1
|
Lange PT, White MC, Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol 2022; 434:167214. [PMID: 34437888 PMCID: PMC8863980 DOI: 10.1016/j.jmb.2021.167214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.
Collapse
Affiliation(s)
- Philip T Lange
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/langept
| | - Maria C White
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/maria_c_white
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Brar G, Farhat NA, Sukhina A, Lam AK, Kim YH, Hsu T, Tong L, Lin WW, Ware CF, Blackman MA, Sun R, Wu TT. Deletion of immune evasion genes provides an effective vaccine design for tumor-associated herpesviruses. NPJ Vaccines 2020; 5:102. [PMID: 33298958 PMCID: PMC7644650 DOI: 10.1038/s41541-020-00251-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccines based on live attenuated viruses often induce broad, multifaceted immune responses. However, they also usually sacrifice immunogenicity for attenuation. It is particularly difficult to elicit an effective vaccine for herpesviruses due to an armament of immune evasion genes and a latent phase. Here, to overcome the limitation of attenuation, we developed a rational herpesvirus vaccine in which viral immune evasion genes were deleted to enhance immunogenicity while also attaining safety. To test this vaccine strategy, we utilized murine gammaherpesvirus-68 (MHV-68) as a proof-of-concept model for the cancer-associated human γ-herpesviruses, Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. We engineered a recombinant MHV-68 virus by targeted inactivation of viral antagonists of type I interferon (IFN-I) pathway and deletion of the latency locus responsible for persistent infection. This recombinant virus is highly attenuated with no measurable capacity for replication, latency, or persistence in immunocompetent hosts. It stimulates robust innate immunity, differentiates virus-specific memory T cells, and elicits neutralizing antibodies. A single vaccination affords durable protection that blocks the establishment of latency following challenge with the wild type MHV-68 for at least six months post-vaccination. These results provide a framework for effective vaccination against cancer-associated herpesviruses through the elimination of latency and key immune evasion mechanisms from the pathogen.
Collapse
Affiliation(s)
- Gurpreet Brar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Nisar A Farhat
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alisa Sukhina
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alex K Lam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Yong Hoon Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Tiffany Hsu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Leming Tong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Wai Wai Lin
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Blackman MA. From Superantigens to "Real" Viral Antigens. Viral Immunol 2020; 33:211-214. [PMID: 32286177 PMCID: PMC7185356 DOI: 10.1089/vim.2019.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Studies inspired by Dr. Peter Doherty led to over 16 years of research into the mouse gamma-herpesvirus, γHV68, in the Blackman laboratory. Progress on our understanding of γHV68 biology include insight into the establishment of latency, immune control of the acute and latent stages of infection and experimental vaccines, is described here.
Collapse
|
4
|
Abstract
Vaccination against γ-herpesviruses has been hampered by our limited understanding of their normal control. Epstein–Barr virus (EBV)-transformed B cells are killed by viral latency antigen-specific CD8+ T cells in vitro, but attempts to block B cell infection with antibody or to prime anti-viral CD8+ T cells have protected poorly in vivo. The Doherty laboratory used Murid Herpesvirus-4 (MuHV-4) to analyze γ-herpesvirus control in mice and found CD4+ T cell dependence, with viral evasion limiting CD8+ T cell function. MuHV-4 colonizes germinal center (GC) B cells via lytic transfer from myeloid cells, and CD4+ T cells control myeloid infection. GC colonization and protective, lytic antigen-specific CD4+ T cells are now evident also for EBV. Subunit vaccines have protected only transiently against MuHV-4, but whole virus vaccines give long-term protection, via CD4+ T cells and antibody. They block infection transfer to B cells, and need include no known viral latency gene, nor any MuHV-4-specific gene. Thus, the Doherty approach of in vivo murine analysis has led to a plausible vaccine strategy for EBV and, perhaps, some insight into what CD8+ T cells really do.
Collapse
Affiliation(s)
- Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Brisbane, Australia.,Child Health Research Center, Brisbane, Australia
| |
Collapse
|
5
|
Leeming GH, Kipar A, Hughes DJ, Bingle L, Bennett E, Moyo NA, Tripp RA, Bigley AL, Bingle CD, Sample JT, Stewart JP. Gammaherpesvirus infection modulates the temporal and spatial expression of SCGB1A1 (CCSP) and BPIFA1 (SPLUNC1) in the respiratory tract. J Transl Med 2015; 95:610-24. [PMID: 25531566 PMCID: PMC4450743 DOI: 10.1038/labinvest.2014.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/23/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022] Open
Abstract
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an established model of γ-herpesvirus infection. We have previously developed an alternative system using a natural host, the wood mouse (Apodemus sylvaticus), and shown that the MHV-68 M3 chemokine-binding protein contributes significantly to MHV-68 pathogenesis. Here we demonstrate in A. sylvaticus using high-density micro-arrays that M3 influences the expression of genes involved in the host response including Scgb1a1 and Bpifa1 that encode potential innate defense proteins secreted into the respiratory tract. Further analysis of MHV-68-infected animals showed that the levels of both protein and RNA for SCGB1A1 and BPIFA1 were decreased at day 7 post infection (p.i.) but increased at day 14 p.i. as compared with M3-deficient and mock-infected animals. The modulation of expression was most pronounced in bronchioles but was also present in the bronchi and trachea. Double staining using RNA in situ hybridization and immunohistology demonstrated that much of the BPIFA1 expression occurs in club cells along with SCGB1A1 and that BPIFA1 is stored within granules in these cells. The increase in SCGB1A1 and BPIFA1 expression at day 14 p.i. was associated with the differentiation of club cells into mucus-secreting cells. Our data highlight the role of club cells and the potential of SCGB1A1 and BPIFA1 as innate defense mediators during respiratory virus infection.
Collapse
Affiliation(s)
- Gail H Leeming
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - David J Hughes
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Elaine Bennett
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Nathifa A Moyo
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Alison L Bigley
- Investigative and Translational Pathology, AstraZeneca, R&D Innovative Medicines, Global Safety Assessment, Macclesfield, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| | - Jeffery T Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James P Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Infection Biology, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, UK. E-mail:
| |
Collapse
|
6
|
Coen N, Duraffour S, Snoeck R, Andrei G. KSHV targeted therapy: an update on inhibitors of viral lytic replication. Viruses 2014; 6:4731-59. [PMID: 25421895 PMCID: PMC4246246 DOI: 10.3390/v6114731] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxic and incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination. Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing.
Collapse
Affiliation(s)
- Natacha Coen
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Sophie Duraffour
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Abstract
It is now estimated that approximately 10 % of worldwide cancers are attributable to viral infection, with the vast majority (>85 %) occurring in the developing world. Oncogenic viruses include various classes of DNA and RNA viruses and induce cancer by a variety of mechanisms. A unifying theme is that cancer develops in a minority of infected individuals and only after chronic infection of many years duration. The viruses associated with the greatest number of cancer cases are the human papillomaviruses (HPVs), which cause cervical cancer and several other epithelial malignancies, and the hepatitis viruses HBV and HCV, which are responsible for the majority of hepatocellular cancer. Other oncoviruses include Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpes virus (KSHV), human T-cell leukemia virus (HTLV-I), and Merkel cell polyomavirus (MCPyV). Identification of the infectious cause has led to several interventions that may reduce the risk of developing these tumors. These include preventive vaccines against HBV and HPV, HPV-based testing for cervical cancer screening, anti-virals for the treatment of chronic HBV and HCV infection, and screening the blood supply for the presence of HBV and HCV. Successful efforts to identify additional oncogenic viruses in human cancer may lead to further insight into etiology and pathogenesis as well as to new approaches for therapeutic and prophylactic intervention.
Collapse
Affiliation(s)
- John T Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA,
| | | |
Collapse
|
8
|
Wu TT, Qian J, Ang J, Sun R. Vaccine prospect of Kaposi sarcoma-associated herpesvirus. Curr Opin Virol 2012; 2:482-8. [PMID: 22795202 DOI: 10.1016/j.coviro.2012.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Infection of Kaposi sarcoma-associated herpesvirus (KSHV) or human herpesvirus-8 (HHV-8) is estimated to account for 34,000 new cancer cases globally. Unlike other herpesviruses, KSHV is not ubiquitous but is highly prevalent in some areas, such as sub-Saharan Africa where Kaposi sarcoma is the leading cancer among adults. While latent infection of KSHV plays a major and direct role in tumorigenesis, viral lytic replication also makes significant contributions to this process. Efforts to develop a KSHV vaccine are limited, but studies with EBV have provided important lessons. Informative vaccine research has been conducted in the mouse infection model of a closely related rodent virus, murine gammaherpesvirus-68 (MHV-68 or γHV-68). This mouse model has generated fundamental principles for an effective vaccination strategy. KSHV vaccines designed to prevent a naïve host from infection and to boost the immune control of KSHV in persistently infected people will have major impact on individuals who are at a high risk of developing KSHV-associated diseases.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| | | | | | | |
Collapse
|
9
|
Sehrawat S, Kirak O, Koenig PA, Isaacson MK, Marques S, Bozkurt G, Simas JP, Jaenisch R, Ploegh HL. CD8(+) T cells from mice transnuclear for a TCR that recognizes a single H-2K(b)-restricted MHV68 epitope derived from gB-ORF8 help control infection. Cell Rep 2012; 1:461-71. [PMID: 22832272 DOI: 10.1016/j.celrep.2012.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/07/2012] [Accepted: 03/15/2012] [Indexed: 12/22/2022] Open
Abstract
To study the CD8(+) T cell response against a mouse γ-herpes virus, we generated K(b)-MHV-68-ORF8(604-612)RAG(-/-) CD8(+) T cell receptor transnuclear (TN) mice as a source of virus-specific CD8(+) T cells. K(b)-ORF8-Tet(+) CD8(+) T cells, expanded in the course of a resolving MHV-68 infection, served as a source of nucleus donors. Various in vivo and ex vivo assay criteria demonstrated the fine specificity and functionality of TN cells. TN cells proliferated extensively in response to viral infection, helped control viral burden, and exhibited a phenotype similar to that of endogenous K(b)-ORF8-Tet(+) cells. When compared to OT-1 cells, TN cells displayed distinct properties in response to lymphopenia and cognate antigen stimulation, which may be attributable to the affinity of the TCR expressed by the TN cells. The availability of MHV-68-specific CD8(+) TCR TN mice provides a new tool for investigating aspects of host-pathogen interactions unique to γ-herpes viruses.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Caillard S, Lamy FX, Quelen C, Dantal J, Lebranchu Y, Lang P, Velten M, Moulin B. Epidemiology of posttransplant lymphoproliferative disorders in adult kidney and kidney pancreas recipients: report of the French registry and analysis of subgroups of lymphomas. Am J Transplant 2012; 12:682-93. [PMID: 22226336 DOI: 10.1111/j.1600-6143.2011.03896.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A registry of posttransplant lymphoproliferative disorders (PTLD) was set up for the entire population of adult kidney transplant recipients in France. Cases of PTLD were prospectively enrolled between January 1, 1998, and December 31, 2007. Ten-year cumulative incidence was analyzed in patients transplanted after January 1, 1989. PTLD risk factors were analyzed in patients transplanted after January 1, 1998 by Cox analysis. Cumulative incidence was 1% after 5 years, 2.1% after 10 years. Multivariate analysis showed that PTLD was significantly associated with: older age of the recipient 47-60 years and >60 years (vs. 33-46 years, adjusted hazard ratio (AHR) = 1.87, CI = 1.22-2.86 and AHR = 2.80, CI = 1.73-4.55, respectively, p < 0.0001), simultaneous kidney-pancreas transplantation (AHR = 2.52, CI = 1.27-5.01 p = 0.008), year of transplant 1998-1999 and 2000-2001 (vs. 2006-2007, AHR = 3.36, CI = 1.64-6.87 and AHR = 3.08, CI = 1.55-6.15, respectively, p = 0.003), EBV mismatch (HR = 5.31, CI = 3.36-8.39, p < 0.001), 5 or 6 HLA mismatches (vs. 0-4, AHR = 1.54, CI = 1.12-2.12, p = 0.008), and induction therapy (AHR = 1.42, CI = 1-2.02, p = 0.05). Analyses of subgroups of PTLD provided new information about PTLD risk factors for early, late, EBV positive and negative, polymorphic, monomorphic, graft and cerebral lymphomas. This nationwide study highlights the increased risk of PTLD as long as 10 years after transplantation and the role of cofactors in modifying PTLD risk, particularly in specific PTLD subgroups.
Collapse
Affiliation(s)
- S Caillard
- Department of Nephrology Transplantation, Strasbourg Universitary Hospital, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Freeman ML, Burkum CE, Woodland DL, Sun R, Wu TT, Blackman MA. Importance of antibody in virus infection and vaccine-mediated protection by a latency-deficient recombinant murine γ-herpesvirus-68. THE JOURNAL OF IMMUNOLOGY 2011; 188:1049-56. [PMID: 22198955 DOI: 10.4049/jimmunol.1102621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human γ-herpesviruses EBV and Kaposi's sarcoma-associated herpesvirus establish lifelong latent infections, can reactivate in immunocompromised individuals, and are associated with the development of malignancies. Murine γ-herpesvirus-68 (γHV68), a rodent pathogen related to EBV and Kaposi's sarcoma-associated herpesvirus, provides an important model to dissect mechanisms of immune control and investigate vaccine strategies. Infection of mice with γHV68 elicits robust antiviral immunity, and long-term protection from γHV68 reactivation requires both cellular and humoral immune responses. Vaccination of mice with AC-replication and transcription activator (RTA), a highly lytic latency-null recombinant γHV68, results in complete protection from wild-type γHV68 infection that lasts for at least 10 mo. In this report, we examine the immune correlates of AC-RTA-mediated protection and show that sterilizing immunity requires both T cells and Ab. Importantly, Ab was also critical for mitigating viral infection in the brain, and in the absence of Ab-mediated control, amplification of the AC-RTA virus in the brain resulted in fatality. Our results highlight important considerations in the development of vaccination strategies based on live-attenuated viruses.
Collapse
|
12
|
Leang RS, Wu TT, Hwang S, Liang LT, Tong L, Truong JT, Sun R. The anti-interferon activity of conserved viral dUTPase ORF54 is essential for an effective MHV-68 infection. PLoS Pathog 2011; 7:e1002292. [PMID: 21998588 PMCID: PMC3188543 DOI: 10.1371/journal.ppat.1002292] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/15/2011] [Indexed: 12/13/2022] Open
Abstract
Gammaherpesviruses such as KSHV and EBV establish lifelong persistent infections through latency in lymphocytes. These viruses have evolved several strategies to counteract the various components of the innate and adaptive immune systems. We conducted an unbiased screen using the genetically and biologically related virus, MHV-68, to find viral ORFs involved in the inhibition of type I interferon signaling and identified a conserved viral dUTPase, ORF54. Here we define the contribution of ORF54 in type I interferon inhibition by ectopic expression and through the use of genetically modified MHV-68. ORF54 and an ORF54 lacking dUTPase enzymatic activity efficiently inhibit type I interferon signaling by inducing the degradation of the type I interferon receptor protein IFNAR1. Subsequently, we show in vitro that the lack of ORF54 causes a reduction in lytic replication in the presence of type I interferon signaling. Investigation of the physiological consequence of IFNAR1 degradation and importance of ORF54 during MHV-68 in vivo infection demonstrates that ORF54 has an even greater impact on persistent infection than on lytic replication. MHV-68 lacking ORF54 expression is unable to efficiently establish latent infection in lymphocytes, although it replicates relatively normally in lung tissues. However, infection of IFNAR−/− mice alleviates this phenotype, emphasizing the specific role of ORF54 in type I interferon inhibition. Infection of mice and cells by a recombinant MHV-68 virus harboring a site specific mutation in ORF54 rendering the dUTPase inactive demonstrates that dUTPase enzymatic activity is not required for anti-interferon function of ORF54. Moreover, we find that dUTPase activity is dispensable at all stages of MHV-68 infection analyzed. Overall, our data suggest that ORF54 has evolved anti-interferon activity in addition to its dUTPase enzymatic activity, and that it is actually the anti-interferon role that renders ORF54 critical for establishing an effective persistent infection of MHV-68. Human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, are the cause of several malignancies, especially in patients immunocompromised due to HIV infection. The study of these human gammaherpesviruses is difficult due to their inability to replicate in cell culture and the lack of a small-animal model. Murine gammaherpesvirus-68 is a genetically and biologically similar virus that is utilized as a mouse model because it offers such advantages as the ability to replicate in cell culture, a manipulatable genome, and infection of mice. In this study, we have identified viral open reading frame 54 (ORF54) as an inhibitor of innate immunity, specifically of the type I interferon response. Although ORF54 is a conserved viral dUTPase, we found that its anti-interferon activity does not require its enzymatic activity. Through infection of cells and mice, we define the critical role of ORF54 in establishing persistent latent infection of MHV-68 by inducing the degradation of the type I interferon receptor. Our studies provide new insights into the far reaching effects of type I interferon signaling and the dual role of ORF54. This work could aid in the development of vaccine strategies to gammaherpesvirus infection.
Collapse
Affiliation(s)
- Ronika Sitapara Leang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Seungmin Hwang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lidia T. Liang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Leming Tong
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jennifer T. Truong
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ren Sun
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Richner JM, Clyde K, Pezda AC, Cheng BYH, Wang T, Kumar GR, Covarrubias S, Coscoy L, Glaunsinger B. Global mRNA degradation during lytic gammaherpesvirus infection contributes to establishment of viral latency. PLoS Pathog 2011; 7:e1002150. [PMID: 21811408 PMCID: PMC3141057 DOI: 10.1371/journal.ppat.1002150] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/20/2011] [Indexed: 01/02/2023] Open
Abstract
During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3' end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment.
Collapse
Affiliation(s)
- Justin M. Richner
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Karen Clyde
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Andrea C. Pezda
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Benson Yee Hin Cheng
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Tina Wang
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - G. Renuka Kumar
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Sergio Covarrubias
- Division of Infectious Diseases and Immunity, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Laurent Coscoy
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Britt Glaunsinger
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|