1
|
Chapman B, Cameron C, Keatley D, Coumbaros J, Maker G. A controlled method for the identification of forensic traces from clandestine grave fill. Forensic Sci Int 2024; 357:111985. [PMID: 38522322 DOI: 10.1016/j.forsciint.2024.111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Deceased human remains are often buried as a forensic countermeasure or method of disposal by homicide perpetrators. Owing to this, the excavation of clandestine grave sites is a task that forensic crime scene teams may only encounter a few times a year. Not all crime scene units have specialised teams for this task, and even those that do, may not have specific protocols for the optimal recovery of forensic traces retained within grave fill as procedures such as sieving require optimisation for the specific soil conditions of the jurisdiction. This study aimed to define the optimal sieving conditions for a sandy environment when searching for minute traces of paint, glass, hair and fibres. Furthermore, this study justifies the practice of retaining grave fill and examining it under controlled laboratory conditions, rather than in-situ adjacent to the grave site. The results demonstrate that using sieve mesh sizes as fine as 0.1 mm can recover up to 82% of the deposited traces and almost all paint, hair and glass traces. The processing of grave fill in the laboratory lead to increased yield of forensic evidence, which on a case-basis may warrant the increased time needed. These findings merit consideration for clandestine grave crime scenes where evidence is scarce or the case is likely to become cold.
Collapse
Affiliation(s)
- Brendan Chapman
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; Cold Case Review, Murdoch, Western Australia 6150, Australia.
| | - Courtney Cameron
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; Forensic Biology Laboratory, PathWest Laboratory Medicine WA, Nedlands, Western Australia 6009, Australia
| | - David Keatley
- School of Law, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - John Coumbaros
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Garth Maker
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Computational and Systems Medicine, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
2
|
Lepot L, Vanhouche M, Vanden Driessche T, Lunstroot K. Interpol review of fibres and textiles 2019-2022. Forensic Sci Int Synerg 2022; 6:100307. [PMID: 36588587 PMCID: PMC9794884 DOI: 10.1016/j.fsisyn.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|