1
|
Hutchinson K, van Zandwijk JP, Vester MEM, Seth A, Bilo RAC, van Rijn RR, Loeve AJ. Modeling of inflicted head injury by shaking trauma in children: what can we learn? : Update to parts I&II: A systematic review of animal, mathematical and physical models. Forensic Sci Med Pathol 2024:10.1007/s12024-023-00765-5. [PMID: 38236351 DOI: 10.1007/s12024-023-00765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Inflicted shaking trauma can cause injury in infants, but exact injury mechanisms remain unclear. Controversy exists, particularly in courts, whether additional causes such as impact are required to produce injuries found in cases of (suspected) shaking. Publication rates of studies on animal and biomechanical models of inflicted head injury by shaking trauma (IHI-ST) in infants continue rising. Dissention on the topic, combined with its legal relevance, makes maintaining an up-to-date, clear and accessible overview of the current knowledge-base on IHI-ST essential. The current work reviews recent (2017-2023) studies using models of IHI-ST, serving as an update to two previously published reviews. A systematic review was conducted in Scopus and PubMed for articles using animal, physical and mathematical models for IHI-ST. Using the PRISMA methodology, two researchers independently screened the publications. Two, five, and ten publications were included on animal, physical, and mathematical models of IHI-ST, respectively. Both animal model studies used rodents. It is unknown to what degree these can accurately represent IHI-ST. Physical models were used mostly to investigate gross head-kinematics during shaking. Most mathematical models were used to study local effects on the eye and the head's internal structures. All injury thresholds and material properties used were based on scaled adult or animal data. Shaking motions used as inputs for animal, physical and mathematical models were mostly greatly simplified. Future research should focus on using more accurate shaking inputs for models, and on developing or and validating accurate injury thresholds applicable for shaking.
Collapse
Affiliation(s)
- Kim Hutchinson
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime & Materials Engineering, Delft University of Technology, Mekelweg 2, 2628, Delft, CD, Netherlands
| | - Jan Peter van Zandwijk
- Division of Digital and Biometric Traces, Netherlands Forensic Institute, Laan Van Ypenburg 6, 2497, The Hague, GB, Netherlands
| | - Marloes E M Vester
- Care Needs Assessment Centre CIZ, Orteliuslaan 1000, 3500 GR, Utrecht, Netherlands
| | - Ajay Seth
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime & Materials Engineering, Delft University of Technology, Mekelweg 2, 2628, Delft, CD, Netherlands
| | - Rob A C Bilo
- Veilig Thuis Rotterdam Rijnmond (Center for the Reporting of Child Abuse, Domestic Violence and Elder Abuse), Paul Krugerstraat 181, 3072 GJ, Rotterdam, Netherlands
| | - Rick R van Rijn
- Department of Radiology and Nuclear Medicine, Academic Medical Center Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
- Department of Forensic Medicine, Netherlands Forensic Institute, Laan Van Ypenburg 6, 2497, The Hague, GB, Netherlands
| | - Arjo J Loeve
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime & Materials Engineering, Delft University of Technology, Mekelweg 2, 2628, Delft, CD, Netherlands.
| |
Collapse
|
2
|
Nikam RM, Kecskemethy HH, Kandula VVR, Averill LW, Langhans SA, Yue X. Abusive Head Trauma Animal Models: Focus on Biomarkers. Int J Mol Sci 2023; 24:4463. [PMID: 36901893 PMCID: PMC10003453 DOI: 10.3390/ijms24054463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Abusive head trauma (AHT) is a serious traumatic brain injury and the leading cause of death in children younger than 2 years. The development of experimental animal models to simulate clinical AHT cases is challenging. Several animal models have been designed to mimic the pathophysiological and behavioral changes in pediatric AHT, ranging from lissencephalic rodents to gyrencephalic piglets, lambs, and non-human primates. These models can provide helpful information for AHT, but many studies utilizing them lack consistent and rigorous characterization of brain changes and have low reproducibility of the inflicted trauma. Clinical translatability of animal models is also limited due to significant structural differences between developing infant human brains and the brains of animals, and an insufficient ability to mimic the effects of long-term degenerative diseases and to model how secondary injuries impact the development of the brain in children. Nevertheless, animal models can provide clues on biochemical effectors that mediate secondary brain injury after AHT including neuroinflammation, excitotoxicity, reactive oxygen toxicity, axonal damage, and neuronal death. They also allow for investigation of the interdependency of injured neurons and analysis of the cell types involved in neuronal degeneration and malfunction. This review first focuses on the clinical challenges in diagnosing AHT and describes various biomarkers in clinical AHT cases. Then typical preclinical biomarkers such as microglia and astrocytes, reactive oxygen species, and activated N-methyl-D-aspartate receptors in AHT are described, and the value and limitations of animal models in preclinical drug discovery for AHT are discussed.
Collapse
Affiliation(s)
- Rahul M. Nikam
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Heidi H. Kecskemethy
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Lauren W. Averill
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Xuyi Yue
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| |
Collapse
|
3
|
Abstract
BACKGROUND Abusive head trauma (AHT), previously known as the shaken baby syndrome, is a severe and potentially fatal form of traumatic brain injury in infant children who have been shaken, and sometimes also sustained an additional head impact. The clinical and autopsy findings in AHT are not pathognomonic and, due to frequent obfuscation by perpetrators, the circumstances surrounding the alleged abuse are often unclear. The concept has evolved that the finding of the combination of subdural hemorrhage, brain injury, and retinal hemorrhages ("the triad") is the result of shaking of an infant ("shaken baby syndrome") and has led to the ongoing controversy whether shaking alone is able to generate sufficient force to produce these lesions. OBJECTIVE In an attempt to investigate whether shaking can engender this lesion triad, animal models have been developed in laboratory rodents and domestic animal species. This review assesses the utility of these animal models to reliably reproduce human AHT pathology and evaluate the effects of shaking on the immature brain. RESULTS Due largely to irreconcilable anatomic species differences between these animal brains and human infants, and a lack of resemblance of the experimental head shaking induced by mechanical devices to real-world human neurotrauma, no animal model has been able to reliably reproduce the full range of neuropathologic AHT changes. CONCLUSION Some animal models can simulate specific brain and ophthalmic lesions found in human AHT cases and provide useful information on their pathogenesis. Moreover, one animal model demonstrated that shaking of a freely mobile head, without an additional head impact, could be lethal, and produce significant brain pathology.
Collapse
|
4
|
Stray-Pedersen A, Strisland F, Rognum TO, Schiks LAH, Loeve AJ. Violent Infant Surrogate Shaking: Continuous High-Magnitude Centripetal Force and Abrupt Shift in Tangential Acceleration May Explain High Risk of Subdural Hemorrhage. Neurotrauma Rep 2021; 2:224-231. [PMID: 34223553 PMCID: PMC8240836 DOI: 10.1089/neur.2021.0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Violent shaking is believed to be a common mechanism of injury in pediatric abusive head trauma. Typical intracranial injuries include subdural and retinal hemorrhages. Using a laboratory surrogate model we conducted experiments evaluating the head motion patterns that may occur in violent shaking. An anthropomorphic test device (ATD; Q0 dummy) matching an infant of 3.5 kg was assembled. The head interior was equipped with accelerometers enabling assessment of three-axial accelerations. Fifteen volunteers were asked to shake the surrogate vigorously holding a firm grip around the torso. We observed the volunteers performing manual shaking of the surrogate at a median duration of 15.5 sec (range 5-54 sec). Typical acceleration/deceleration patterns were produced after 2-3 shakes with a steady-state shaking motion at a pace of 4-6 cycles (back and forth) per second. Mean peak sagittal tangential accelerations at the vertex were 45.7g (range 14.2-105.1g). The acceleration component in the orthogonal direction, the radial acceleration, fluctuated around a negative mean of more than 4g showing that the surrogate head was continuously subjected to centripetal forces caused by rotations. This surrogate experiment showed that violent shaking may induce high peak tangential accelerations and concomitantly a continuous high-magnitude centripetal force. We hypothesize that the latter component may cause increased pressure in the subdural compartment in the cranial roof and may cause constant compression of the brain and possibly increased stretching or shearing of the bridging veins. This may contribute to the mechanism accountable for subdural hematoma in abusive head trauma.
Collapse
Affiliation(s)
- Arne Stray-Pedersen
- Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Nydalen, Oslo, Norway.,Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Blindern, Oslo, Norway
| | | | - Torleiv Ole Rognum
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Blindern, Oslo, Norway
| | - Luuk Antoon Hubertus Schiks
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Arjo Jozef Loeve
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Co van Ledden Hulsebosch Center of Forensic Science and Medicine, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Oates AJ, Sidpra J, Mankad K. Parenchymal brain injuries in abusive head trauma. Pediatr Radiol 2021; 51:898-910. [PMID: 33638693 DOI: 10.1007/s00247-021-04981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/23/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
The consequences of abusive head trauma (AHT) can be devastating for both the individual child and for wider society. Death is undoubtedly a very real possibility, but even for those children who survive, there is often very significant morbidity with the potential for gross motor and cognitive impairment, behavioural problems, blindness and epilepsy, which can greatly affect their quality of life. Caring for such children places a vast financial and infrastructural burden on society that frequently extends well into adulthood. While few struggle to have any sympathy for the perpetrator, frequently the infant's father, it should be noted that a single solitary and momentary loss of complete control can have horrific and unforeseen consequences. A number of papers within this edition describe features of AHT and include descriptions of skull fractures and extra-axial haemorrhage, along with mimics of such phenomena. However, in this review we concentrate our attention on the myriad of parenchymal findings that can occur. Such parenchymal injuries include hypoxic-ischaemic damage, clefts, contusion and focal haemorrhage. We offer our perspectives on current thinking on these entities and put them in the context of the immensely important question - how do we recognise abusive head trauma?
Collapse
Affiliation(s)
- Adam J Oates
- Department of Radiology, Birmingham Children's Hospital, Birmingham, UK
| | - Jai Sidpra
- University College London Medical School, London, UK
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
6
|
van Zandwijk JP, Vester MEM, Bilo RA, van Rijn RR, Loeve AJ. Modeling of inflicted head injury by shaking trauma in children: what can we learn? : Part II: A systematic review of mathematical and physical models. Forensic Sci Med Pathol 2019; 15:423-436. [PMID: 30784025 PMCID: PMC6687692 DOI: 10.1007/s12024-019-00093-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/01/2022]
Abstract
Various types of complex biomechanical models have been published in the literature to better understand processes related to inflicted head injury by shaking trauma (IHI-ST) in infants. In this systematic review, a comprehensive overview of these models is provided. A systematic review was performed in MEDLINE and Scopus for articles using physical (e.g. dolls) and mathematical (e.g. computer simulations) biomechanical models for IHI-ST. After deduplication, the studies were independently screened by two researchers using PRISMA methodology and data extracted from the papers is represented in a “7-steps description”, addressing the different processes occurring during IHI-ST. Eleven papers on physical models and 23 papers on mathematical models were included after the selection process. In both categories, some models focus on describing gross head kinematics during IHI-ST events, while others address the behavior of internal head- and eye structures in various levels of detail. In virtually all physical and mathematical models analyzed, injury thresholds are derived from scaled non-infant data. Studies focusing on head kinematics often use injury thresholds derived from impact studies. It remains unclear to what extent these thresholds reflect the failure thresholds of infant biological material. Future research should therefore focus on investigating failure thresholds of infant biological material as well as on possible alternative injury mechanism and alternative injury criteria for IHI-ST.
Collapse
Affiliation(s)
- Jan Peter van Zandwijk
- Division of Digital and Biometric Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497, GB, The Hague, the Netherlands
| | - Marloes E M Vester
- Department of Radiology and Nuclear Medicine, Academic Medical Center Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.,Specialist Services and Expertise Division, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497, GB, The Hague, the Netherlands
| | - Rob A Bilo
- Specialist Services and Expertise Division, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497, GB, The Hague, the Netherlands
| | - Rick R van Rijn
- Department of Radiology and Nuclear Medicine, Academic Medical Center Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.,Specialist Services and Expertise Division, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497, GB, The Hague, the Netherlands
| | - Arjo J Loeve
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime & Materials Engineering, Delft University of Technology, Mekelweg 2, 2628, CD, Delft, the Netherlands.
| |
Collapse
|