1
|
Motamediyan K, Zafari V, Bornehdeli S, Caner A, Asadi M, Hashemzadeh S, Firozi MR, Raeisi M. Evaluation of Expression Levels of NFATc2 and PPARG Genes Two Effector Elements of WNT Pathway in Non-Small Cell Lung Carcinoma. Adv Biomed Res 2023; 12:184. [PMID: 37694246 PMCID: PMC10492599 DOI: 10.4103/abr.abr_185_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 09/12/2023] Open
Abstract
Background There is an emergency need in discovering an efficient profile of molecular biomarkers for early diagnosis of Non-small cell lung cancer (NSCLC). Transcription factors as important groups of regulators that are able to adjust the cell cycles have attracted the attention of most researchers recently. NFATc2 and PPARG are two important factors that have been selected for this project to assess their potential for being a biomarker for NSCLC. Materials and Methods Here in this study, 50 NSCLC patients were included. During bronchoscopy, which was their routine diagnostic approach, we collected tumoral and marginal normal tissues. After the extraction of the total RNA from the tissues, cDNA was synthesized, and the transcriptional level of NFATc2 and PPARG was examined by quantitative real-time PCR. Subsequently, the data were analyzed by proper statistical analyses. Results The mRNA expression of NFATc2 and PPARG were down-regulated in biopsy tissues of NSCLC patients compared with their pair marginal tissues (Pvalues were 0.0011 and <0.0001 respectively). Moreover, both of them had significant AUC (area under the curve) in the ROC curve analysis (0.65 for NFATc2 and 0.81 for PPARG, Pvalue <0.05). Conclusion It appears that mRNA expression of NFATc2 and PPARG possesses the potential to be regarded as a diagnostic or prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Kaveh Motamediyan
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Department of Basic Oncology of Health, Institute of Ege University, Izmir, Turkey
| | - Soghra Bornehdeli
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayşe Caner
- Department of Basic Oncology of Health, Institute of Ege University, Izmir, Turkey
| | - Milad Asadi
- Department of Basic Oncology of Health, Institute of Ege University, Izmir, Turkey
| | - Shahryar Hashemzadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Firozi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Inhibition of E protein activity facilitates the quiescence exit of naïve CD4+ T cells through modulating PI3K-AKT signaling and TCR microcluster formation. Cell Immunol 2020; 351:104065. [DOI: 10.1016/j.cellimm.2020.104065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 11/24/2022]
|
3
|
Prestel M, Prell-Schicker C, Webb T, Malik R, Lindner B, Ziesch N, Rex-Haffner M, Röh S, Viturawong T, Lehm M, Mokry M, den Ruijter H, Haitjema S, Asare Y, Söllner F, Najafabadi MG, Aherrahrou R, Civelek M, Samani NJ, Mann M, Haffner C, Dichgans M. The Atherosclerosis Risk Variant rs2107595 Mediates Allele-Specific Transcriptional Regulation of HDAC9 via E2F3 and Rb1. Stroke 2019; 50:2651-2660. [PMID: 31500558 DOI: 10.1161/strokeaha.119.026112] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background and Purpose- Genome-wide association studies have identified the HDAC9 (histone deacetylase 9) gene region as a major risk locus for atherosclerotic stroke and coronary artery disease in humans. Previous results suggest a role of altered HDAC9 expression levels as the underlying disease mechanism. rs2107595, the lead single nucleotide polymorphism for stroke and coronary artery disease resides in noncoding DNA and colocalizes with histone modification marks suggestive of enhancer elements. Methods- To determine the mechanisms by which genetic variation at rs2107595 regulates HDAC9 expression and thus vascular risk we employed targeted resequencing, proteome-wide search for allele-specific nuclear binding partners, chromatin immunoprecipitation, genome-editing, reporter assays, circularized chromosome conformation capture, and gain- and loss-of-function experiments in cultured human cell lines and primary immune cells. Results- Targeted resequencing of the HDAC9 locus in patients with atherosclerotic stroke and controls supported candidacy of rs2107595 as the causative single nucleotide polymorphism. A proteomic search for nuclear binding partners revealed preferential binding of the E2F3/TFDP1/Rb1 complex (E2F transcription factor 3/transcription factor Dp-1/Retinoblastoma 1) to the rs2107595 common allele, consistent with the disruption of an E2F3 consensus site by the risk allele. Gain- and loss-of-function studies showed a regulatory effect of E2F/Rb proteins on HDAC9 expression. Compared with the common allele, the rs2107595 risk allele exhibited higher transcriptional capacity in luciferase assays and was associated with higher HDAC9 mRNA levels in primary macrophages and genome-edited Jurkat cells. Circularized chromosome conformation capture revealed a genomic interaction of the rs2107595 region with the HDAC9 promoter, which was stronger for the common allele as was the in vivo interaction with E2F3 and Rb1 determined by chromatin immunoprecipitation. Gain-of-function experiments in isogenic Jurkat cells demonstrated a key role of E2F3 in mediating rs2107595-dependent transcriptional regulation of HDAC9. Conclusions- Collectively, our findings imply allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1 as a major mechanism mediating vascular risk at rs2107595.
Collapse
Affiliation(s)
- Matthias Prestel
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
| | - Caroline Prell-Schicker
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
| | - Tom Webb
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (T.W., M.G.N., N.J.S.)
| | - Rainer Malik
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
| | - Barbara Lindner
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
| | - Natalie Ziesch
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
| | - Monika Rex-Haffner
- Department of Translational Research in Psychiatry, Max-Planck-Institute for Psychiatry, Germany (M.R.H., S.R.)
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max-Planck-Institute for Psychiatry, Germany (M.R.H., S.R.)
| | - Thanatip Viturawong
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Martinsried, Germany (T.V., M.L., M. Mann)
| | - Manuel Lehm
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Martinsried, Germany (T.V., M.L., M. Mann)
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Munich, Germany (M.L.)
| | - Michal Mokry
- Department of Pediatrics (M. Mokry), University Medical Center Utrecht, the Netherlands
| | - Hester den Ruijter
- Laboratory of Experimental Cardiology (H.d.R., S.H.), University Medical Center Utrecht, the Netherlands
| | - Saskia Haitjema
- Laboratory of Experimental Cardiology (H.d.R., S.H.), University Medical Center Utrecht, the Netherlands
| | - Yaw Asare
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
| | - Flavia Söllner
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Germany (F.S.)
| | - Maryam Ghaderi Najafabadi
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (T.W., M.G.N., N.J.S.)
| | - Rédouane Aherrahrou
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, (R.A., M.C.)
| | - Mete Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, (R.A., M.C.)
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (T.W., M.G.N., N.J.S.)
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Martinsried, Germany (T.V., M.L., M. Mann)
| | - Christof Haffner
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
| | - Martin Dichgans
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Germany (M.P., C.P.S., R.M., B.L., N.Z., M.L., Y.A., F.S., C.H., M.D.)
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M.D.)
| |
Collapse
|
4
|
Xu Z, Ho S, Chang CC, Zhang QY, Vasilescu ER, Vlad G, Suciu-Foca N. Molecular and Cellular Characterization of Human CD8 T Suppressor Cells. Front Immunol 2016; 7:549. [PMID: 27965674 PMCID: PMC5127796 DOI: 10.3389/fimmu.2016.00549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022] Open
Abstract
Bidirectional interactions between dendritic cells and Ag-experienced T cells initiate either a tolerogenic or immunogenic pathway. The outcome of these interactions is of crucial importance in malignancy, transplantation, and autoimmune diseases. Blockade of costimulation results in the induction of T helper cell anergy and subsequent differentiation of antigen-specific CD8+ T suppressor/regulatory cells (Ts). Ts, primed in the presence of inhibitory signals, exert their inhibitory function in an antigen-specific manner, a feature with tremendous clinical potential. In transplantation or autoimmunity, antigen-specific Ts can enforce tolerance to auto- or allo-antigens, while otherwise leaving the immune response to pathogens uninhibited. Alternatively, blockade of inhibitory receptors results in the generation of cytolytic CD8+ T cells, which is vital toward defense against tumors and viral diseases. Because CD8+ T cells are MHC Class I restricted, they are able to recognize HLA-bound antigenic peptides presented not only by APC but also on parenchymal cells, thus eliciting or suppressing auto- or allo-immune reactions.
Collapse
Affiliation(s)
- Zheng Xu
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Sophey Ho
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Chih-Chao Chang
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Qing-Yin Zhang
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Elena-Rodica Vasilescu
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - George Vlad
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Nicole Suciu-Foca
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| |
Collapse
|
5
|
Abstract
Dynamic tuning of cellular responsiveness as a result of repeated stimuli improves the ability of cells to distinguish physiologically meaningful signals from each other and from noise. In particular, lymphocyte activation thresholds are subject to tuning, which contributes to maintaining tolerance to self-antigens and persisting foreign antigens, averting autoimmunity and immune pathogenesis, but allowing responses to strong, structured perturbations that are typically associated with acute infection. Such tuning is also implicated in conferring flexibility to positive selection in the thymus, in controlling the magnitude of the immune response, and in generating memory cells. Additional functional properties are dynamically and differentially tuned in parallel via subthreshold contact interactions between developing or mature lymphocytes and self-antigen-presenting cells. These interactions facilitate and regulate lymphocyte viability, maintain their functional integrity, and influence their responses to foreign antigens and accessory signals, qualitatively and quantitatively. Bidirectional tuning of T cells and antigen-presenting cells leads to the definition of homeostatic set points, thus maximizing clonal diversity.
Collapse
Affiliation(s)
- Zvi Grossman
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | | |
Collapse
|
6
|
Xie A, Zheng X, Khattar M, Schroder P, Stepkowski S, Xia J, Chen W. TCR stimulation without co-stimulatory signals induces expression of "tolerogenic" genes in memory CD4 T cells but does not compromise cell proliferation. Mol Immunol 2014; 63:406-11. [PMID: 25306961 DOI: 10.1016/j.molimm.2014.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 08/14/2014] [Accepted: 09/18/2014] [Indexed: 11/20/2022]
Abstract
Memory T cells resist co-stimulatory blockade and present a unique therapeutic challenge in transplantation and autoimmune diseases. Herein, we determined whether memory T cells express less "tolerogenic" genes than naïve T cells to reinforce a proliferative response under the deprivation of co-stimulatory signals. The expression of ∼40 tolerogenic genes in memory and naïve CD4(+) T cells was thus assessed during an in vitro TCR stimulation without co-stimulation. Briefly, upon TCR stimulation with an anti-CD3 mAb alone, memory CD4(+) T cells exhibited more proliferation than naïve CD4(+) T cells. To our surprise, at 24h upon anti-CD3 mAb stimulation, memory CD4(+) T cells expressed more than a 5-fold higher level of the transcription factor Egr2 and a 20-fold higher level of the transmembrane E3 ubiquitin ligase GRAIL than those in naïve T cells. Hence, the high-level expression of tolerogenic genes, Egr2 and GRAIL, in memory CD4(+) T cells does not prevent cell proliferation. Importantly, anti-CD3 mAb-stimulated memory CD4(+) T cells expressed high protein/gene levels of phosphorylated STAT5, Nedd4, Bcl-2, and Bcl-XL. Therefore, co-stimulation-independent proliferation of memory CD4(+) T cells may be due to elevated expression of molecules that support cell proliferation and survival, but not lack of tolerogenic molecules.
Collapse
Affiliation(s)
- Aini Xie
- Center for Immunobiology and Transplantation Research, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, United States; Department of Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiong Zheng
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine, Ruijin Hospital, Luwan Branch, Shanghai 200020, China
| | - Mithun Khattar
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo OH 43614, United States
| | - Paul Schroder
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo OH 43614, United States
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo OH 43614, United States.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| | - Wenhao Chen
- Center for Immunobiology and Transplantation Research, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, United States; Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo OH 43614, United States
| |
Collapse
|
7
|
Jacobs ES, Persad D, Ran L, Danesh A, Heitman JW, Deng X, Cameron MJ, Kelvin DJ, Norris PJ. A CD4+ T cell antagonist epitope down-regulates activating signaling proteins, up-regulates inhibitory signaling proteins and abrogates HIV-specific T cell function. Retrovirology 2014; 11:57. [PMID: 24996903 PMCID: PMC4227135 DOI: 10.1186/1742-4690-11-57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/14/2014] [Indexed: 11/16/2022] Open
Abstract
Background CD4+ T cells are critically important in HIV infection, being both the primary cells infected by HIV and likely playing a direct or indirect role in helping control virus replication. Key areas of interest in HIV vaccine research are mechanisms of viral escape from the immune response. Interestingly, in HIV infection it has been shown that peptide sequence variation can reduce CD4+ T cell responses to the virus, and small changes to peptide sequences can transform agonist peptides into antagonist peptides. Results We describe, at a molecular level, the consequences of antagonism of HIV p24-specific CD4+ T cells. Antagonist peptide exposure in the presence of agonist peptide caused a global suppression of agonist-induced gene expression and signaling molecule phosphorylation. In addition to down-regulation of factors associated with T cell activation, a smaller subset of genes associated with negative regulation of cell activation was up-regulated, including KFL-2, SOCS-1, and SPDEY9P. Finally, antagonist peptide in the absence of agonist peptide also delivered a negative signal to T cells. Conclusions Small changes in p24-specific peptides can result in T cell antagonism and reductions of both T cell receptor signaling and activation. These changes are at least in part mediated by a dominant negative signal delivered by antagonist peptide, as evidenced by up-regulation of negative regulatory genes in the presence of agonist plus antagonist stimulation. Antagonism can have dramatic effects on CD4+ T cell function and presents a potential obstacle to HIV vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philip J Norris
- Blood Systems Research Institute, San Francisco, California.
| |
Collapse
|
8
|
Nfatc2 and Tob1 have non-overlapping function in T cell negative regulation and tumorigenesis. PLoS One 2014; 9:e100629. [PMID: 24945807 PMCID: PMC4063948 DOI: 10.1371/journal.pone.0100629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
Abstract
Nfatc2 and Tob1 are intrinsic negative regulators of T cell activation. Nfatc2-deficient and Tob1-deficient T cells show reduced thresholds of activation; however, whether these factors have independent or overlapping roles in negative regulation of T cell responses has not been previously examined. Here, we show that Nfatc2 knockout (KO) but not Tob1 KO mice have age-associated accumulation of persistently activated T cells in vivo and expansion of the CD44+ memory cell compartment and age-associated lymphocytic infiltrates in visceral organs, without significant changes in numbers of CD4+CD25+Foxp3+ regulatory T cells (Treg). In vitro, CD4+CD25- "conventional" T cells (Tconvs) from both KO strains showed greater proliferation than wild type (WT) Tconvs. However, while Tregs from Nfatc2 KO mice retained normal suppressive function, Tregs from Tob1 KOs had enhanced suppressive activity. Nfatc2 KO Tconvs expanded somewhat more rapidly than WT Tconvs under conditions of homeostatic proliferation, but their accelerated growth capacity was negated, at least acutely, in a lymphoreplete environment. Finally, Nfatc2 KO mice developed a previously uncharacterized increase in B-cell malignancies, which was not accelerated by the absence of Tob1. The data thus support the prevailing hypothesis that Nfatc2 and Tob1 are non-redundant regulators of lymphocyte homeostasis.
Collapse
|
9
|
Lotem J, Levanon D, Negreanu V, Leshkowitz D, Friedlander G, Groner Y. Runx3-mediated transcriptional program in cytotoxic lymphocytes. PLoS One 2013; 8:e80467. [PMID: 24236182 PMCID: PMC3827420 DOI: 10.1371/journal.pone.0080467] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/02/2013] [Indexed: 12/03/2022] Open
Abstract
The transcription factor Runx3 is highly expressed in CD8+ T and NK cytotoxic lymphocytes and is required for their effective activation and proliferation but molecular insights into the transcription program regulated by Runx3 in these cells are still missing. Using Runx3-ChIP-seq and transcriptome analysis of wild type vs. Runx3-/- primary cells we have now identified Runx3-regulated genes in the two cell types at both resting and IL-2-activated states. Runx3-bound genomic regions in both cell types were distantly located relative to gene transcription start sites and were enriched for RUNX and ETS motifs. Bound genomic regions significantly overlapped T-bet and p300-bound enhancer regions in Runx3-expressing Th1 helper cells. Compared to resting cells, IL-2-activated CD8+ T and NK cells contain three times more Runx3-regulated genes that are common to both cell types. Functional annotation of shared CD8+ T and NK Runx3-regulated genes revealed enrichment for immune-associated terms including lymphocyte activation, proliferation, cytotoxicity, migration and cytokine production, highlighting the role of Runx3 in CD8+ T and NK activated cells.
Collapse
MESH Headings
- Animals
- Core Binding Factor Alpha 3 Subunit/genetics
- Enhancer Elements, Genetic
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Histones/metabolism
- Interleukin-2/metabolism
- Interleukin-2/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Knockout
- Nucleotide Motifs
- Position-Specific Scoring Matrices
- Protein Binding
- Resting Phase, Cell Cycle/genetics
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transcription Factor AP-1/metabolism
- Transcription Initiation Site
- Transcription, Genetic
Collapse
Affiliation(s)
- Joseph Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Israel National Center for Personalized Medicine Bioinformatics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Gilgi Friedlander
- Israel National Center for Personalized Medicine Bioinformatics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
10
|
Johnson LDS, Jameson SC. TGF-β sensitivity restrains CD8+ T cell homeostatic proliferation by enforcing sensitivity to IL-7 and IL-15. PLoS One 2012; 7:e42268. [PMID: 22879925 PMCID: PMC3412850 DOI: 10.1371/journal.pone.0042268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/02/2012] [Indexed: 12/16/2022] Open
Abstract
The pleiotropic cytokine TGF-β has been implicated in the regulation of numerous aspects of the immune response, including naïve T cell homeostasis. Previous studies found that impairing TGF-β responsiveness (through expression of a dominant-negative TGF-β RII [DNRII] transgene) leads to accumulation of memory phenotype CD8 T cells, and it was proposed that this resulted from enhanced IL-15 sensitivity. Here we show naïve DNRII CD8 T cells exhibit enhanced lymphopenia-driven proliferation and generation of “homeostatic” memory cells. However, this enhanced response occurred in the absence of IL-15 and, unexpectedly, even in the combined absence of IL-7 and IL-15, which were thought essential for CD8 T cell homeostatic expansion. DNRII transgenic CD8 T cells still require access to self Class I MHC for homeostatic proliferation, arguing against generalized dysregulation of homeostatic cues. These findings suggest TGF-β responsiveness is critical for enforcing sensitivity to homeostatic cytokines that limit maintenance and composition of the CD8 T cell pool. (154 words).
Collapse
Affiliation(s)
- Lisa D. S. Johnson
- Lab Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen C. Jameson
- Lab Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
11
|
O'Brien TF, Zhong XP. The role and regulation of mTOR in T-lymphocyte function. Arch Immunol Ther Exp (Warsz) 2012; 60:173-81. [PMID: 22484804 DOI: 10.1007/s00005-012-0171-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
The conversion of naïve T cells into effector T cells is initiated by stimulation through the T-cell receptor (TCR). Upon activation, T cells undergo significant morphological and functional changes, putting new metabolic demands on the cell. Past research has identified the mammalian target of rapamycin (mTOR) as a critical regulator of cell metabolism, and the development of new genetic models has begun to reveal an important role for this pathway in the homeostasis and function of T lymphocytes. In this review, we focus on the most recent findings that demonstrate the ability of mTOR to regulate T-cell activation, CD8(+) memory cell formation and function, and helper T lineage differentiation. Furthermore, we highlight the importance of tight control of mTOR signaling by tuberous sclerosis complex 1 for T-cell homeostasis, and the regulation of mTOR signaling by diacylglycerol kinases and the RasGRP1-Ras-Erk1/2 pathway in the context of TCR signaling.
Collapse
Affiliation(s)
- Thomas F O'Brien
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
12
|
Songok EM, Luo M, Liang B, Mclaren P, Kaefer N, Apidi W, Boucher G, Kimani J, Wachihi C, Sekaly R, Fowke K, Ball BT, Plummer FA. Microarray analysis of HIV resistant female sex workers reveal a gene expression signature pattern reminiscent of a lowered immune activation state. PLoS One 2012; 7:e30048. [PMID: 22291902 PMCID: PMC3266890 DOI: 10.1371/journal.pone.0030048] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 12/08/2011] [Indexed: 11/18/2022] Open
Abstract
To identify novel biomarkers for HIV-1 resistance, including pathways that may be critical in anti-HIV-1 vaccine design, we carried out a gene expression analysis on blood samples obtained from HIV-1 highly exposed seronegatives (HESN) from a commercial sex worker cohort in Nairobi and compared their profiles to HIV-1 negative controls. Whole blood samples were collected from 43 HIV-1 resistant sex workers and a similar number of controls. Total RNA was extracted and hybridized to the Affymetrix HUG 133 Plus 2.0 micro arrays (Affymetrix, Santa Clara CA). Output data was analysed through ArrayAssist software (Agilent, San Jose CA). More than 2,274 probe sets were differentially expressed in the HESN as compared to the control group (fold change ≥1.3; p value ≤0.0001, FDR <0.05). Unsupervised hierarchical clustering of the differentially expressed genes readily distinguished HESNs from controls. Pathway analysis through the KEGG signaling database revealed a majority of the impacted pathways (13 of 15, 87%) had genes that were significantly down regulated. The most down expressed pathways were glycolysis/gluconeogenesis, pentose phosphate, phosphatidyl inositol, natural killer cell cytotoxicity and T-cell receptor signaling. Ribosomal protein synthesis and tight junction genes were up regulated. We infer that the hallmark of HIV-1 resistance is down regulation of genes in key signaling pathways that HIV-1 depends on for infection.
Collapse
|
13
|
Abstract
mTOR is an evolutionarily conserved serine/threonine kinase that plays a central role in integrating environmental cues in the form of growth factors, amino acids, and energy. In the study of the immune system, mTOR is emerging as a critical regulator of immune function because of its role in sensing and integrating cues from the immune microenvironment. With the greater appreciation of cellular metabolism as an important regulator of immune cell function, mTOR is proving to be a vital link between immune function and metabolism. In this review, we discuss the ability of mTOR to direct the adaptive immune response. Specifically, we focus on the role of mTOR in promoting differentiation, activation, and function in T cells, B cells, and antigen-presenting cells.
Collapse
Affiliation(s)
- Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | | | | | |
Collapse
|
14
|
Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 2011; 12:478-84. [PMID: 21739670 DOI: 10.1038/ni.2018] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Weak T cell antigen receptor (TCR) signals from contact with self ligands act in synergy with antiapoptotic signals induced by interleukin 7 (IL-7) to promote the survival of naive T cells in a resting state. The amount of background TCR signaling in naive T cells is set by post-thymic TCR tuning and operates at an intensity just below that required to induce entry into the cell cycle. Costimulation from higher concentrations of IL-7 and other common γ-chain cytokines can induce T cells to undergo homeostatic proliferation and conversion into cells with a memory phenotype; many of these memory phenotype cells may be the progeny of cells responding to self antigens. The molecular mechanisms that control the conversion of naive resting T cells into memory-phenotype cells TCR-dependent in normal animals are beginning to be understood.
Collapse
|
15
|
Yang K, Neale G, Green DR, He W, Chi H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 2011; 12:888-97. [PMID: 21765414 PMCID: PMC3158818 DOI: 10.1038/ni.2068] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/06/2011] [Indexed: 12/12/2022]
Abstract
The mechanisms that regulate T cell quiescence are poorly understood. We report that tuberous sclerosis complex 1 (Tsc1) establishes a quiescence program in naive T cells by controlling cell size, cell cycle entry, and responses to T cell receptor stimulation. Loss of quiescence predisposed Tsc1-deficient T cells to apoptosis that resulted in loss of conventional T cells and invariant natural killer T cells. Loss of Tsc1 function dampened in vivo immune responses to bacterial infection. Tsc1-deficient T cells exhibited increased mTORC1 but diminished mTORC2 activities, with mTORC1 activation essential for the disruption of immune homeostasis. Therefore, Tsc1-dependent control of mTOR is crucial in establishing naive T cell quiescence to facilitate adaptive immune function.
Collapse
Affiliation(s)
- Kai Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
16
|
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010; 33:301-11. [PMID: 20870173 DOI: 10.1016/j.immuni.2010.09.002] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Indexed: 12/19/2022]
Abstract
In the two-signal model of T cell activation, the outcome of antigen recognition is determined by the integration of multiple cues in the immune microenvironment. mTOR is an evolutionarily conserved PI3-kinase family member that plays a central role in integrating environmental cues in the form of amino acids, energy, and growth factors. Recently, an increasingly important role for mTOR in directing T cell activation and differentiation has become apparent. Here we review recent findings demonstrating the ability of mTOR to interpret signals in the immune microenvironment and program the generation of CD4(+) effector versus regulatory T cells, the generation of CD8(+) effector versus memory cells, T cell trafficking, and T cell activation versus anergy. The key theme to emerge from these studies is that the central role of mTOR provides a direct link between T cell metabolism and function.
Collapse
Affiliation(s)
- Jonathan D Powell
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
17
|
Jenkins MK, Chu HH, McLachlan JB, Moon JJ. On the composition of the preimmune repertoire of T cells specific for Peptide-major histocompatibility complex ligands. Annu Rev Immunol 2010; 28:275-94. [PMID: 20307209 DOI: 10.1146/annurev-immunol-030409-101253] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Millions of T cells are produced in the thymus, each expressing a unique alpha/beta T cell receptor (TCR) capable of binding to a foreign peptide in the binding groove of a host major histocompatibility complex (MHC) molecule. T cell-mediated immunity to infection is due to the proliferation and differentiation of rare clones in the preimmune repertoire that by chance express TCRs specific for peptide-MHC (pMHC) ligands derived from the microorganism. Here we review recent findings that have altered our understanding of how the preimmune repertoire is established. Recent structural studies indicate that a germline-encoded tendency of TCRs to bind MHC molecules contributes to the MHC bias of T cell repertoires. It has also become clear that the preimmune repertoire contains functionally heterogeneous subsets including recent thymic emigrants, mature naive phenotype cells, memory phenotype cells, and natural regulatory T cells. In addition, sensitive new detection methods have revealed that the repertoire of naive phenotype T cells consists of distinct pMHC-specific populations that consistently vary in size in different individuals. The implications of these new findings for the clonal selection theory, self-tolerance, and immunodominance are discussed.
Collapse
Affiliation(s)
- Marc K Jenkins
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, 55455, USA.
| | | | | | | |
Collapse
|
18
|
|
19
|
Feng X, Ippolito GC, Tian L, Wiehagen K, Oh S, Sambandam A, Willen J, Bunte RM, Maika SD, Harriss JV, Caton AJ, Bhandoola A, Tucker PW, Hu H. Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood 2010; 115:510-8. [PMID: 19965654 PMCID: PMC2810984 DOI: 10.1182/blood-2009-07-232694] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/19/2009] [Indexed: 11/20/2022] Open
Abstract
Proper thymocyte development is required to establish T-cell central tolerance and to generate naive T cells, both of which are essential for T-cell homeostasis and a functional immune system. Here we demonstrate that the loss of transcription factor Foxp1 results in the abnormal development of T cells. Instead of generating naive T cells, Foxp1-deficient single-positive thymocytes acquire an activated phenotype prematurely in the thymus and lead to the generation of peripheral CD4(+) T and CD8(+) T cells that exhibit an activated phenotype and increased apoptosis and readily produce cytokines upon T-cell receptor engagement. These results identify Foxp1 as an essential transcriptional regulator for thymocyte development and the generation of quiescent naive T cells.
Collapse
Affiliation(s)
- Xiaoming Feng
- Immunology Program and Wistar Vaccine Center, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jubala CM, Lamerato-Kozicki AR, Borakove M, Lang J, Gardner LA, Coffey D, Helm KM, Schaack J, Baier M, Cutter GR, Bellgrau D, Modiano JF. MHC-dependent desensitization of intrinsic anti-self reactivity. Cancer Immunol Immunother 2009; 58:171-85. [PMID: 18523772 PMCID: PMC2585149 DOI: 10.1007/s00262-008-0535-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
The survival of naive T cells is compromised in the absence of molecules encoded by the major histocompatibility complex (MHC) while antigen-experienced T cells survive. We hypothesized that survival pressures in an in vivo, MHC-deficient environment would permit enrichment of less frequent antigen-experienced autoreactive cells at the expense of the majority of antigen naive T cells. To test this hypothesis, we generated MHC class I- and class II-deficient mice in NOD and C57Bl/6 (B6) backgrounds, and examined the capacity of adoptively transferred autoimmune-prone NOD T cells, or non-autoimmune prone naive B6 T cells, respectively, to reject transplanted wild-type pancreatic islets or transplantable tumors in the MHC-deficient mice. In the MHC-deficient environment, CD4 T cells acquired self-hostile properties (islet rejection and tumor invasion) that were independent from their genetic propensity for autoreactivity, while CD8 T cells required appropriate prior exposure to antigen in order to survive and function (reject tumor) in this environment; however, disengagement of Tob1, a negative regulator of proliferation, led to a reverse phenotype with regard to persistence of CD4 and CD8 T cells in the MHC-deficient environment. Our data suggest that self-peptide/MHC interactions have dual roles to facilitate survival and restrain autoreactivity, thus acting as integral components of an intrinsic network of negative regulation that maintains tolerance.
Collapse
Affiliation(s)
| | - Angela R. Lamerato-Kozicki
- University of Colorado Cancer Center, Aurora, CO USA
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
- Present Address: Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI USA
| | - Michelle Borakove
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
| | - Julie Lang
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
| | | | - David Coffey
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
| | - Karen M. Helm
- University of Colorado Cancer Center, Aurora, CO USA
| | - Jerome Schaack
- University of Colorado Cancer Center, Aurora, CO USA
- Department of Microbiology, University of Colorado, Denver, CO USA
| | - Monika Baier
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL USA
- Present Address: Clinical & Regulatory Affairs/Biometrics Department Biostatistician, Novartis Pharma GmbH, Roonstrasse 25, 90429 Nuernberg, Germany
| | - Gary R. Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL USA
| | - Donald Bellgrau
- University of Colorado Cancer Center, Aurora, CO USA
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, 1400 Jackson St. K503, Denver, CO 80206 USA
| | - Jaime F. Modiano
- University of Colorado Cancer Center, Aurora, CO USA
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, 455 VMC MMC6194, 1365 Gortner Avenue, St. Paul, MN 55108 USA
| |
Collapse
|