: 28378636 DOI: 10.1177/1010428317694563] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Multiple myeloma, a typical hematological malignancy, is characterized by malignant proliferation of plasma cells. This study was to identify differently expressed long non-coding RNAs to predict the survival of patients with multiple myeloma efficiently. Gene expressing profiles of diagnosed patients with multiple myeloma, GSE24080 (559 samples) and GSE57317 (55 samples), were downloaded from Gene Expression Omnibus database. After processing, survival-related long non-coding RNAs were identified by Cox regression analysis. The prognosis of multiple myeloma patients with differently expressed long non-coding RNAs was predicted by Kaplan–Meier analysis. Meanwhile, stratified analysis was performed based on the concentrations of serum beta 2-microglobulin (S-beta 2m), albumin, and lactate dehydrogenase of multiple myeloma patients. Gene set enrichment analysis was performed to further explore the functions of identified long non-coding RNAs. A total of 176 long non-coding RNAs significantly related to the survival of multiple myeloma patients (p < 0.05) were identified. In dataset GSE24080 and GSE57317, there were 558 and 55 patients being clustered into two groups with significant differences, respectively. Stratified analysis indicated that prediction of the prognoses with these long non-coding RNAs was independent from other clinical phenotype of multiple myeloma. Gene set enrichment analysis–identified pathways of cell cycle, focal adhesion, and G2-M checkpoint were associated with these long non-coding RNAs. A total of 176 long non-coding RNAs, especially RP1-286D6.1, AC008875.2, MTMR9L, AC069360.2, and AL512791.1, were potential biomarkers to evaluate the prognosis of multiple myeloma patients. These long non-coding RNAs participated indispensably in many pathways associated to the development of multiple myeloma; however, the molecular mechanisms need to be further studied.
Collapse
Affiliation(s)
- Ai-Xin Hu
- Department of Orthopedic Surgery, People’s Hospital of Three Gorges University, Yichang, China
| | - Zhi-Yong Huang
- PuAi Institute, Edong Healthcare Group, Huangshi Central Hospital, Huangshi, China
| | - Lin Zhang
- Department of Spinal Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, China
| | - Jian Shen
- Changzhou Hygiene Vocational Technology School, Changzhou, China
| |
Collapse
|
42
|
Li Q, Tian Y, Hu G, Liang Y, Bai W, Li H. Highly Expressed Antisense Noncoding RNA in the INK4 Locus Promotes Growth and Invasion of Renal Clear Carcinoma Cells via the β-Catenin Pathway. Oncol Res 2017; 25:1373-1382. [PMID: 28251886 PMCID: PMC7840949 DOI: 10.3727/096504017x14878509668646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL) is involved in several human cancers. However, the role of ANRIL in renal cell carcinoma (RCC) remains unclear. This study aimed to explore whether, and how, ANRIL affects the progression of RCC. First, the expression of ANRIL in clinical tumor tissues and four kinds of RCC cell lines was evaluated. After transfection, cell viability, colony number, apoptosis, migration, and invasion were assessed. The expression of proteins related to apoptosis, epithelial-to-mesenchymal transition (EMT), and the β-catenin signaling pathway was then assessed. In addition, the effect of IWR-endo (β-catenin inhibitor) on cell viability, migration, and invasion, as well as β-catenin expression, was also evaluated. The results showed that ANRIL was highly expressed in RCC tissues and RCC cell lines. ANRIL significantly promoted cell proliferation, migration, invasion, and EMT but inhibited cell apoptosis. Additionally, the expression levels of β-catenin, Ki-67, glycogen synthase kinase 3β (GSK-3β), phosphorylated GSK-3β, T-cell transcription factor 4 (TCF-4), and leukemia enhancer factor 1 (LEF-1) were all markedly upregulated by ANRIL. The effect of ARNIL silencing was opposite to that of ANRIL overexpression. The effect of ARNIL on proliferation, migration, and invasion of RCC cells was found to be reversed by IWR-endo. In conclusion, ANRIL, which is highly expressed in RCC, acted as a carcinogen in RCC cells through the activation of the β-catenin pathway.
Collapse
|
43
|
Zhang R, Hardin H, Huang W, Chen J, Asioli S, Righi A, Maletta F, Sapino A, Lloyd RV. MALAT1 Long Non-coding RNA Expression in Thyroid Tissues: Analysis by In Situ Hybridization and Real-Time PCR. Endocr Pathol 2017; 28:7-12. [PMID: 27696303 PMCID: PMC5313332 DOI: 10.1007/s12022-016-9453-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) are important for transcription and for epigenetic or posttranscriptional regulation of gene expression and may contribute to carcinogenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNA involved in the regulation of the cell cycle, cell proliferation, and cell migration, is known to be deregulated in multiple cancers. Here, we analyzed the expression of MALAT1 on 195 cases of benign and malignant thyroid neoplasms by using tissue microarrays for RNA in situ hybridization (ISH) and real-time PCR. MALAT1 is highly expressed in normal thyroid (NT) tissues and thyroid tumors, with increased expression during progression from NT to papillary thyroid carcinomas (PTCs) but is downregulated in poorly differentiated thyroid cancers (PDCs) and anaplastic thyroid carcinomas (ATCs) compared to NT. Induction of epithelial to mesenchymal transition (EMT) by transforming growth factor (TGF)-beta in a PTC cell line (TPC1) led to increased MALAT1 expression, supporting a role for MALAT1 in EMT in thyroid tumors. This is the first ISH study of MALAT1 expression in thyroid tissues. It also provides the first piece of evidence suggesting MALAT1 downregulation in certain thyroid malignancies. Our findings support the notion that ATCs may be molecularly distinct from low-grade thyroid malignancies and suggest that MALAT1 may function both as an oncogene and as a tumor suppressor in different types of thyroid tumors.
Collapse
Affiliation(s)
- Ranran Zhang
- Department of Laboratory Medicine and Pathology K4/436, University of Wisconsin School of Medicine and Public Health, Box 8550, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Laboratory Medicine and Pathology K4/436, University of Wisconsin School of Medicine and Public Health, Box 8550, Madison, WI, 53792, USA
| | - Wei Huang
- Department of Laboratory Medicine and Pathology K4/436, University of Wisconsin School of Medicine and Public Health, Box 8550, Madison, WI, 53792, USA
| | - Jidong Chen
- Department of Laboratory Medicine and Pathology K4/436, University of Wisconsin School of Medicine and Public Health, Box 8550, Madison, WI, 53792, USA
| | | | | | | | | | - Ricardo V Lloyd
- Department of Laboratory Medicine and Pathology K4/436, University of Wisconsin School of Medicine and Public Health, Box 8550, Madison, WI, 53792, USA.
| |
Collapse
|
44
|
Rodríguez-Rodero S, Delgado-Álvarez E, Díaz-Naya L, Martín Nieto A, Menéndez Torre E. Epigenetic modulators of thyroid cancer. ACTA ACUST UNITED AC 2017; 64:44-56. [PMID: 28440770 DOI: 10.1016/j.endinu.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
There are some well known factors involved in the etiology of thyroid cancer, including iodine deficiency, radiation exposure at early ages, or some genetic changes. However, epigenetic modulators that may contribute to development of these tumors and be helpful to for both their diagnosis and treatment have recently been discovered. The currently known changes in DNA methylation, histone modifications, and non-coding RNAs in each type of thyroid carcinoma are reviewed here.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain; Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Elías Delgado-Álvarez
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Lucía Díaz-Naya
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Alicia Martín Nieto
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Edelmiro Menéndez Torre
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| |
Collapse
|
45
|
Du Y, Xia W, Zhang J, Wan D, Yang Z, Li X. Comprehensive analysis of long noncoding RNA–mRNA co-expression patterns in thyroid cancer. MOLECULAR BIOSYSTEMS 2017; 13:2107-2115. [PMID: 28817151 DOI: 10.1039/c7mb00375g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Novel molecular-targeted treatments show great prospects for radioiodine-refractory and surgically inoperable thyroid carcinomas.
Collapse
Affiliation(s)
- Yaying Du
- Department of Thyroid and Breast Surgery
- Tongji Hospital
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Wenfei Xia
- Department of Thyroid and Breast Surgery
- Tongji Hospital
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Jinjun Zhang
- Department of Thyroid and Breast Surgery
- Tongji Hospital
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Dongyi Wan
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Zhifang Yang
- Department of Thyroid and Breast Surgery
- Tongji Hospital
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery
- Tongji Hospital
- Tongji Medical College of Huazhong University of Science and Technology
- Wuhan
- P. R. China
| |
Collapse
|
46
|
Lee EK, Hong SH, Shin S, Lee HS, Lee JS, Park EJ, Choi SS, Min JW, Park D, Hwang JA, Johnson BH, Jeon SH, Kim IH, Lee YS, Lee YS. nc886, a non-coding RNA and suppressor of PKR, exerts an oncogenic function in thyroid cancer. Oncotarget 2016; 7:75000-75012. [PMID: 27612419 PMCID: PMC5342718 DOI: 10.18632/oncotarget.11852] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
nc886 is a recently identified cellular non-coding RNA and its depletion leads to acute cell death via PKR (Protein Kinase RNA-activated) activation. nc886 expression is increased in some malignancies, but silenced in others. However, the precise role of nc886/PKR is controversial: is it a tumor suppressor or an oncogene? In this study, we have clarified the role of nc886 in thyroid cancer by sequentially generating PKR knockout (KO) and PKR/nc886 double KO cell lines from Nthy-ori 3-1, a partially transformed thyroid cell line. Compared to the wildtype, PKR KO alone does not exhibit any significant phenotypic changes. However, nc886 KO cells are less proliferative, migratory, and invasive than their parental PKR KO cells. Importantly, the requirement of nc886 in tumor phenotypes is totally independent of PKR. In our microarray data, nc886 KO suppresses some genes whose elevated expression is associated with poor survival confirmed by data from total of 505 thyroid cancer patients in the Caner Genome Atlas project. Also, the nc886 expression level tends to be elevated and in more aggressively metastatic tumor specimens from thyroid cancer patients. In summary, we have discovered nc886's tumor-promoting role in thyroid cancer which has been concealed by the PKR-mediated acute cell death.
Collapse
Affiliation(s)
- Eun Kyung Lee
- Center for Thyroid Cancer, National Cancer Center, Goyang, 410-769, Korea
| | - Seung-Hyun Hong
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang, 410-769, Korea
| | - Sooyong Shin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Life Science and Center for Aging and Health Care, Hallym University, Chuncheon, 200-702, Korea
| | - Hyun-Sung Lee
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eun Jung Park
- Cancer Immunology Branch, National Cancer Center, Goyang, 410-769, Korea
- Department of Cancer System Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 410-769, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 200–701, Korea
| | - Jae Woong Min
- Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 200–701, Korea
| | - Daeyoon Park
- Center for Thyroid Cancer, National Cancer Center, Goyang, 410-769, Korea
| | - Jung-Ah Hwang
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang, 410-769, Korea
| | - Betty H. Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sung Ho Jeon
- Department of Life Science and Center for Aging and Health Care, Hallym University, Chuncheon, 200-702, Korea
| | - In-Hoo Kim
- Department of Cancer System Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 410-769, Korea
| | - Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang, 410-769, Korea
| | - Yong Sun Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Cancer System Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 410-769, Korea
| |
Collapse
|