1
|
Meyer M, Parpoulas C, Barthélémy T, Becker JP, Charoentong P, Lyu Y, Börsig S, Bulbuc N, Tessmer C, Weinacht L, Ibberson D, Schmidt P, Pipkorn R, Eichmüller SB, Steinberger P, Lindner K, Poschke I, Platten M, Fröhling S, Riemer AB, Hassel JC, Roberti MP, Jäger D, Zörnig I, Momburg F. MediMer: a versatile do-it-yourself peptide-receptive MHC class I multimer platform for tumor neoantigen-specific T cell detection. Front Immunol 2024; 14:1294565. [PMID: 38239352 PMCID: PMC10794645 DOI: 10.3389/fimmu.2023.1294565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
Peptide-loaded MHC class I (pMHC-I) multimers have revolutionized our capabilities to monitor disease-associated T cell responses with high sensitivity and specificity. To improve the discovery of T cell receptors (TCR) targeting neoantigens of individual tumor patients with recombinant MHC molecules, we developed a peptide-loadable MHC class I platform termed MediMer. MediMers are based on soluble disulfide-stabilized β2-microglobulin/heavy chain ectodomain single-chain dimers (dsSCD) that can be easily produced in large quantities in eukaryotic cells and tailored to individual patients' HLA allotypes with only little hands-on time. Upon transient expression in CHO-S cells together with ER-targeted BirA biotin ligase, biotinylated dsSCD are purified from the cell supernatant and are ready to use. We show that CHO-produced dsSCD are free of endogenous peptide ligands. Empty dsSCD from more than 30 different HLA-A,B,C allotypes, that were produced and validated so far, can be loaded with synthetic peptides matching the known binding criteria of the respective allotypes, and stored at low temperature without loss of binding activity. We demonstrate the usability of peptide-loaded dsSCD multimers for the detection of human antigen-specific T cells with comparable sensitivities as multimers generated with peptide-tethered β2m-HLA heavy chain single-chain trimers (SCT) and wild-type peptide-MHC-I complexes prior formed in small-scale refolding reactions. Using allotype-specific, fluorophore-labeled competitor peptides, we present a novel dsSCD-based peptide binding assay capable of interrogating large libraries of in silico predicted neoepitope peptides by flow cytometry in a high-throughput and rapid format. We discovered rare T cell populations with specificity for tumor neoepitopes and epitopes from shared tumor-associated antigens in peripheral blood of a melanoma patient including a so far unreported HLA-C*08:02-restricted NY-ESO-1-specific CD8+ T cell population. Two representative TCR of this T cell population, which could be of potential value for a broader spectrum of patients, were identified by dsSCD-guided single-cell sequencing and were validated by cognate pMHC-I multimer staining and functional responses to autologous peptide-pulsed antigen presenting cells. By deploying the technically accessible dsSCD MHC-I MediMer platform, we hope to significantly improve success rates for the discovery of personalized neoepitope-specific TCR in the future by being able to also cover rare HLA allotypes.
Collapse
Affiliation(s)
- Marten Meyer
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Christina Parpoulas
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Titouan Barthélémy
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas P. Becker
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg, Germany
| | - Pornpimol Charoentong
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Yanhong Lyu
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
| | - Selina Börsig
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Tessmer
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
| | - Lisa Weinacht
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, Heidelberg University, Heidelberg, Germany
| | - Patrick Schmidt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- GMP and T Cell Therapy, DKFZ, Heidelberg, Germany
| | | | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Medical University of Vienna, Vienna, Austria
| | - Katharina Lindner
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Isabel Poschke
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center, Mannheim, Germany
- Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz), Mainz, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center, Heidelberg, Germany
- Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika B. Riemer
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg, Germany
| | - Jessica C. Hassel
- Section of DermatoOncology, Department of Dermatology and NCT, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Paula Roberti
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Inka Zörnig
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Mahata D, Mukherjee D, Biswas D, Basak S, Basak AJ, Jamir I, Pandey N, Khatoon H, Samanta D, Basak A, Mukherjee G. Activation and differentiation of cognate T cells by a dextran-based antigen-presenting system for cancer immunotherapy. Eur J Immunol 2023; 53:e2350528. [PMID: 37698527 DOI: 10.1002/eji.202350528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Immunotherapeutic modulation of antigen-specific T-cell responses instead of the whole repertoire helps avoid immune-related adverse events. We have developed an artificial antigen-presenting system (aAPS) where multiple copies of a multimeric peptide-MHC class I complex presenting a murine class I MHC restricted ovalbumin-derived peptide (signal 1), along with a costimulatory ligand (signal 2) are chemically conjugated to a dextran backbone. Cognate naive CD8+ T cells, when treated with this aAPS underwent significant expansion and showed an activated phenotype. Furthermore, elevated expression of effector cytokines led to the differentiation of these cells to cytotoxic T lymphocytes which resulted in target cell lysis, indicative of the functional efficacy of the aAPS. CD8+ T cells with decreased proliferative potential due to repeated antigenic stimulation could also be re-expanded by the developed aAPS. Thus, the developed aAPS warrants further engineering for future application as a rapidly customizable personalized immunotherapeutic agent, incorporating patient-specific MHC-restricted tumor antigens and different costimulatory signals to modulate both naive and antigen-experienced but exhausted tumor-specific T cells in cancer.
Collapse
Affiliation(s)
- Dhrubajyoti Mahata
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debangshu Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debarati Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Shyam Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Aditya Jyoti Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Imlilong Jamir
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Nidhi Pandey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Huma Khatoon
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Amit Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
3
|
Yang H, Sun L, Chen R, Xiong Z, Yu W, Liu Z, Chen H. Biomimetic dendritic polymeric microspheres induce enhanced T cell activation and expansion for adoptive tumor immunotherapy. Biomaterials 2023; 296:122048. [PMID: 36842237 DOI: 10.1016/j.biomaterials.2023.122048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
A variety of bioactive materials are currently developed to expand T cells ex vivo for adoptive T cell immunotherapy, also known as called artificial antigen-presenting cells (aAPCs). However, almost all the reported designs exhibit relatively smooth surface modified with T cell activating biomolecules, and therefore cannot well mimic the dendritic morphological characteristics of dendritic cells (DCs), the most important type of natural antigen-presenting cells (APCs) with high specific surface areas. Here, we propose a hydrophilic monomer-mediated surface morphology control strategy to synthesize biocompatible dendritic poly(N-isopropylacrylamide) (PNIPAM) microspheres for constructing aAPCs with surface morphology mimicking natural APCs (e.g., DCs). Interestingly, when maintaining the same ligands density, dendritic polymeric microspheres-based aAPCs (DPM beads) can more efficiently expand CD8+ T cells than that with smooth surfaces. Moreover, adoptive transfer of antigen-specific CD8+ T cells expanded by the DPM beads show significant antitumor effect of B16-OVA tumor bearing mice. Therefore, we provide a new concept for constructing biomimetic aAPCs with enhanced T cell expansion ability.
Collapse
Affiliation(s)
- He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zijian Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Wenzhuo Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Highly tailorable gellan gum nanoparticles as a platform for the development of T cell activator systems. Biomater Res 2022; 26:48. [PMID: 36180901 PMCID: PMC9523970 DOI: 10.1186/s40824-022-00297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background T cell priming has been shown to be a powerful immunotherapeutic approach for cancer treatment in terms of efficacy and relatively weak side effects. Systems that optimize the stimulation of T cells to improve therapeutic efficacy are therefore in constant demand. A way to achieve this is through artificial antigen presenting cells that are complexes between vehicles and key molecules that target relevant T cell subpopulations, eliciting antigen-specific T cell priming. In such T cell activator systems, the vehicles chosen to deliver and present the key molecules to the targeted cell populations are of extreme importance. In this work, a new platform for the creation of T cell activator systems based on highly tailorable nanoparticles made from the natural polymer gellan gum (GG) was developed and validated. Methods GG nanoparticles were produced by a water in oil emulsion procedure, and characterized by dynamic light scattering, high resolution scanning electronic microscopy and water uptake. Their biocompatibility with cultured cells was assessed by a metabolic activity assay. Surface functionalization was performed with anti-CD3/CD28 antibodies via EDC/NHS or NeutrAvidin/Biotin linkage. Functionalized particles were tested for their capacity to stimulate CD4+ T cells and trigger T cell cytotoxic responses. Results Nanoparticles were approximately 150 nm in size, with a stable structure and no detectable cytotoxicity. Water uptake originated a weight gain of up to 3200%. The functional antibodies did efficiently bind to the nanoparticles, as confirmed by SDS-PAGE, which then targeted the desired CD4+ populations, as confirmed by confocal microscopy. The developed system presented a more sustained T cell activation over time when compared to commercial alternatives. Concurrently, the expression of higher levels of key cytotoxic pathway molecules granzyme B/perforin was induced, suggesting a greater cytotoxic potential for future application in adoptive cancer therapy. Conclusions Our results show that GG nanoparticles were successfully used as a highly tailorable T cell activator system platform capable of T cell expansion and re-education. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00297-z.
Collapse
|
5
|
Xue Y, Che J, Ji X, Li Y, Xie J, Chen X. Recent advances in biomaterial-boosted adoptive cell therapy. Chem Soc Rev 2022; 51:1766-1794. [PMID: 35170589 DOI: 10.1039/d1cs00786f] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adoptive immunotherapies based on the transfer of functional immune cells hold great promise in treating a wide range of malignant diseases, especially cancers, autoimmune diseases, and infectious diseases. However, manufacturing issues and biological barriers lead to the insufficient population of target-selective effector cells at diseased sites after adoptive transfer, hindering effective clinical translation. The convergence of immunology, cellular biology, and materials science lays a foundation for developing biomaterial-based engineering platforms to overcome these challenges. Biomaterials can be rationally designed to improve ex vivo immune cell expansion, expedite functional engineering, facilitate protective delivery of immune cells in situ, and navigate the infused cells in vivo. Herein, this review presents a comprehensive summary of the latest progress in biomaterial-based strategies to enhance the efficacy of adoptive cell therapy, focusing on function-specific biomaterial design, and also discusses the challenges and prospects of this field.
Collapse
Affiliation(s)
- Yonger Xue
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Junyi Che
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xuemei Ji
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yunuo Li
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China.
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan.,State Key Laboratory of Bioelectronics, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
6
|
Isser A, Livingston NK, Schneck JP. Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials 2021; 268:120584. [PMID: 33338931 PMCID: PMC7856270 DOI: 10.1016/j.biomaterials.2020.120584] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
T cells are often referred to as the 'guided missiles' of our immune system because of their capacity to traffic to and accumulate at sites of infection or disease, destroy infected or mutated cells with high specificity and sensitivity, initiate systemic immune responses, sterilize infections, and produce long-lasting memory. As a result, they are a common target for a range of cancer immunotherapies. However, the myriad of challenges of expanding large numbers of T cells specific to each patient's unique tumor antigens has led researchers to develop alternative, more scalable approaches. Biomaterial platforms for expansion of antigen-specific T cells offer a path forward towards broadscale translation of personalized immunotherapies by providing "off-the-shelf", yet modular approaches to customize the phenotype, function, and specificity of T cell responses. In this review, we discuss design considerations and progress made in the development of ex vivo and in vivo technologies for activating antigen-specific T cells, including artificial antigen presenting cells, T cell stimulating scaffolds, biomaterials-based vaccines, and artificial lymphoid organs. Ultimate translation of these platforms as a part of cancer immunotherapy regimens hinges on an in-depth understanding of T cell biology and cell-material interactions.
Collapse
Affiliation(s)
- Ariel Isser
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for Nanobiotechnology, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Institute for Nanobiotechnology, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Schappert A, Schneck JP, Suarez L, Oelke M, Schütz C. Soluble MHC class I complexes for targeted immunotherapy. Life Sci 2018; 209:255-258. [PMID: 30102903 DOI: 10.1016/j.lfs.2018.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/27/2022]
Abstract
Major histocompatibility complexes (MHC) have been used for more than two decades in clinical and pre-clinical approaches of tumor immunotherapy. They have been proven efficient for detecting anti-tumor-specific T cells when utilized as soluble multimers, immobilized on cells or artificial structures such as artificial antigen-presenting cells (aAPC) and have been shown to generate effective anti-tumor responses. In this review we summarize the use of soluble MHC class I complexes in tumor vaccination studies, highlighting the different strategies and their contradicting results. In summary, we believe that soluble MHC class I molecules represent an exciting tool with great potential to impact the understanding and development of immunotherapeutic approaches on many levels from monitoring to treatment.
Collapse
Affiliation(s)
- Anna Schappert
- Paul-Ehrlich-Institute, Division of Immunology, Langen, Germany; Medical Clinic 1, University Hospital/Goethe University of Frankfurt am Main, Germany.
| | - Jonathan P Schneck
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
8
|
Hickey JW, Kosmides AK, Schneck JP. Engineering Platforms for T Cell Modulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:277-362. [PMID: 30262034 DOI: 10.1016/bs.ircmb.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cells are crucial contributors to mounting an effective immune response and increasingly the focus of therapeutic interventions in cancer, infectious disease, and autoimmunity. Translation of current T cell immunotherapies has been hindered by off-target toxicities, limited efficacy, biological variability, and high costs. As T cell therapeutics continue to develop, the application of engineering concepts to control their delivery and presentation will be critical for their success. Here, we outline the engineer's toolbox and contextualize it with the biology of T cells. We focus on the design principles of T cell modulation platforms regarding size, shape, material, and ligand choice. Furthermore, we review how application of these design principles has already impacted T cell immunotherapies and our understanding of T cell biology. Recent, salient examples from protein engineering, synthetic particles, cellular and genetic engineering, and scaffolds and surfaces are provided to reinforce the importance of design considerations. Our aim is to provide a guide for immunologists, engineers, clinicians, and the pharmaceutical sector for the design of T cell-targeting platforms.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan P Schneck
- Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
de la Zerda A, Kratochvil MJ, Suhar NA, Heilshorn SC. Review: Bioengineering strategies to probe T cell mechanobiology. APL Bioeng 2018; 2:021501. [PMID: 31069295 PMCID: PMC6324202 DOI: 10.1063/1.5006599] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
T cells play a major role in adaptive immune response, and T cell dysfunction can lead to the progression of several diseases that are often associated with changes in the mechanical properties of tissues. However, the concept that mechanical forces play a vital role in T cell activation and signaling is relatively new. The endogenous T cell microenvironment is highly complex and dynamic, involving multiple, simultaneous cell-cell and cell-matrix interactions. This native complexity has made it a challenge to isolate the effects of mechanical stimuli on T cell activation. In response, researchers have begun developing engineered platforms that recapitulate key aspects of the native microenvironment to dissect these complex interactions in order to gain a better understanding of T cell mechanotransduction. In this review, we first describe some of the unique characteristics of T cells and the mounting research that has shown they are mechanosensitive. We then detail the specific bioengineering strategies that have been used to date to measure and perturb the mechanical forces at play during T cell activation. In addition, we look at engineering strategies that have been used successfully in mechanotransduction studies for other cell types and describe adaptations that may make them suitable for use with T cells. These engineering strategies can be classified as 2D, so-called 2.5D, or 3D culture systems. In the future, findings from this emerging field will lead to an optimization of culture environments for T cell expansion and the development of new T cell immunotherapies for cancer and other immune diseases.
Collapse
Affiliation(s)
- Adi de la Zerda
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | | | - Nicholas A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Wang C, Sun W, Ye Y, Bomba HN, Gu Z. Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs. Theranostics 2017; 7:3504-3516. [PMID: 28912891 PMCID: PMC5596439 DOI: 10.7150/thno.19017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed.
Collapse
Affiliation(s)
- Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hunter N. Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Kosmides AK, Sidhom JW, Fraser A, Bessell CA, Schneck JP. Dual Targeting Nanoparticle Stimulates the Immune System To Inhibit Tumor Growth. ACS NANO 2017; 11:5417-5429. [PMID: 28589725 PMCID: PMC8635119 DOI: 10.1021/acsnano.6b08152] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We describe the development of a nanoparticle platform that overcomes the immunosuppressive tumor microenvironment. These nanoparticles are coated with two different antibodies that simultaneously block the inhibitory checkpoint PD-L1 signal and stimulate T cells via the 4-1BB co-stimulatory pathway. These "immunoswitch" particles significantly delay tumor growth and extend survival in multiple in vivo models of murine melanoma and colon cancer in comparison to the use of soluble antibodies or nanoparticles separately conjugated with the inhibitory and stimulating antibodies. Immunoswitch particles enhance effector-target cell conjugation and bypass the requirement for a priori knowledge of tumor antigens. The use of the immunoswitch nanoparticles resulted in an increased density, specificity, and in vivo functionality of tumor-infiltrating CD8+ T cells. Changes in the T cell receptor repertoire against a single tumor antigen indicate immunoswitch particles expand an effective set of T cell clones. Our data show the potential of a signal-switching approach to cancer immunotherapy that simultaneously targets two stages of the cancer immunity cycle resulting in robust antitumor activity.
Collapse
Affiliation(s)
- Alyssa K. Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - John-William Sidhom
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Andrew Fraser
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Catherine A. Bessell
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Jonathan P. Schneck
- Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Corresponding Author:
| |
Collapse
|
12
|
Neal LR, Bailey SR, Wyatt MM, Bowers JS, Majchrzak K, Nelson MH, Haupt C, Paulos CM, Varela JC. The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies. JOURNAL OF IMMUNOLOGY RESEARCH AND THERAPY 2017; 2:68-79. [PMID: 28825053 PMCID: PMC5560309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adoptive T cell transfer (ACT) can mediate objective responses in patients with advanced malignancies. There have been major advances in this field, including the optimization of the ex vivo generation of tumor-reactive lymphocytes to ample numbers for effective ACT therapy via the use of natural and artificial antigen presenting cells (APCs). Herein we review the basic properties of APCs and how they have been manufactured through the years to augment vaccine and T cell-based cancer therapies. We then discuss how these novel APCs impact the function and memory properties of T cells. Finally, we propose new ways to synthesize aAPCs to augment the therapeutic effectiveness of antitumor T cells for ACT therapy.
Collapse
Affiliation(s)
- Lillian R. Neal
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
- Department of Dermatological Surgery and Dermatology, Medical University of South Carolina, Charleston, SC 29425
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, 29425
| | - Stefanie R. Bailey
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
- Department of Dermatological Surgery and Dermatology, Medical University of South Carolina, Charleston, SC 29425
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Megan M. Wyatt
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
- Department of Dermatological Surgery and Dermatology, Medical University of South Carolina, Charleston, SC 29425
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Jacob S. Bowers
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
- Department of Dermatological Surgery and Dermatology, Medical University of South Carolina, Charleston, SC 29425
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Kinga Majchrzak
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
- Department of Dermatological Surgery and Dermatology, Medical University of South Carolina, Charleston, SC 29425
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Michelle H. Nelson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
- Department of Dermatological Surgery and Dermatology, Medical University of South Carolina, Charleston, SC 29425
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Carl Haupt
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, 29425
| | - Chrystal M. Paulos
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
- Department of Dermatological Surgery and Dermatology, Medical University of South Carolina, Charleston, SC 29425
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Juan C. Varela
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, 29425
| |
Collapse
|
13
|
Ben-Akiva E, Meyer RA, Wilson DR, Green JJ. Surface engineering for lymphocyte programming. Adv Drug Deliv Rev 2017; 114:102-115. [PMID: 28501510 PMCID: PMC5688954 DOI: 10.1016/j.addr.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
The once nascent field of immunoengineering has recently blossomed to include approaches to deliver and present biomolecules to program diverse populations of lymphocytes to fight disease. Building upon improved understanding of the molecular and physical mechanics of lymphocyte activation, varied strategies for engineering surfaces to activate and deactivate T-Cells, B-Cells and natural killer cells are in preclinical and clinical development. Surfaces have been engineered at the molecular level in terms of the presence of specific biological factors, their arrangement on a surface, and their diffusivity to elicit specific lymphocyte fates. In addition, the physical and mechanical characteristics of the surface including shape, anisotropy, and rigidity of particles for lymphocyte activation have been fine-tuned. Utilizing these strategies, acellular systems have been engineered for the expansion of T-Cells and natural killer cells to clinically relevant levels for cancer therapies as well as engineered to program B-Cells to better combat infectious diseases.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Johns Hopkins Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Randall A Meyer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David R Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Johns Hopkins Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
14
|
Biomimetic biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanoma. Biomaterials 2016; 118:16-26. [PMID: 27940380 DOI: 10.1016/j.biomaterials.2016.11.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 01/08/2023]
Abstract
Biomimetic materials that target the immune system and generate an anti-tumor responses hold promise in augmenting cancer immunotherapy. These synthetic materials can be engineered and optimized for their biodegradability, physical parameters such as shape and size, and controlled release of immune-modulators. As these new platforms enter the playing field, it is imperative to understand their interaction with existing immunotherapies since single-targeted approaches have limited efficacy. Here, we investigate the synergy between a PLGA-based artificial antigen presenting cell (aAPC) and a checkpoint blockade molecule, anti-PD1 monoclonal antibody (mAb). The combination of antigen-specific aAPC-based activation and anti-PD-1 mAb checkpoint blockade induced the greatest IFN-γ secretion by CD8+ T cells in vitro. Combination treatment also acted synergistically in an in vivo murine melanoma model to result in delayed tumor growth and extended survival, while either treatment alone had no effect. This was shown mechanistically to be due to decreased PD-1 expression and increased antigen-specific proliferation of CD8+ T cells within the tumor microenvironment and spleen. Thus, biomaterial-based therapy can synergize with other immunotherapies and motivates the translation of biomimetic combinatorial treatments.
Collapse
|
15
|
Perica K, Kosmides AK, Schneck JP. Linking form to function: Biophysical aspects of artificial antigen presenting cell design. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:781-90. [PMID: 25200637 PMCID: PMC4344884 DOI: 10.1016/j.bbamcr.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/22/2022]
Abstract
Artificial antigen presenting cells (aAPCs) are engineered platforms for T cell activation and expansion, synthesized by coupling T cell activating proteins to the surface of cell lines or biocompatible particles. They can serve both as model systems to study the basic aspects of T cell signaling and translationally as novel approaches for either active or adoptive immunotherapy. Historically, these reductionist systems have not been designed to mimic the temporally and spatially complex interactions observed during endogenous T cell-APC contact, which include receptor organization at both micro- and nanoscales and dynamic changes in cell and membrane morphologies. Here, we review how particle size and shape, as well as heterogenous distribution of T cell activating proteins on the particle surface, are critical aspects of aAPC design. In doing so, we demonstrate how insights derived from endogenous T cell activation can be applied to optimize aAPC, and in turn how aAPC platforms can be used to better understand endogenous T cell stimulation. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan P Schneck
- Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Bruns H, Bessell C, Varela JC, Haupt C, Fang J, Pasemann S, Mackensen A, Oelke M, Schneck JP, Schütz C. CD47 Enhances In Vivo Functionality of Artificial Antigen-Presenting Cells. Clin Cancer Res 2015; 21:2075-83. [PMID: 25593301 DOI: 10.1158/1078-0432.ccr-14-2696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/04/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Artificial antigen-presenting cells, aAPC, have successfully been used to stimulate antigen-specific T-cell responses in vitro as well as in vivo. Although aAPC compare favorably with autologous dendritic cells in vitro, their effect in vivo might be diminished through rapid clearance by macrophages. Therefore, to prevent uptake and minimize clearance of aAPC by macrophages, thereby increasing in vivo functionality, we investigated the efficiency of "don't eat me" three-signal aAPC compared with classical two-signal aAPC. EXPERIMENTAL DESIGN To generate "don't eat me" aAPC, CD47 was additionally immobilized onto classical aAPC (aAPC(CD47+)). aAPC and aAPC(CD47+) were analyzed in in vitro human primary T-cell and macrophage cocultures. In vivo efficiency was compared in a NOD/SCID T-cell proliferation and a B16-SIY melanoma model. RESULTS This study demonstrates that aAPC(CD47+) in coculture with human macrophages show a CD47 concentration-dependent inhibition of phagocytosis, whereas their ability to generate and expand antigen-specific T cells was not affected. Furthermore, aAPC(CD47+)-generated T cells displayed equivalent killing abilities and polyfunctionality when compared with aAPC-generated T cells. In addition, in vivo studies demonstrated an enhanced stimulatory capacity and tumor inhibition of aAPC(CD47+) over normal aAPC in conjunction with diverging biodistribution in different organs. CONCLUSIONS Our data for the first time show that aAPC functionalized with CD47 maintain their stimulatory capacity in vitro and demonstrate enhanced in vivo efficiency. Thus, these next-generation aAPC(CD47+) have a unique potential to enhance the application of the aAPC technology for future immunotherapy approaches.
Collapse
Affiliation(s)
- Heiko Bruns
- Department of Internal Medicine 5-Hematology/Oncology, University of Erlangen, Erlangen, Germany
| | - Catherine Bessell
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Juan Carlos Varela
- Division of Hematology, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Carl Haupt
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jerry Fang
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shirin Pasemann
- Department of Internal Medicine 5-Hematology/Oncology, University of Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5-Hematology/Oncology, University of Erlangen, Erlangen, Germany
| | - Mathias Oelke
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jonathan P Schneck
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Christian Schütz
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
17
|
Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol 2014; 32:456-65. [PMID: 24998519 PMCID: PMC4154451 DOI: 10.1016/j.tibtech.2014.06.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023]
Abstract
Active anti-cancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells (APCs). Therapy with autologous natural APCs is costly and time-consuming and results in variable outcomes in clinical trials. Therefore, development of artificial APCs (aAPCs) has attracted significant interest as an alternative. We discuss the characteristics of various types of acellular aAPCs, and their clinical potential in cancer immunotherapy. The size, shape, and ligand mobility of aAPCs and their presentation of different immunological signals can all have significant effects on cytotoxic T cell activation. Novel optimized aAPCs, combining carefully tuned properties, may lead to efficient immunomodulation and improved clinical responses in cancer immunotherapy.
Collapse
Affiliation(s)
- Loek J Eggermont
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Leonie E Paulis
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jurjen Tel
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Wölfl M, Greenberg PD. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat Protoc 2014; 9:950-66. [PMID: 24675735 PMCID: PMC4312138 DOI: 10.1038/nprot.2014.064] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen-specific priming of human, naive T cells has been difficult to assess. Owing to the low initial frequency in the naive cell pool of specific T cell precursors, such an analysis has been obscured by the requirements for repeated stimulations and prolonged culture time. In this protocol, we describe how to evaluate antigen-specific priming of CD8(+) cells 10 d after a single specific stimulation. The assay provides reference conditions, which result in the expansion of a substantial population of antigen-specific T cells from the naive repertoire. Various conditions and modifications during the priming process (e.g., testing new cytokines, co-stimulators and so on) can now be directly compared with the reference conditions. Factors relevant to achieving effective priming include the dendritic cell preparation, the T cell preparation, the cell ratio at the time of priming, the serum source used for the experiment and the timing of addition and concentration of the cytokines used for expansion. This protocol is relevant for human immunology, vaccine biology and drug development.
Collapse
Affiliation(s)
- Matthias Wölfl
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - Philip D Greenberg
- Fred Hutchinson Cancer Research Center and the Departments of Immunology and Medicine, University of Washington, Seattle, WA
| |
Collapse
|
19
|
Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS NANO 2014; 8:2252-60. [PMID: 24564881 PMCID: PMC4004316 DOI: 10.1021/nn405520d] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/05/2014] [Indexed: 05/20/2023]
Abstract
Iron-dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Ang Tu
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Joan Glick Bieler
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Michael Edidin
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Jonathan P. Schneck
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
20
|
Tools and methods for identification and analysis of rare antigen-specific T lymphocytes. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 104:73-88. [PMID: 24214619 DOI: 10.1007/978-3-0348-0726-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T lymphocytes are essential as effector and memory cells for immune defense against infections and as regulatory T cells in the establishment and maintenance of immune tolerance. However, they are also involved in immune pathology being effectors in autoimmune and allergic diseases or suppressors of immunity in cancer, and they often cause problems in transplantation. Therefore, strategies are being developed that allow the in vivo amplification or isolation, in vitro expansion and genetic manipulation of beneficial T cells for adoptive cell therapies or for the tolerization, or elimination of pathogenic T cells. The major goal is to make use of the exquisite antigen specificity of T cells to develop targeted strategies and to develop techniques that allow for the identification and depletion or enrichment of very often rare antigen-specific naïve as well as effector and memory T cells. Such techniques are very useful for immune monitoring of T cell responses in diagnostics and vaccination and for the development of T cell-based assays for the replacement of animal testing in immunotoxicology to identify contact allergens and drugs that cause adverse reactions.
Collapse
|
21
|
Perica K, De León Medero A, Durai M, Chiu YL, Bieler JG, Sibener L, Niemöller M, Assenmacher M, Richter A, Edidin M, Oelke M, Schneck J. Nanoscale artificial antigen presenting cells for T cell immunotherapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2014; 10:119-29. [PMID: 23891987 PMCID: PMC4114774 DOI: 10.1016/j.nano.2013.06.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/25/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
Artificial antigen presenting cells (aAPC), which deliver stimulatory signals to cytotoxic lymphocytes, are a powerful tool for both adoptive and active immunotherapy. Thus far, aAPC have been synthesized by coupling T cell activating proteins such as CD3 or MHC-peptide to micron-sized beads. Nanoscale platforms have different trafficking and biophysical interaction properties and may allow development of new immunotherapeutic strategies. We therefore manufactured aAPC based on two types of nanoscale particle platforms: biocompatible iron-dextran paramagnetic particles (50-100 nm in diameter) and avidin-coated quantum dot nanocrystals (~30 nm). Nanoscale aAPC induced antigen-specific T cell proliferation from mouse splenocytes and human peripheral blood T cells. When injected in vivo, both iron-dextran particles and quantum dot nanocrystals enhanced tumor rejection in a subcutaneous mouse melanoma model. This is the first description of nanoscale aAPC that induce antigen-specific T cell proliferation in vitro and lead to effective T cell stimulation and inhibition of tumor growth in vivo. FROM THE CLINICAL EDITOR Artifical antigen presenting cells could revolutionize the field of cancer-directed immunotherapy. This team of investigators have manufactured two types of nanoscale particle platform-based aAPCs and demonstrates that both iron-dextran particles and quantum dot nanocrystals enhance tumor rejection in a melanoma model, providing the first description of nanoscale aAPCs that lead to effective T cell stimulation and inhibition of tumor growth.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Departments of Pathology, Oncology, and Medicine. Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrés De León Medero
- Departments of Pathology, Oncology, and Medicine. Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Malarvizhi Durai
- Departments of Pathology, Oncology, and Medicine. Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yen Ling Chiu
- Departments of Pathology, Oncology, and Medicine. Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joan Glick Bieler
- Departments of Pathology, Oncology, and Medicine. Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Leah Sibener
- Departments of Pathology, Oncology, and Medicine. Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | - Michael Edidin
- Department of Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mathias Oelke
- Departments of Pathology, Oncology, and Medicine. Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan Schneck
- Departments of Pathology, Oncology, and Medicine. Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Perica K, Bieler JG, Edidin M, Schneck J. Modulation of MHC binding by lateral association of TCR and coreceptor. Biophys J 2013. [PMID: 23199917 DOI: 10.1016/j.bpj.2012.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The structure of a T cell receptor (TCR) and its affinity for cognate antigen are fixed, but T cells regulate binding sensitivity through changes in lateral membrane organization. TCR microclusters formed upon antigen engagement participate in downstream signaling. Microclusters are also found 3-4 days after activation, leading to enhanced antigen binding upon rechallenge. However, others have found an almost complete loss of antigen binding four days after T cell activation, when TCR clusters are present. To resolve these contradictory results, we compared binding of soluble MHC-Ig dimers by transgenic T cells stimulated with a high (100 μM) or low (100 fM) dose of cognate antigen. Cells activated by a high dose of peptide bound sixfold lower amounts of CD8-dependent ligand K(b)-SIY than cells activated by a low dose of MHC/peptide. In contrast, both cell populations bound a CD8-independent ligand L(d)-QL9 equally well. Consistent with the differences between binding of CD8-dependent and CD8-independent peptide/MHC, Förster resonance energy transfer (FRET) measurements of molecular proximity reported little nanoscale association of TCR with CD8 (16 FRET units) compared to their association on cells stimulated by low antigen dose (62 FRET units). Loss of binding induced by changes in lateral organization of TCR and CD8 may serve as a regulatory mechanism to avoid excessive inflammation and immunopathology in response to aggressive infection.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
23
|
Paulis LE, Mandal S, Kreutz M, Figdor CG. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr Opin Immunol 2013; 25:389-95. [PMID: 23571027 DOI: 10.1016/j.coi.2013.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy critically relies on the efficient presentation of tumor antigens to T-cells to elicit a potent anti-tumor immune response aimed at life-long protection against cancer recurrence. Recent advances in the nanovaccine field have now resulted in formulations that trigger strong anti-tumor responses. Nanovaccines are assemblies that are able to present tumor antigens and appropriate immune-stimulatory signals either directly to T-cells or indirectly via antigen-presenting dendritic cells. This review focuses on important aspects of nanovaccine design for dendritic cells, including the synergistic and cytosolic delivery of immunogenic compounds, as well as their passive and active targeting to dendritic cells. In addition, nanoparticles for direct T-cell activation are discussed, addressing features necessary to effectively mimic dendritic cell/T-cell interactions.
Collapse
Affiliation(s)
- Leonie E Paulis
- Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
24
|
Kamperschroer C, Kaur A, Lebrec H. A summary of meeting proceedings for ‘Measuring immune responses in non-human primates for drug development—Opportunities and challenges for predicting human efficacy and immunotoxicity’. J Immunotoxicol 2012; 9:108-20. [DOI: 10.3109/1547691x.2011.631610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Abstract
The observation that T cells can recognize and specifically eliminate cancer cells has spurred interest in the development of efficient methods to generate large numbers of T cells with specificity for tumor antigens that can be harnessed for use in cancer therapy. Recent studies have demonstrated that during encounter with tumor antigen, the signals delivered to T cells by professional antigen-presenting cells can affect T-cell programming and their subsequent therapeutic efficacy. This has stimulated efforts to develop artificial antigen-presenting cells that allow optimal control over the signals provided to T cells. In this review, we will discuss the advantages and disadvantages of cellular and acellular artificial antigen-presenting cell systems and their use in T-cell adoptive immunotherapy for cancer.
Collapse
|