1
|
Sánchez-Mora A, Briñez E, Pico A, González-Sebastián L, Antonio Cruz-Navarrro J, Arenaza-Corona A, Puentes-Díaz N, Alí-Torres J, Reyes-Márquez V, Morales-Morales D. Synthesis of Para-Acetylated Functionalized Ni(II)-POCOP Pincer Complexes and Their Cytotoxicity Evaluation Against Human Cancer Cell Lines. Chem Biodivers 2024; 21:e202400995. [PMID: 39001660 DOI: 10.1002/cbdv.202400995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
A series of three Ni(II)-POCOP complexes para-functionalized with an acetoxyl fragment were synthesized. All complexes (2 a-c) were fully characterized through standard analytical techniques. The molecular structure of complex 2 b was unambiguously determined by single-crystal X-ray diffraction, revealing that the metal center is situated in a slightly distorted square-planar environment. Additionally, the acetoxy fragment at the para-position of the phenyl ring was found to be present. The in vitro cytotoxic activity of all complexes was assessed on six human cancer cell lines. Notably, complex 2 b exhibited selective activity against K-562 (chronic myelogenous leukemia) and MCF-7 (mammary adenocarcinoma) with IC50 values of 7.32±0.60 μM and 14.36±0.02 μM, respectively. Furthermore, this compound showed negligible activity on the healthy cell line COS-7, highlighting the potential therapeutic application of 2 b. The cytotoxic evaluations were further complemented with molecular docking calculations to explore the potential biological targets of complex 2 b, revealing interactions with cluster differentiation protein 1a (CD1 A, PDB: 1xz0) for K-562 and with the progesterone receptor for MCF-7.
Collapse
Affiliation(s)
- Arturo Sánchez-Mora
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Edwin Briñez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Alejandro Pico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Lucero González-Sebastián
- Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de México, C.P. 09340, México
| | - J Antonio Cruz-Navarrro
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Nicolás Puentes-Díaz
- Departamento de Química, Universidad Nacional de Colombia -Sede Bogotá, Bogotá DC, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia -Sede Bogotá, Bogotá DC, Colombia
| | - Viviana Reyes-Márquez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Luis Encinas y Rosales s/n, Hermosillo, Sonora, C.P. 83000, Mexico
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| |
Collapse
|
2
|
He J, Munir F, Catueno S, Connors JS, Gibson A, Robusto L, McCall D, Nunez C, Roth M, Tewari P, Garces S, Cuglievan B, Garcia MB. Biological Markers of High-Risk Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:858. [PMID: 38473221 PMCID: PMC10930495 DOI: 10.3390/cancers16050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) has witnessed substantial improvements in prognosis; however, a subset of patients classified as high-risk continues to face higher rates of relapse and increased mortality. While the National Cancer Institute (NCI) criteria have traditionally guided risk stratification based on initial clinical information, recent advances highlight the pivotal role of biological markers in shaping the prognosis of childhood ALL. This review delves into the emerging understanding of high-risk childhood ALL, focusing on molecular, cytogenetic, and immunophenotypic markers. These markers not only contribute to unraveling the underlying mechanisms of the disease, but also shed light on specific clinical patterns that dictate prognosis. The paradigm shift in treatment strategies, exemplified by the success of tyrosine kinase inhibitors in Philadelphia chromosome-positive leukemia, underscores the importance of recognizing and targeting precise risk factors. Through a comprehensive exploration of high-risk childhood ALL characteristics, this review aims to enhance our comprehension of the disease, offering insights into its molecular landscape and clinical intricacies in the hope of contributing to future targeted and tailored therapies.
Collapse
Affiliation(s)
- Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Faryal Munir
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Jeremy S. Connors
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Lindsay Robusto
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Priti Tewari
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| |
Collapse
|
3
|
Loureiro G, Bahia DM, Lee MLM, de Souza MP, Kimura EYS, Rezende DC, Silva MCDA, Chauffaille MDLLF, Yamamoto M. MAPK/ERK and PI3K/AKT signaling pathways are activated in adolescent and adult acute lymphoblastic leukemia. Cancer Rep (Hoboken) 2023; 6:e1912. [PMID: 37867416 PMCID: PMC10728523 DOI: 10.1002/cnr2.1912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/12/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK)/ERK signaling cascade and the phosphoinosytol-3 phosphate/Akt (PI3K/Akt) pathways are involved in proliferation and differentiation of hematopoietic cells. The frequency of PI3K/Akt and MAPK pathway activation in adult acute lymphoblastic leukemia (ALL) still need to be elucidated. AIMS To assess the activity and prognostic implications of MAPK/ERK and PI3K/Akt pathways in adult (ALL). METHODS We examined 28 precursor-B-cell ALL and 6 T-cell primary ALL samples. Flow cytometry was employed to analyze the expression levels of phosphorylated ERK and phosphorylated Akt. RESULTS Ten out of 15 (67%) ALL fresh samples (7 B-cell, 3 T-cell) showed constitutive p-ERK expression. The p-ERK mean fluorescent index ratio (MFI (R)) showed a tendency to be higher in ALL than in normal T lymphocytes (1.26 [0.74-3.10] vs. 1.08 [1.02-1.21], respectively [p = .069]) and was significantly lower than in leukemic cell lines (median MFI (R) 3.83 [3.71-5.97] [p < .001]). Expression of p-Akt was found in 35% (12/34) (10 B-cell, 2 T-cell). The median MFI (R) expression for p-Akt in primary blast cell was 1.13 (0.48-9.90) compared to 1.01 (1.00-1.20) in normal T lymphocytes (p = ns) and lower than in leukemic cell lines (median MFI (R) 2.10 [1.77-3.40] [p = .037]). Moreover, expression of p-ERK was negatively associated with the expression of CD34 (1.22 [0.74-1.33] vs. 1.52 [1.15-3.10] for CD34(+) and CD34(-) group, respectively, p = .009). CONCLUSION Our findings suggest that both MAPK/ERK and PI3K/Akt are constitutively activated in adult ALL, indicating a targeted therapy potential for ALL by using inhibitors of these pathways.
Collapse
Affiliation(s)
- Gustavo Loureiro
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | - Daniella M. Bahia
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | - Maria Lucia M. Lee
- Instituto de Oncologia PediátricaGrupo de Apoio ao Adolescente e a Criança com Câncer (GRAACC)São PauloSão PauloBrazil
| | | | - Eliza Y. S. Kimura
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | - Denise Carvalho Rezende
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | | | | | - Mihoko Yamamoto
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| |
Collapse
|
4
|
Munir F, He J, Connors J, Garcia M, Gibson A, McCall D, Nunez C, Dinh CN, Robusto L, Roth M, Khazal S, Tewari P, Cuglievan B. Translational advances in the treatment of childhood acute lymphoblastic leukemia: narrative review of current and emerging molecular and immunotherapies. Transl Pediatr 2023; 12:487-502. [PMID: 37035397 PMCID: PMC10080491 DOI: 10.21037/tp-22-656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Background and Objective Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy of lymphoid origin in children. The prognosis for newly diagnosed ALL in the pediatric population is generally favorable, with a 5-year overall survival rate of more than 90%. Though conventional therapy has led to meaningful improvements in cure rates for new-onset pediatric ALL, one-third of patients still experience a relapse or refractory disease, contributing to a significant cause of pediatric cancer-related mortality. Methods An extensive literature review was undertaken via various databases of medical literature, focusing on both results of larger clinical trials, but also with evaluation of recent abstract publications at large hematologic conferences. Key Content and Findings Remission is achievable in most of these patients by re-induction with currently available therapies, but the long-term overall survival rate is deemed suboptimal and remains a therapeutic challenge. As part of never-ceasing efforts to improve pediatric ALL outcomes, newer modalities, including targeted molecular therapies as well as immunotherapy, and chimeric antigen receptor (CAR) T-cell therapy, are currently being employed to increase treatment effectiveness as well as lessen the side effects from conventional chemotherapy. These approaches explore the use of early genome-based disease characterization and medications developed against actionable molecular targets. Conclusions Additional clinical research is nonetheless required to learn more about the potentially harmful effects of targeted therapies and investigate the possibility of these agents replacing or decreasing the use of conventional chemotherapy in treating pediatric ALL.
Collapse
Affiliation(s)
- Faryal Munir
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiasen He
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Connors
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine Nguyen Dinh
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lindsay Robusto
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priti Tewari
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Branko Cuglievan
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Bai L, Zhou L, Han W, Chen J, Gu X, Hu Z, Yang Y, Li W, Zhang X, Niu C, Chen Y, Li H, Cui J. BAX as the mediator of C-MYC sensitizes acute lymphoblastic leukemia to TLR9 agonists. J Transl Med 2023; 21:108. [PMID: 36765389 PMCID: PMC9921080 DOI: 10.1186/s12967-023-03969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The prognosis of B-cell acute lymphoblastic leukemia (B-ALL) has improved significantly with current first-line therapy, although the recurrence of B-ALL is still a problem. Toll-like receptor 9 (TLR9) agonists have shown good safety and efficiency as immune adjuvants. Apart from their immune regulatory effect, the direct effect of TLR9 agonists on cancer cells with TLR9 expression cannot be ignored. However, the direct effect of TLR9 agonists on B-ALL remains unknown. METHODS We discussed the relationship between TLR9 expression and the clinical characteristics of B-ALL and explored whether CpG 685 exerts direct apoptotic effect on B-ALL without inhibiting normal B-cell function. By using western blot, co-immunoprecipitation, immunofluorescence co-localization, and chromatin immunoprecipitation, we explored the mechanism of the apoptosis-inducing effect of CpG 685 in treating B-ALL cells. By exploring the mechanism of CpG 685 on B-ALL, the predictive biomarkers of the efficacy of CpG 685 in treating B-ALL were explored. These efficiencies were also confirmed in mouse model as well as clinical samples. RESULTS High expression of TLR9 in B-ALL patients showed good prognosis. C-MYC-induced BAX activation was the key to the effect of CpG oligodeoxynucleotides against B-ALL. C-MYC overexpression promoted P53 stabilization, enhanced Bcl-2 associated X-protein (BAX) activation, and mediated transcription of the BAX gene. Moreover, combination therapy using CpG 685 and imatinib, a BCR-ABL kinase inhibitor, could reverse resistance to CpG 685 or imatinib alone by promoting BAX activation and overcoming BCR-ABL1-independent PI3K/AKT activation. CONCLUSION TLR9 is not only a prognostic biomarker but also a potential target for B-ALL therapy. CpG 685 monotherapy might be applicable to Ph- B-ALL patients with C-MYC overexpression and without BAX deletion. CpG 685 may also serve as an effective combinational therapy against Ph+ B-ALL.
Collapse
Affiliation(s)
- Ling Bai
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Lei Zhou
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Wei Han
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Jingtao Chen
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiaoyi Gu
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, Changchun, 130021 China
| | - Zheng Hu
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, Changchun, 130021 China
| | - Yongguang Yang
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, Changchun, 130021 China
| | - Wei Li
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Xiaoying Zhang
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Chao Niu
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Yongchong Chen
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Hui Li
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
6
|
Xu JF, Wan Y, Tang F, Chen L, Yang Y, Xia J, Wu JJ, Ao H, Peng C. Emerging Significance of Ginsenosides as Potentially Reversal Agents of Chemoresistance in Cancer Therapy. Front Pharmacol 2022; 12:720474. [PMID: 34975466 PMCID: PMC8719627 DOI: 10.3389/fphar.2021.720474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance has become a prevalent phenomenon in cancer therapy, which alleviates the effect of chemotherapy and makes it difficult to break the bottleneck of the survival rate of tumor patients. Current approaches for reversing chemoresistance are poorly effective and may cause numerous new problems. Therefore, it is urgent to develop novel and efficient drugs derived from natural non-toxic compounds for the reversal of chemoresistance. Researches in vivo and in vitro suggest that ginsenosides are undoubtedly low-toxic and effective options for the reversal of chemoresistance. The underlying mechanism of reversal of chemoresistance is correlated with inhibition of drug transporters, induction of apoptosis, and modulation of the tumor microenvironment(TME), as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (NRF2)/AKT, lncRNA cancer susceptibility candidate 2(CASC2)/ protein tyrosine phosphatase gene (PTEN), AKT/ sirtuin1(SIRT1), epidermal growth factor receptor (EGFR)/ phosphatidylinositol 3-kinase (PI3K)/AKT, PI3K/AKT/ mammalian target of rapamycin(mTOR) and nuclear factor-κB (NF-κB). Since the effects and the mechanisms of ginsenosides on chemoresistance reversal have not yet been reviewed, this review summarized comprehensively experimental data in vivo and in vitro to elucidate the functional roles of ginsenosides in chemoresistance reversal and shed light on the future research of ginsenosides.
Collapse
Affiliation(s)
- Jin-Feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Perera Y, Melão A, Ramón AC, Vázquez D, Ribeiro D, Perea SE, Barata JT. Clinical-Grade Peptide-Based Inhibition of CK2 Blocks Viability and Proliferation of T-ALL Cells and Counteracts IL-7 Stimulation and Stromal Support. Cancers (Basel) 2020; 12:cancers12061377. [PMID: 32471246 PMCID: PMC7352628 DOI: 10.3390/cancers12061377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Despite remarkable advances in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), relapsed cases are still a major challenge. Moreover, even successful cases often face long-term treatment-associated toxicities. Targeted therapeutics may overcome these limitations. We have previously demonstrated that casein kinase 2 (CK2)-mediated phosphatase and tensin homologue (PTEN) posttranslational inactivation, and consequent phosphatidylinositol 3-kinase (PI3K)/Akt signaling hyperactivation, leads to increased T-ALL cell survival and proliferation. We also revealed the existence of a crosstalk between CK2 activity and the signaling mediated by interleukin 7 (IL-7), a critical leukemia-supportive cytokine. Here, we evaluated the impact of CIGB-300, a the clinical-grade peptide-based CK2 inhibitor CIGB-300 on T-ALL biology. We demonstrate that CIGB-300 decreases the viability and proliferation of T-ALL cell lines and diagnostic patient samples. Moreover, CIGB-300 overcomes IL-7-mediated T-ALL cell growth and viability, while preventing the positive effects of OP9-delta-like 1 (DL1) stromal support on leukemia cells. Signaling and pull-down experiments indicate that the CK2 substrate nucleophosmin 1 (B23/NPM1) and CK2 itself are the molecular targets for CIGB-300 in T-ALL cells. However, B23/NPM1 silencing only partially recapitulates the anti-leukemia effects of the peptide, suggesting that CIGB-300-mediated direct binding to CK2, and consequent CK2 inactivation, is the mechanism by which CIGB-300 downregulates PTEN S380 phosphorylation and inhibits PI3K/Akt signaling pathway. In the context of IL-7 stimulation, CIGB-300 blocks janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in T-ALL cells. Altogether, our results strengthen the case for anti-CK2 therapeutic intervention in T-ALL, demonstrating that CIGB-300 (given its ability to circumvent the effects of pro-leukemic microenvironmental cues) may be a valid tool for clinical intervention in this aggressive malignancy.
Collapse
Affiliation(s)
- Yasser Perera
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.P.); (A.C.R.); (S.E.P.)
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.M.); (D.R.)
| | - Ailyn C. Ramón
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.P.); (A.C.R.); (S.E.P.)
| | - Dania Vázquez
- Pharmacogenomics Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.M.); (D.R.)
| | - Silvio E. Perea
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.P.); (A.C.R.); (S.E.P.)
| | - João T. Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.M.); (D.R.)
- Correspondence:
| |
Collapse
|
8
|
Hua C, Chen X, Yuan W, Li Y, Yu J, Li H, Ming L. Gene expression profiling by mRNA sequencing reveals dysregulation of core genes in Rictor deficient T-ALL mouse model. Leuk Res 2019; 87:106229. [PMID: 31698306 DOI: 10.1016/j.leukres.2019.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a neoplastic disorder with peak incidence in children and young adults. The mTOR complex is an important component of the PI3K/Akt/mTOR signaling cascade and holds great promise for the treatment of hematopoietic malignancies. Previous studies have shown that the depression of Rictor, one of the components of the mTOR complex, prevents myeloproliferative disorders and leukemia However, knowledge of the progression of mTOR has not greatly improved the prognosis of T-ALL. To identify potential prognostic biomarkers for T-ALL, a whole-genome expression profile of Rictior deficient T-ALL mice was performed. As a result, 1475 differentially expressed genes (DEGs) were identified. Network analysis revealed 46 genes with a high network degree and fold-change value. Kaplan-Meier analysis identified ten crucial genes which significantly associated with survival in Rictor deficient T-ALL mice. These findings provide potential therapeutic targets in leukemia and bear immediate relevance to patients with leukemia.
Collapse
Affiliation(s)
- Chunlan Hua
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiangyu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jing Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
9
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|
10
|
Gopalakrishnapillai A, Kolb EA, Dhanan P, Mason RW, Napper A, Barwe SP. Disruption of Annexin II /p11 Interaction Suppresses Leukemia Cell Binding, Homing and Engraftment, and Sensitizes the Leukemia Cells to Chemotherapy. PLoS One 2015; 10:e0140564. [PMID: 26465153 PMCID: PMC4605480 DOI: 10.1371/journal.pone.0140564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/27/2015] [Indexed: 01/08/2023] Open
Abstract
The bone marrow microenvironment plays an important role in acute lymphoblastic leukemia (ALL) cell proliferation, maintenance, and resistance to chemotherapy. Annexin II (ANX2) is abundantly expressed on bone marrow cells and complexes with p11 to form ANX2/p11-hetero-tetramer (ANX2T). We present evidence that p11 is upregulated in refractory ALL cell lines and patient samples. A small molecule inhibitor that disrupts ANX2/p11 interaction (ANX2T inhibitor), an anti-ANX2 antibody, and knockdown of p11, abrogated ALL cell adhesion to osteoblasts, indicating that ANX2/p11 interaction facilitates binding and retention of ALL cells in the bone marrow. Furthermore, ANX2T inhibitor increased the sensitivity of primary ALL cells co-cultured with osteoblasts to dexamethasone and vincristine induced cell death. Finally, in an orthotopic leukemia xenograft mouse model, the number of ALL cells homing to the bone marrow was reduced by 40-50% in mice injected with anti-ANX2 antibody, anti-p11 antibody or ANX2T inhibitor compared to respective controls. In a long-term engraftment assay, the percentage of ALL cells in mouse blood, bone marrow and spleen was reduced in mice treated with agents that disrupt ANX2/p11 interaction. These data show that disruption of ANX2/p11 interaction results in reduced ALL cell adhesion to osteoblasts, increased ALL cell sensitization to chemotherapy, and suppression of ALL cell homing and engraftment.
Collapse
Affiliation(s)
- Anilkumar Gopalakrishnapillai
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - E. Anders Kolb
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - Priyanka Dhanan
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - Robert W. Mason
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - Andrew Napper
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
| | - Sonali P. Barwe
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, United States of America
- * E-mail:
| |
Collapse
|
11
|
McNeer JL, Raetz EA. Childhood Acute Lymphoblastic Leukemia: Toward Personalized Medicine. CURRENT PEDIATRICS REPORTS 2015. [DOI: 10.1007/s40124-015-0078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zhang BH, Wang J, Xue HM, Chen C. Impact of Chemotherapy-Related Hyperglycemia on Prognosis of Child Acute Lymphocytic Leukemia. Asian Pac J Cancer Prev 2014; 15:8855-9. [DOI: 10.7314/apjcp.2014.15.20.8855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Rodríguez-Pardo VM, Aristizabal JA, Jaimes D, Quijano SM, de los Reyes I, Herrera MV, Solano J, Vernot JP. Mesenchymal stem cells promote leukaemic cells aberrant phenotype from B-cell acute lymphoblastic leukaemia. Hematol Oncol Stem Cell Ther 2013; 6:89-100. [PMID: 24161606 DOI: 10.1016/j.hemonc.2013.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/09/2013] [Accepted: 09/28/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The role of bone marrow-mesenchymal stem cells (BM-MSC) in leukaemic cell control is controversial. The purpose of this work was to evaluate BM-MSC role regarding the viability, proliferation and immunophenotype of normal B-cell precursors from control (Ct) patients and leukaemic cells from B-acute lymphoblastic leukaemia (B-ALL) patients. PATIENTS AND METHODS BM-MSC were isolated and characterised from voluntary donors. Mononuclear cells isolated from Ct and B-ALL bone marrow samples were cultured in the presence or absence of BM-MSC for 7days. Cell viability was determined with LIVE/DEAD and proliferation index evaluated by CFSE labelling. Cell population immunophenotypes were characterised by estimating CD19, CD10, CD20 and CD45 antigens by flow cytometry. RESULTS After co-culture, B-ALL cells exhibited higher viability (20-40%) as compared to just cells (3-10%). Ct and B-ALL absolute cell counts were higher in the presence of BM-MSC (Ct: 25/mm(3)cf8/mm(3), B-ALL: 15/mm(3)cf3/mm(3)). Normal B-cell subpopulations in co-culture had increased expression of CD19 and CD10 (Pre-pre B) and CD45 and CD20 antigens (Pre-B). B-ALL cells co-cultured with BM-MSC showed an increase in CD19 and CD20, although the greatest increase was observed in the CD10 antigen. CONCLUSIONS Lymphoid cell maintenance, at early stages of differentiation, was significantly promoted by BM-MSC in normal and leukaemic cells. Co-cultures also modulated the expression of antigens associated with the B-ALL asynchronous phenotype as CD10 co-expressed with CD19 and CD20. To our knowledge, this is the first time that CD10, CD19 and CD20 leukaemic antigens have been reported as being regulated by BM-MSC.
Collapse
Affiliation(s)
- Viviana M Rodríguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7(a), No. 40-62, Bogotá D.C., Colombia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Hua C, Cheng H, Wang W, Hao S, Xu J, Wang X, Gao Y, Zhu X, Cheng T, Yuan W. Distinct sensitivity of CD8+ CD4- and CD8+ CD4+ leukemic cell subpopulations to cyclophosphamide and rapamycin in Notch1-induced T-ALL mouse model. Leuk Res 2013; 37:1592-601. [PMID: 24090996 DOI: 10.1016/j.leukres.2013.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/01/2013] [Accepted: 09/09/2013] [Indexed: 01/13/2023]
Abstract
The Notch1 signaling pathway plays an essential role in cell growth and differentiation. Over-expression of the intracellular Notch1 domain (ICN1) in murine hematopoietic cells is able to induce robust T-cell acute lymphoblastic leukemia (T-ALL) in mice. Here we explored the drug sensitivity of T-ALL cells in two subpopulations of CD8(+)CD4(+) and CD8(+)CD4(-) cells in Notch1-induced T-ALL mice. We found that Notch1 induced T-ALL cells could be decreased by chemotherapeutic drug cyclophosphamide (CTX). CD8(+)CD4(-) T-ALL cells were more sensitive to CTX treatment than CD8(+)CD4(+) T-ALL cells. The percentage of apoptotic cells induced by CTX treatment was higher in CD8(+)CD4(-) T-ALL cells. T-ALL cells were also inhibited by inhibitor of mTORC1 rapamycin. CD8(+)CD4(+) T-ALL cells were more susceptible to rapamycin treatment than CD8(+)CD4(-) T-ALL cells. Rapamycin treatment selectively arrested more CD8(+)CD4(+) T-ALL cells at G0 phase of cell cycle. A combination of the two drugs significantly improved overall survival of T-ALL bearing mice when compared with CTX or rapamycin alone. These results indicated that CD8(+)CD4(+) and CD8(+)CD4(-) leukemia cell populations had distinct drug sensitivity.
Collapse
Affiliation(s)
- Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Neri LM, Cani A, Martelli AM, Simioni C, Junghanss C, Tabellini G, Ricci F, Tazzari PL, Pagliaro P, McCubrey JA, Capitani S. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 2013; 28:739-48. [PMID: 23892718 DOI: 10.1038/leu.2013.226] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/11/2013] [Accepted: 07/19/2013] [Indexed: 02/07/2023]
Abstract
B-precursor acute lymphoblastic leukemia (B-pre ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. The prognosis of B-pre ALL has improved in pediatric patients, but the outcome is much less successful in adults. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K), Akt and the mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) network is a feature of B-pre ALL, where it strongly influences cell growth and survival. RAD001, a selective mTORC1 inhibitor, has been shown to be cytotoxic against many types of cancer including hematological malignancies. To investigate whether mTORC1 could represent a target in the therapy of B-pre ALL, we treated cell lines and adult patient primary cells with RAD001. We documented that RAD001 decreased cell viability, induced cell cycle arrest in G0/G1 phase and caused apoptosis in B-pre ALL cell lines. Autophagy was also induced, which was important for the RAD001 cytotoxic effect, as downregulation of Beclin-1 reduced drug cytotoxicity. RAD001 strongly synergized with the novel allosteric Akt inhibitor MK-2206 in both cell lines and patient samples. Similar results were obtained with the combination CCI-779 plus GSK 690693. These findings point out that mTORC1 inhibitors, either as a single agent or in combination with Akt inhibitors, could represent a potential therapeutic innovative strategy in B-pre ALL.
Collapse
Affiliation(s)
- L M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - A Cani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - A M Martelli
- 1] Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy [2] Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - C Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - C Junghanss
- University of Rostock, Division of Medicine, Department of Hematology/Oncology/Palliative Medicine, Rostock, Germany
| | - G Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - F Ricci
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - P L Tazzari
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - P Pagliaro
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - S Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Grupp SA, Dvorak CC, Nieder ML, Levine JE, Wall DA, Langholz B, Pulsipher MA. Children's Oncology Group's 2013 blueprint for research: stem cell transplantation. Pediatr Blood Cancer 2013; 60:1044-7. [PMID: 23255402 PMCID: PMC4064788 DOI: 10.1002/pbc.24437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/13/2012] [Indexed: 01/18/2023]
Abstract
The role of SCT in pediatric oncology has continued to evolve with the introduction of new therapeutic agents and immunological insights into cancer. COG has focused its efforts on the study of hematopoietic stem cell transplantation in the treatment of pediatric malignancies in several major multi-institutional Phase II and Phase III studies. These studies include addressing the impact of allogenicity in ALL (ASCT0431), and establishing autologous stem cell transplant as the standard of care in neuroblastoma. Reducing transplant-associated toxicity was addressed in the ASCT0521 study, where the TNFα inhibitor etanercept was tested for the treatment of idiopathic pneumonia syndrome. Impact of cell dose was explored in the single versus tandem umbilical cord blood study CTN-0501, in close collaboration with the BMT-CTN.
Collapse
Affiliation(s)
- Stephan A Grupp
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4318, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Barrett D, Brown VI, Grupp SA, Teachey DT. Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr Drugs 2012; 14:299-316. [PMID: 22845486 PMCID: PMC4214862 DOI: 10.2165/11594740-000000000-00000] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphatidylinositiol 3-kinase (PI3K), AKT, mammalian target of rapamycin (mTOR) signaling pathway (PI3K/AKT/mTOR) is frequently dysregulated in disorders of cell growth and survival, including a number of pediatric hematologic malignancies. The pathway can be abnormally activated in childhood acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), and chronic myelogenous leukemia (CML), as well as in some pediatric lymphomas and lymphoproliferative disorders. Most commonly, this abnormal activation occurs as a consequence of constitutive activation of AKT, providing a compelling rationale to target this pathway in many of these conditions. A variety of agents, beginning with the rapamycin analogue (rapalog) sirolimus, have been used successfully to target this pathway in a number of pediatric hematologic malignancies. Rapalogs demonstrate significant preclinical activity against ALL, which has led to a number of clinical trials. Moreover, rapalogs can synergize with a number of conventional cytotoxic agents and overcome pathways of chemotherapeutic resistance for drugs commonly used in ALL treatment, including methotrexate and corticosteroids. Based on preclinical data, rapalogs are also being studied in AML, CML, and non-Hodgkin's lymphoma. Recently, significant progress has been made using rapalogs to treat pre-malignant lymphoproliferative disorders, including the autoimmune lymphoproliferative syndrome (ALPS); complete remissions in children with otherwise therapy-resistant disease have been seen. Rapalogs only block one component of the pathway (mTORC1), and newer agents are under preclinical and clinical development that can target different and often multiple protein kinases in the PI3K/AKT/mTOR pathway. Most of these agents have been tolerated in early-phase clinical trials. A number of PI3K inhibitors are under investigation. Of note, most of these also target other protein kinases. Newer agents are under development that target both mTORC1 and mTORC2, mTORC1 and PI3K, and the triad of PI3K, mTORC1, and mTORC2. Preclinical data suggest these dual- and multi-kinase inhibitors are more potent than rapalogs against many of the aforementioned hematologic malignancies. Two classes of AKT inhibitors are under development, the alkyl-lysophospholipids (APLs) and small molecule AKT inhibitors. Both classes have agents currently in clinical trials. A number of drugs are in development that target other components of the pathway, including eukaryotic translation initiation factor (eIF) 4E (eIF4E) and phosphoinositide-dependent protein kinase 1 (PDK1). Finally, a number of other key signaling pathways interact with PI3K/AKT/mTOR, including Notch, MNK, Syk, MAPK, and aurora kinase. These alternative pathways are being targeted alone and in combination with PI3K/AKT/mTOR inhibitors with promising preclinical results in pediatric hematologic malignancies. This review provides a comprehensive overview of the abnormalities in the PI3K/AKT/mTOR signaling pathway in pediatric hematologic malignancies, the agents that are used to target this pathway, and the results of preclinical and clinical trials, using those agents in childhood hematologic cancers.
Collapse
Affiliation(s)
- David Barrett
- Department of Pediatrics, Division of Oncology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
| | - Valerie I. Brown
- Department of Pediatrics, Division of Oncology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
| | - Stephan A. Grupp
- Department of Pediatrics, Division of Oncology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
| | - David T. Teachey
- Department of Pediatrics, Division of Oncology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
- Department of Pediatrics, Division of Hematology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
| |
Collapse
|
18
|
Abstract
Neurofibromatosis type 1 (NF1) and tuberous sclerosis complex (TSC) are autosomal-dominant genetic disorders that result from dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway. NF1 is caused by mutations in the NF1 gene on chromosome 17q11.2. Its protein product, neurofibromin, functions as a tumor suppressor and ultimately produces constitutive upregulation of mTOR. TSC is caused by mutations in either the TSC1 (chromosome 9q34) or TSC2 (chromosome 16p.13.3) genes. Their protein products, hamartin and tuberin, respectively, form a dimer that acts via the GAP protein Rheb (Ras homolog enhanced in brain) to directly inhibit mTOR, again resulting in upregulation. Specific inhibitors of mTOR are in clinical use, including sirolimus, everolimus, temsirolimus, and deforolimus. Everolimus has been shown to reduce the volume and appearance of subependymal giant cell astrocytomas (SEGA), facial angiofibromas, and renal angiomyolipomas associated with TSC, with a recent FDA approval for SEGA not suitable for surgical resection. This article reviews the use of mTOR inhibitors in these diseases, which have the potential to be a disease-modifying therapy in these and other conditions.
Collapse
|
19
|
Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 2012; 120:833-42. [PMID: 22685175 DOI: 10.1182/blood-2011-12-389932] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adults and children with high-risk CRLF2-rearranged acute lymphoblastic leukemia (ALL) respond poorly to current cytotoxic chemotherapy and suffer unacceptably high rates of relapse, supporting the need to use alternative therapies. CRLF2 encodes the thymic stromal lymphopoietin (TSLP) receptor, which activates cell signaling in normal lymphocytes on binding its ligand, TSLP. We hypothesized that aberrant cell signaling occurs in CRLF2-rearranged ALL and can be targeted by signal transduction inhibitors of this pathway. In a large number of primary CRLF2-rearranged ALL samples, we observed increased basal levels of pJAK2, pSTAT5, and pS6. We thus characterized the biochemical sequelae of CRLF2 and JAK alterations in CRLF2-rearranged ALL primary patient samples via analysis of TSLP-mediated signal transduction. TSLP stimulation of these leukemias further induced robust JAK/STAT and PI3K/mTOR pathway signaling. JAK inhibition abrogated phosphorylation of JAK/STAT and, surprisingly, of PI3K/mTOR pathway members, suggesting an interconnection between these signaling networks and providing a rationale for testing JAK inhibitors in clinical trials. The PI3K/mTOR pathway inhibitors rapamycin, PI103, and PP242 also inhibited activated signal transduction and translational machinery proteins of the PI3K/mTOR pathway, suggesting that signal transduction inhibitors targeting this pathway also may have therapeutic relevance for patients with CRLF2-rearranged ALL and merit further preclinical testing.
Collapse
|
20
|
Lee L, Fielding AK. Emerging pharmacotherapies for adult patients with acute lymphoblastic leukemia. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2012; 6:85-100. [PMID: 22346368 PMCID: PMC3273927 DOI: 10.4137/cmo.s7262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute lymphoblastic leukemia (ALL) treatment regimes are amongst the longest, most intensive and complex used in hematooncology. Despite this, while treatment of pediatric ALL is a success story, we are far from being able to ensure a durable response in adult ALL. This is not due to failure of induction therapy as a complete remission (CR) is achieved in over 90% of patients. However the challenge remains in ensuring a sustained remission. Furthermore in the face of relapsed disease, salvage therapies currently offer a poor chance of a good outcome. This article reviews the novel agents which show the most promise in the treatment of adult ALL.
Collapse
Affiliation(s)
- Lydia Lee
- Department of Hematology, Hillingdon Hospital, Pield Heath Road, Uxbridge, Middlesex, UB8 3NN
| | | |
Collapse
|
21
|
Yang X, Lin J, Gong Y, Ma H, Shuai X, Zhou R, Guo Y, Shan Q, He G. Antileukaemia effect of rapamycin alone or in combination with daunorubicin on Ph+ acute lymphoblastic leukaemia cell line. Hematol Oncol 2011; 30:123-30. [PMID: 21898527 DOI: 10.1002/hon.1013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 07/09/2011] [Accepted: 07/17/2011] [Indexed: 02/05/2023]
Abstract
The translocation (9;22) (q34;q11), known as the Philadelphia (Ph) chromosome and bcr-abl fusion gene, is the common cytogenetic abnormality and an unfavourable prognosis in adult acute lymphoblastic leukaemia (ALL). Although chemotherapeutic treatment produced high rates of complete response in approximately 70%-80% of newly diagnosed Ph+ ALL, the onset of resistance and clinical relapse is rapid. Therefore, the efficacy of treatment in Ph+ ALL is still to be determined. In this study, we aimed to assess the antileukemic activity of rapamycin (RAPA) (Sigma-Aldrich Corporation, MO, USA), a mammalian target of rapamycin inhibitor, alone and in combination with daunorubicin (DNR) (Pharmacia & Upjohn Company, Germany) in a Ph+ acute lymphoblastic cell line SUP-B15 and a primary Ph+ ALL sample in vitro. Here, we demonstrated that 50 nmol/L of RAPA significantly intensified the inhibition induced by DNR on both Ph+ ALL cell line and a primary Ph+ ALL sample. Notably, we reported that the consequence of DNR treatment induced the over expression of the components of mammalian target of rapamycin signalling pathway, whereas RAPA effectively eliminated this deleterious side effect of DNR, which might enhance DNR's ability to kill drug-resistant cancer. The synergistic effect was also associated with the increase in autophagy, blockage of cell cycle progression in the G1 phase. Altogether, our results suggest that DNR in combination with RAPA is more effective in the treatment of Ph+ ALL compared with DNR alone.
Collapse
Affiliation(s)
- Xi Yang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood 2010; 116:2070-7. [PMID: 20466853 PMCID: PMC4081177 DOI: 10.1182/blood-2009-12-261586] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The combination of cytotoxic chemotherapy and imatinib has improved the outcome for patients with Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL). Dasatinib has significant clinical activity in patients with imatinib resistance. We examined the efficacy and safety of combining chemotherapy with dasatinib for patients with Ph(+) ALL. Newly diagnosed patients received dasatinib 50 mg by mouth twice per day (or 100 mg daily) for the first 14 days of each of 8 cycles of alternating hyper-CVAD, and high-dose cytarabine and methotrexate. Patients in complete remission received maintenance daily dasatinib and monthly vincristine and prednisone for 2 years, followed by dasatinib indefinitely. Thirty-five patients with untreated Ph(+) ALL with a median age of 53 years (range, 21-79 years) were treated; 33 patients (94%) achieved complete remission. Two patients died of infections before response assessment. Grade 3 and 4 adverse events included hemorrhage and pleural and pericardial effusions. With a median follow-up of 14 months (range, 4-37 months), the median disease-free survival and median overall survival have not been reached, with an estimated 2-year survival of 64%. The combination of chemotherapy with dasatinib is effective in achieving long-term remissions in patients with newly diagnosed Ph(+) ALL. This study was registered at www.ClinicalTrials.gov as NCT00390793.
Collapse
|
23
|
Galimberti S, Petrini M. Temsirolimus in the treatment of relapsed and/or refractory mantle cell lymphoma. Cancer Manag Res 2010; 2:181-9. [PMID: 21188109 PMCID: PMC3004564 DOI: 10.2147/cmar.s7960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Indexed: 11/23/2022] Open
Abstract
Patients with mantle cell lymphoma (MCL) have a poor prognosis; consequently, new therapeutic approaches, such as rapamycin and its derivates, mammalian target of rapamycin (mTOR) inhibitors, are warranted. Temsirolimus (also known as CCI-779), a dihydroester of rapamycin, in MCL cell lines inhibited mTOR, downregulated p21 and v-Raf, and induced autophagy. The first clinical trial in MCL patients was performed using 250 mg of temsirolimus weekly for 6-12 cycles. The overall response rate was 38%; the median time to progression was 6.5 months, median overall survival was 12 months, and the median duration of response was 6.9 months. At lower dose (25 mg/week), the overall response rate was 41%, median overall survival was 14 months, and time to progression was 6 months. In another trial, 162 patients were randomly assigned to receive temsirolimus at 2 different doses (175 mg/week for 3 weeks, then 75 mg or 25 mg/week) or a treatment chosen by the investigator among the most frequently adopted single agents for treatment of relapsed MCL. Patients treated with 175/75 mg of temsirolimus had significantly higher response rates and longer progression-free survival than those treated with investigator's choice therapy. These data support the use of mTOR inhibitors for the treatment of MCL, probably in combination with other agents, such as antiangiogenic drugs or histone acetylase inhibitors.
Collapse
Affiliation(s)
- S Galimberti
- Department of Oncology, Transplant and Advances in Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
24
|
Inactivation of PI3k/Akt signaling pathway and activation of caspase-3 are involved in tanshinone I-induced apoptosis in myeloid leukemia cells in vitro. Ann Hematol 2010; 89:1089-97. [PMID: 20512574 DOI: 10.1007/s00277-010-0996-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
Tanshinone I (Tan I), a diterpene quinone extracted from herbal medicine Salvia miltiorrhiza Bunge, has recently been reported to have antitumor effects. As the mechanism of its proapoptotic effects on human myeloid leukemia cells has not been extensively studied, we performed an in-depth evaluation of the effects of Tan I on apoptosis in human K562 and HL-60 cells. The results revealed that Tan I could inhibit the growth of leukemia cells and cause apoptosis in a time- and dose-dependent manner. Apoptosis was observed clearly by flow cytometry and Hoechst 33258 staining, as well as DNA fragmentation analysis. After treatment by Tan I for 48 h, the percentage of disruption of mitochondrial membrane potential (Δψm) was increased in a dose-dependent manner. Western blotting analysis demonstrated the cleavage of caspase-3 zymogen protein and a dose-dependent cleavage of poly-(ADP-ribose) polymerase. Tan I-induced apoptosis was accompanied by a significant decrease in survivin and an increase in Bax. Moreover, Tan I treatment remarkably downregulated the phosphorylation of both P85/PI3K and Akt in a time-dependent manner, and the PI3K/AKT-specific inhibitor (LY294002) mimicked the apoptosis-inducing effects of Tan I. We therefore conclude that the induction of apoptosis by Tan I in these leukemia cells is mainly related to the disruption of Δψm, the upregulation of Bax expression, and the activation of caspase-3. This process is highly correlated with the inactivation of PI3K/Akt/survivin signaling pathways. The results indicate that Tan I may serve as an effective adjunctive reagent in the treatment of leukemia.
Collapse
|
25
|
Lapucci A, Lulli M, Amedei A, Papucci L, Witort E, Di Gesualdo F, Bertolini F, Brewer G, Nicolin A, Bevilacqua A, Schiavone N, Morello D, Donnini M, Capaccioli S. zeta-Crystallin is a bcl-2 mRNA binding protein involved in bcl-2 overexpression in T-cell acute lymphocytic leukemia. FASEB J 2010; 24:1852-65. [PMID: 20103721 DOI: 10.1096/fj.09-140459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human antiapoptotic bcl-2 gene has been discovered in t(14;18) B-cell leukemias/lymphomas because of its overexpression caused at a transcriptional control level by the bcl-2/IgH fusion gene. We were the first to disclose the post-transcriptional control of bcl-2 expression mediated by interactions of an adenine + uracil (AU)-rich element (ARE) in the 3'-UTR of bcl-2 mRNA with AU-binding proteins (AUBPs). Here, we identify and characterize zeta-crystallin as a new bcl-2 AUBP, whose silencing or overexpression has impact on bcl-2 mRNA stability. An increased Bcl-2 level observed in normal phytohemagglutinin (PHA)-activated T lymphocytes, acute lymphatic leukemia (ALL) T-cell lines, and T cells of patients with leukemia in comparison with normal non-PHA-activated T lymphocytes was concomitant with an increase in zeta-crystallin level. The specific association of zeta-crystallin with the bcl-2 ARE was significantly enhanced in T cells of patients with ALL, which accounts for the higher stability of bcl-2 mRNA and suggests a possible contribution of zeta-crystallin to bcl-2 overexpression occurring in this leukemia.
Collapse
Affiliation(s)
- Andrea Lapucci
- Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ravandi F, Kebriaei P. Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2010; 23:1043-63, vi. [PMID: 19825452 DOI: 10.1016/j.hoc.2009.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Philadelphia (Ph) chromosome, a short chromosome 22, is the most frequent cytogenetic abnormality in adult patients with acute lymphoblastic leukemia (ALL). It occurs in approximately 20% to 30% of adults and in about 5% of children with this disease. The incidence rises with age and occurs in approximately 50% of patients older than 50 years. This article reviews the treatment regimens for Ph+ ALL, including imatinib and second generation tyrosine kinase inhibitors (TKIs). The introduction of effective TKIs in the treatment of Ph+ ALL has introduced several avenues of research in a disease that was hitherto difficult to treat.
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX 77030, USA.
| | | |
Collapse
|
27
|
Tremblay CS, Hoang T, Hoang T. Early T cell differentiation lessons from T-cell acute lymphoblastic leukemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:121-56. [PMID: 20800819 DOI: 10.1016/s1877-1173(10)92006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cells develop from bone marrow-derived self-renewing hematopoietic stem cells (HSC). Upon entering the thymus, these cells undergo progressive commitment and differentiation driven by the thymic stroma and the pre-T cell receptor (pre-TCR). These processes are disrupted in T-cell acute lymphoblastic leukemia (T-ALL). More than 70% of recurring chromosomal rearrangements in T-ALL activate the expression of oncogenic transcription factors, belonging mostly to three families, basic helix-loop-helix (bHLH), homeobox (HOX), and c-MYB. This prevalence is indicative of their importance in the T lineage, and their dominant mechanisms of transformation. For example, bHLH oncoproteins inhibit E2A and HEB, revealing their tumor suppressor function in the thymus. The induction of T-ALL, nonetheless, requires collaboration with constitutive NOTCH1 signaling and the pre-TCR, as well as loss-of-function mutations for CDKN2A and PTEN. Significantly, NOTCH1, the pre-TCR pathway, and E2A/HEB proteins control critical checkpoints and branchpoints in early thymocyte development whereas several oncogenic transcription factors, HOXA9, c-MYB, SCL, and LYL-1 control HSC self-renewal. Together, these genetic lesions alter key regulatory processes in the cell, favoring self-renewal and subvert the normal control of thymocyte homeostasis.
Collapse
Affiliation(s)
- Cédric S Tremblay
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
28
|
Zhao WL. Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways. Leukemia 2009; 24:13-21. [PMID: 19865108 DOI: 10.1038/leu.2009.223] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
T-cell malignancies, mainly known as T-cell acute lymphoblastic leukemia (T-ALL) and T-cell non-Hodgkin's lymphoma (T-NHL), are aggressive tumors. Although the clinical outcome of the patients has improved dramatically with combination chemotherapy, significant challenges remain, including understanding of the factors that contribute to the malignant behavior of these tumor cells and developing subsequently optimal targeted therapy. Aberrant cell signal transduction is generally involved in tumor progression and drug resistance. This review describes the pathogenetic role of multiple cellular signaling pathways in T-cell malignancies and the potential therapeutic strategies based on the modulation of these key signaling networks.
Collapse
Affiliation(s)
- W-L Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China.
| |
Collapse
|
29
|
Ayala F, Dewar R, Kieran M, Kalluri R. Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 2009; 23:2233-41. [PMID: 19727127 DOI: 10.1038/leu.2009.175] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor microenvironment has a major role in cancer progression and resistance to treatment. The bone marrow (BM) is a dynamic network of growth factors, cytokines and stromal cells, providing a permissive environment for leukemogenesis and progression. Both BM stroma and leukemic blasts promote angiogenesis, which is increased in acute lymphoblastic leukemia and acute myeloid leukemia. Growth factors like vascular endothelial growth factor (VEGF), basic fibroblast growth factor and angiopoietins are the main proangiogenic mediators in acute leukemia. Autocrine proleukemic loops have been described for VEGF and angiopoietin in hematopoietic cells. Interactions of stromal cells and extracellular matrix with leukemic blasts can also generate antiapoptotic signals that contribute to neoplastic progression and persistence of treatment-resistant minimal residual disease. High expression of CXC chemokine ligand 4 (CXCR4) by leukemic blasts and activation of the CXCR4-CXCL12 axis is involved in leukemia progression and disruption of normal hematopoiesis. Leukemia-associated bone microenvironment markers could be used as prognostic or predictive indicators of disease progression and/or treatment outcome. Studies related to bone microenvironment would likely provide a better understanding of the treatment resistance associated with leukemia therapy and design of new treatments.
Collapse
Affiliation(s)
- F Ayala
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, USA
| | | | | | | |
Collapse
|
30
|
Chiarini F, Falà F, Tazzari PL, Ricci F, Astolfi A, Pession A, Pagliaro P, McCubrey JA, Martelli AM. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res 2009; 69:3520-8. [PMID: 19351820 PMCID: PMC3836286 DOI: 10.1158/0008-5472.can-08-4884] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent investigations have documented that constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it strongly influences growth and survival. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signaling in T-ALL is limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples, which displayed constitutive activation of PI3K/Akt/mTOR signaling. PI-103 inhibited the growth of T-ALL cells, including 170-kDa P-glycoprotein overexpressing cells. PI-103 cytotoxicity was independent of p53 gene status. PI-103 was more potent than inhibitors that are selective only for PI3K (Wortmannin, LY294002) or for mTOR (rapamycin). PI-103 induced G(0)-G(1) phase cell cycle arrest and apoptosis, which was characterized by activation of caspase-3 and caspase-9. PI-103 caused Akt dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase-3beta. Also, mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. PI-103 strongly synergized with vincristine. These findings indicate that multitargeted therapy toward PI3K and mTOR alone or with existing drugs may serve as an efficient treatment toward T-ALL cells, which require up-regulation of PI3K/Akt/mTOR signaling for their survival and growth.
Collapse
Affiliation(s)
- Francesca Chiarini
- Department of Human Anatomical Sciences University of Bologna, Bologna, Italy
| | - Federica Falà
- Department of Human Anatomical Sciences University of Bologna, Bologna, Italy
| | - Pier Luigi Tazzari
- Immunohaematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Francesca Ricci
- Immunohaematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Annalisa Astolfi
- Pediatric Oncology and Haematology Unit, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology and Haematology Unit, University of Bologna, Bologna, Italy
| | | | - James A. McCubrey
- Department of Microbiology & Immunology, School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Alberto M. Martelli
- Department of Human Anatomical Sciences University of Bologna, Bologna, Italy
- IGM-CNR, Sezione di Bologna c/o I.O.R., Bologna, Italy
| |
Collapse
|
31
|
Teachey DT, Grupp SA, Brown VI. Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br J Haematol 2009; 145:569-80. [PMID: 19344392 DOI: 10.1111/j.1365-2141.2009.07657.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that functions as a key regulator of cell growth, protein synthesis, and cell-cycle progression through interactions with a number of signalling pathways, including PI3K/AKT, ras, TCL1, and BCR/ABL. Many haematological malignancies have aberrant activation of the mTOR and related signalling pathways. Accordingly, mTOR inhibitors, a class of signal transduction inhibitors that were originally developed as immunosuppressive agents, are being investigated in preclinical models and clinical trials for a number of haematological malignancies. Sirolimus and second-generation mTOR inhibitors, such as temsirolimus and everolimus, are safe and relatively well-tolerated, making them potentially attractive as single agents or in combination with conventional cytotoxics and other targeted therapies. Promising early clinical data suggests activity of mTOR inhibitors in a number of haematological diseases, including acute lymphoblastic leukaemia, chronic myeloid leukaemia, mantle cell lymphoma, anaplastic large cell lymphoma, and lymphoproliferative disorders. This review describes the rationale for using mTOR inhibitors in a variety of haematological diseases with a focus on their use in leukaemia.
Collapse
Affiliation(s)
- David T Teachey
- Division of Paediatric Hematology, Children's Hospital of Philadelphia, 3615 Civic Centre Boulevard, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|