1
|
Zhu X, Heng Y, Ma J, Zhang D, Tang D, Ji Y, He C, Lin H, Ding X, Zhou J, Tao L, Lu L. Prolonged Survival of Neutrophils Induced by Tumor-Derived G-CSF/GM-CSF Promotes Immunosuppression and Progression in Laryngeal Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400836. [PMID: 39447112 PMCID: PMC11633501 DOI: 10.1002/advs.202400836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Indexed: 10/26/2024]
Abstract
Tumor-associated neutrophils (TANs) play a crucial role in tumor progression and exhibit prolonged survival. However, the mechanism underlying their extended lifespan and significance in laryngeal squamous cell carcinoma (LSCC) remains unclear. Herein, it is observed that apoptosis of TANs is significantly delayed owing to induction by tumor-derived G-CSF and GM-CSF through the activation of the PI3K-AKT signaling pathway, upregulation of anti-apoptotic Mcl-1 expression, and downregulation of activated Caspase-3 levels. It is found that prolonged survival of TANs leads to the accumulation of aged CXCR4+ neutrophils that exhibit potent immunosuppressive properties and are associated with poor patient prognosis. Furthermore, extended survival promotes the enhanced immunosuppressive function of CD8+ T cells by TANs, thereby facilitating the in vitro and in vivo progression and growth of human LSCC tumors. Importantly, this effect could be reversed by blocking G-CSF and GM-CSF stimulation of neutrophils. These findings elucidate the pivotal role of pathologically prolonged neutrophil survival in impairing CD8+ T cell immunity and suggest targeting it as a potential therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Xiaoke Zhu
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Yu Heng
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Jingyu Ma
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Duo Zhang
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Di Tang
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Yangyang Ji
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Changding He
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Hanqing Lin
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Xuping Ding
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Jian Zhou
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Lei Tao
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Liming Lu
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
2
|
Bal G, Schneikert J, Li Z, Franke K, Tripathi SR, Zuberbier T, Babina M. CREB Is Indispensable to KIT Function in Human Skin Mast Cells-A Positive Feedback Loop between CREB and KIT Orchestrates Skin Mast Cell Fate. Cells 2023; 13:42. [PMID: 38201246 PMCID: PMC10778115 DOI: 10.3390/cells13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Skin mast cells (MCs) are critical effector cells in acute allergic reactions, and they contribute to chronic dermatoses like urticaria and atopic and contact dermatitis. KIT represents the cells' crucial receptor tyrosine kinase, which orchestrates proliferation, survival, and functional programs throughout the lifespan. cAMP response element binding protein (CREB), an evolutionarily well-conserved transcription factor (TF), regulates multiple cellular programs, but its function in MCs is poorly understood. We recently reported that CREB is an effector of the SCF (Stem Cell Factor)/KIT axis. Here, we ask whether CREB may also act upstream of KIT to orchestrate its functioning. Primary human MCs were isolated from skin and cultured in SCF+IL-4 (Interleukin-4). Pharmacological inhibition (666-15) and RNA interference served to manipulate CREB function. We studied KIT expression using flow cytometry and RT-qPCR, KIT-mediated signaling using immunoblotting, and cell survival using scatterplot and caspase-3 activity. The proliferation and cycle phases were quantified following BrdU incorporation. Transient CREB perturbation resulted in reduced KIT expression. Conversely, microphthalmia transcription factor (MITF) was unnecessary for KIT maintenance. KIT attenuation secondary to CREB was associated with heavily impaired KIT functional outputs, like anti-apoptosis and cell cycle progression. Likewise, KIT-elicited phosphorylation of ERK1/2 (Extracellular Signal-Regulated Kinase 1/2), AKT, and STAT5 (Signal Transducer and Activator of Transcription) was substantially diminished upon CREB inhibition. Surprisingly, the longer-term interference of CREB led to complete cell elimination, in a way surpassing KIT inhibition. Collectively, we reveal CREB as non-redundant in MCs, with its absence being incompatible with skin MCs' existence. Since SCF/KIT regulates CREB activity and, vice versa, CREB is required for KIT function, a positive feedforward loop between these elements dictates skin MCs' fate.
Collapse
Affiliation(s)
- Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jean Schneikert
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Shiva Raj Tripathi
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
3
|
Pham HTT, Magez S, Choi B, Baatar B, Jung J, Radwanska M. Neutrophil metalloproteinase driven spleen damage hampers infection control of trypanosomiasis. Nat Commun 2023; 14:5418. [PMID: 37669943 PMCID: PMC10480172 DOI: 10.1038/s41467-023-41089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Recent blood transcriptomic analysis of rhodesiense sleeping sickness patients has revealed that neutrophil signature genes and activation markers constitute the top indicators of trypanosomiasis-associated inflammation. Here, we show that Trypanosoma brucei infection results in expansion and differentiation of four splenic neutrophil subpopulations, including Mki67+Birc5+Gfi1+Cebpe+ proliferation-competent precursors, two intermediate immature subpopulations and Cebpb+Spi1+Irf7+Mcl1+Csf3r+ inflammation reprogrammed mature neutrophils. Transcriptomic scRNA-seq profiling identified the largest immature subpopulation by Mmp8/9 positive tertiary granule markers. We confirmed the presence of both metalloproteinases in extracellular spleen homogenates and plasma. During infection, these enzymes digest extracellular matrix components in the absence of sufficient TIMP inhibitory activity, driving remodeling of the spleen follicular architecture. Neutrophil depletion prevents the occurrence of organ damage, resulting in increased plasma cell numbers and prolonged host survival. We conclude that trypanosomiasis-associated neutrophil activation is a major contributor to the destruction of the secondary lymphoid architecture, required for maintaining an efficient adaptive immune response.
Collapse
Affiliation(s)
- Hien Thi Thu Pham
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Boyoon Choi
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bolortsetseg Baatar
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
| | - Joohee Jung
- Duksung Women's University, Seoul, South Korea
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Zhu Y, Han Q, Wang L, Wang B, Chen J, Cai B, Wu C, Zhu X, Liu F, Han D, Dong H, Jia Y, Liu Y. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115763. [PMID: 36183949 PMCID: PMC9523948 DOI: 10.1016/j.jep.2022.115763] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is one of the fatal complications of respiratory virus infections such as influenza virus and coronavirus, which has high clinical morbidity and mortality. Jinhua Qinggan granules (JHQG) has been approved by China Food and Drug Administration in the treatment of H1N1 influenza and mild or moderate novel coronavirus disease 2019 (COVID-19), which is an herbal formula developed based on Maxingshigan decoction and Yinqiao powder that have been used to respiratory diseases in China for thousands of years. However, the underlying mechanism of JHQG in treating infectious diseases remains unclear. AIM OF THE STUDY This study investigated the effects of JHQG on neutrophil apoptosis and key signaling pathways in lipopolysaccharide (LPS) -induced ALI mice in order to explore its mechanism of anti-inflammation. MATERIALS AND METHODS The effect of JHQG on survival rate was observed in septic mouse model by intraperitoneal injection of LPS (20 mg/kg). To better pharmacological evaluation, the mice received an intratracheal injection of 5 mg/kg LPS. Lung histopathological changes, wet-to-dry ratio of the lungs, and MPO activity in the lungs and total protein concentration, total cells number, TNF-α, IL-1β, IL-6, and MIP-2 levels in BALF were assessed. Neutrophil apoptosis rate was detected by Ly6G-APC/Annexin V-FITC staining. Key proteins associated with apoptosis including caspase 3/7 activity, Bcl-xL and Mcl-1 were measured by flow cytometry and confocal microscope, respectively. TLR4 receptor and its downstream signaling were analyzed by Western blot assay and immunofluorescence, respectively. RESULTS JHQG treatment at either 6 or 12 g/kg/day resulted in 20% increase of survival in 20 mg/kg LPS-induced mice. In the model of 5 mg/kg LPS-induced mice, JHQG obviously decreased the total protein concentration in BALF, wet-to-dry ratio of the lungs, and lung histological damage. It also attenuated the MPO activity and the proportion of Ly6G staining positive neutrophils in the lungs, as well as the MIP-2 levels in BALF were reduced. JHQG inhibited the expression of Mcl-1 and Bcl-xL and enhanced caspase-3/7 activity, indicating that JHQG partially acted in promoting neutrophil apoptosis via intrinsic mitochondrial apoptotic pathway. The levels of TNF-α, IL-1β, and IL-6 were significantly declined in LPS-induced mice treated with JHQG. Furthermore, JHQG reduced the protein expression of TLR4, MyD88, p-p65 and the proportion of nuclei p65, suggesting that JHQG treatment inhibited TLR4/MyD88/NF-κB pathway. CONCLUSION JHQG reduced pulmonary inflammation and protected mice from LPS-induced ALI by promoting neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway, suggesting that JHQG may be a promising drug for treatment of ALI.
Collapse
Affiliation(s)
- Yanhui Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Qianqian Han
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Lei Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Baiyan Wang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Jianshuang Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Bangrong Cai
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Can Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Xiali Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Fugang Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Deen Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Haoran Dong
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Yongyan Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Yalin Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
5
|
Carstensen S, Müller M, Tan GLA, Pasion KA, Hohlfeld JM, Herrera VLM, Ruiz-Opazo N. “Rogue” neutrophil-subset [DEspR+CD11b+/CD66b+] immunotype is an actionable therapeutic target for neutrophilic inflammation-mediated tissue injury – studies in human, macaque and rat LPS-inflammation models. Front Immunol 2022; 13:1008390. [PMID: 36275710 PMCID: PMC9581391 DOI: 10.3389/fimmu.2022.1008390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objective The correlation (Rs > 0.7) of neutrophils expressing the dual endothelin1/signal peptide receptor (DEspR+CD11b+/CD66b+) with severity of hypoxemia (SF-ratio) and multi-organ failure (SOFA-score) in patients with acute respiratory distress syndrome (ARDS) suggest the hypothesis that the DEspR+ neutrophil-subset is an actionable therapeutic target in ARDS. To test this hypothesis, we conducted in vivo studies to validate DEspR+ neutrophil-subset as therapeutic target and test efficacy of DEspR-inhibition in acute neutrophilic hyperinflammation models. Methods We performed tests in lipopolysaccharide (LPS)-induced acute neutrophilic inflammation in three species – human, rhesus macaque, rat – with increasing dose-dependent severity. We measured DEspR+CD66b+ neutrophils in bronchoalveolar lavage fluid (BALF) in healthy volunteers (HVs) 24-hours after segmental LPS-challenge by ChipCytometry, and DEspR+CD11b+ neutrophils in whole blood and BALF in an LPS-induced transient acute lung injury (ALI) model in macaques. We determined anti-DEspR antibody efficacy in vivo in LPS-ALI macaque model and in high-mortality LPS-induced encephalopathy in hypertensive rats. Results ChipCytometry detected increased BALF total neutrophil and DEspR+CD66b+ neutrophil counts after segmental LPS-challenge compared to baseline (P =0.034), as well as increased peripheral neutrophil counts and neutrophil-lymphocyte ratio (NLR) compared to pre-LPS level (P <0.05). In the LPS-ALI macaque model, flow cytometry detected increased DEspR+ and DEspR[-] neutrophils in BALF, which was associated with moderate-severe hypoxemia. After determining pharmacokinetics of single-dose anti-DEspR[hu6g8] antibody, one-time pre-LPS anti-DEspR treatment reduced hypoxemia (P =0.03) and neutrophil influx into BALF (P =0.0001) in LPS-ALI vs vehicle mock-treated LPS-ALI macaques. Ex vivo live cell imaging of macaque neutrophils detected greater “intrinsic adhesion to hard-surface” in DEspR+ vs DEspR[-] neutrophils (P <0.001). Anti-DEspR[hu6g8] antibody abrogated intrinsic high adhesion in DEspR+ neutrophils, but not in DEspR[-] neutrophils (P <0.001). In the LPS-encephalopathy rat model, anti-DEspR[10a3] antibody treatment increased median survival (P =0.0007) and exhibited brain target engagement and bioeffects. Conclusion Detection of increased DEspR+ neutrophil-subset in human BALF after segmental LPS-challenge supports the correlation of circulating DEspR+ neutrophil counts with severity measure (SOFA-score) in ARDS. Efficacy and safety of targeted inhibition of DEspR+CD11b+ neutrophil-subset in LPS-induced transient-ALI and high-mortality encephalopathy models identify a potential therapeutic target for neutrophil-mediated secondary tissue injury.
Collapse
Affiliation(s)
- Saskia Carstensen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Department of Biomarker Analysis and Development, Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Department of Biomarker Analysis and Development, Hannover, Germany
| | - Glaiza L. A. Tan
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
| | - Khristine Amber Pasion
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
| | - Jens M. Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Department of Biomarker Analysis and Development, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Victoria L. M. Herrera
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
- *Correspondence: Nelson Ruiz-Opazo,
| |
Collapse
|
6
|
Miralda I, Vashishta A, Rogers MN, Lamont RJ, Uriarte SM. The emerging oral pathogen, Filifactor alocis, extends the functional lifespan of human neutrophil. Mol Microbiol 2022; 117:1340-1351. [PMID: 35437843 PMCID: PMC9233153 DOI: 10.1111/mmi.14911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/17/2022] [Accepted: 04/10/2022] [Indexed: 12/01/2022]
Abstract
Periodontitis is a chronic inflammatory infectious disease that affects the integrity of tooth‐supporting tissues and has adverse systemic consequences. Advances in sequencing technologies have uncovered organisms that are exclusively found in high numbers in periodontal lesions, such as the gram‐positive anaerobic rod, Filifactor alocis. F. alocis can manipulate neutrophil effector functions, which allows the organism to survive within these granulocytes. Several neutrophil functions have been tested in the context of F. alocis challenge, but the effect of the organism on neutrophil apoptosis is still unknown. RNA sequencing of human neutrophils challenged with F. alocis showed that apoptosis pathways were differentially regulated. Compared to media‐cultured controls, F. alocis‐challenged neutrophils maintain their nuclear morphology, do not stain for Annexin V or 7‐AAD, and have decreased DNA fragmentation. Inhibition of apoptosis by F. alocis involved reduced caspase‐3, −8, and − 9 activation and upregulation of important anti‐apoptotic proteins. Prolonged lifespan was dependent on contact through TLR2/6, and F. alocis‐challenged neutrophils retained their functional capacity to induce inflammation for longer timepoints. This is the first in‐depth characterization of neutrophil apoptotic programs in response to an oral pathogen and provides key information on how bacteria manipulate immune cell mechanisms to maintain a dysregulated inflammatory response.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,Present address: Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Aruna Vashishta
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Max N Rogers
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
7
|
Lücking U, Kosemund D, Böhnke N, Lienau P, Siemeister G, Denner K, Bohlmann R, Briem H, Terebesi I, Bömer U, Schäfer M, Ince S, Mumberg D, Scholz A, Izumi R, Hwang S, von Nussbaum F. Changing for the Better: Discovery of the Highly Potent and Selective CDK9 Inhibitor VIP152 Suitable for Once Weekly Intravenous Dosing for the Treatment of Cancer. J Med Chem 2021; 64:11651-11674. [PMID: 34264057 DOI: 10.1021/acs.jmedchem.1c01000] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selective inhibition of exclusively transcription-regulating positive transcription elongation factor b/CDK9 is a promising new approach in cancer therapy. Starting from atuveciclib, the first selective CDK9 inhibitor to enter clinical development, lead optimization efforts aimed at identifying intravenously (iv) applicable CDK9 inhibitors with an improved therapeutic index led to the discovery of the highly potent and selective clinical candidate VIP152. The evaluation of various scaffold hops was instrumental in the identification of VIP152, which is characterized by the underexplored benzyl sulfoximine group. VIP152 exhibited the best preclinical overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats upon once weekly iv administration. VIP152 has entered clinical trials for the treatment of cancer with promising longterm, durable monotherapy activity in double-hit diffuse large B-cell lymphoma patients.
Collapse
Affiliation(s)
- Ulrich Lücking
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Dirk Kosemund
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Niels Böhnke
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Philip Lienau
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Gerhard Siemeister
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Karsten Denner
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Rolf Bohlmann
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Hans Briem
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Ildiko Terebesi
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Ulf Bömer
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Martina Schäfer
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Stuart Ince
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Dominik Mumberg
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Arne Scholz
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Raquel Izumi
- Vincerx Pharma, Inc., 260 Sheridan Avenue, Suite 400, Palo Alto, California 94306, United States
| | - Stuart Hwang
- Vincerx Pharma, Inc., 260 Sheridan Avenue, Suite 400, Palo Alto, California 94306, United States
| | - Franz von Nussbaum
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| |
Collapse
|
8
|
Nie MW, Han YC, Shen ZJ, Xie HZ. Identification of circRNA and mRNA expression profiles and functional networks of vascular tissue in lipopolysaccharide-induced sepsis. J Cell Mol Med 2020; 24:7915-7927. [PMID: 32452125 PMCID: PMC7348180 DOI: 10.1111/jcmm.15424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Sepsis is the most common cause of death in intensive care units. This study investigated the circular RNA (circRNA) and mRNA expression profiles and functional networks of the aortic tissue in sepsis. We established a lipopolysaccharide (LPS)‐induced rat sepsis model. High‐throughput sequencing was performed on the aorta tissue to identify differentially expressed (DE) circRNAs and mRNAs, which were validated by real‐time quantitative polymerase chain reaction (RT‐qPCR). Bioinformatic analysis was carried out and coding and non‐coding co‐expression (CNC) and competing endogenous RNA (ceRNA) regulatory networks were constructed to investigate the mechanisms. In total, 373 up‐regulated and 428 down‐regulated circRNAs and 2063 up‐regulated and 2903 down‐regulated mRNAs were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of mRNAs showed that the down‐regulated genes were mainly enriched in the process of energy generation. CNC and ceRNA regulatory networks were constructed with seven DE circRNAs. The results of functional enrichment analysis of CNC target genes revealed the important role of circRNAs in inflammatory response. The ceRNA network also highlighted the significant enrichment in calcium signalling pathway. Significant alterations in circRNAs and mRNAs were observed in the aortic tissue of septic rats. In addition, CNC and ceRNA networks were established.
Collapse
Affiliation(s)
- Mu-Wen Nie
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Ye-Chen Han
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Zhu-Jun Shen
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Hong-Zhi Xie
- Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
9
|
Carter RJ, Milani M, Butterworth M, Alotibi A, Harper N, Yedida G, Greaves G, Al-Zebeeby A, Jorgensen AL, Schache AG, Risk JM, Shaw RJ, Jones TM, Sacco JJ, Hurlstone A, Cohen GM, Varadarajan S. Exploring the potential of BH3 mimetic therapy in squamous cell carcinoma of the head and neck. Cell Death Dis 2019; 10:912. [PMID: 31801952 PMCID: PMC6892862 DOI: 10.1038/s41419-019-2150-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/31/2019] [Indexed: 01/14/2023]
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer worldwide, with overall survival of less than 50%. Current therapeutic strategies involving a combination of surgery, radiation, and/or chemotherapy are associated with debilitating side effects, highlighting the need for more specific and efficacious therapies. Inhibitors of BCL-2 family proteins (BH3 mimetics) are under investigation or in clinical practice for several hematological malignancies and show promise in solid tumors. In order to explore the therapeutic potential of BH3 mimetics in the treatment of SCCHN, we assessed the expression levels of BCL-2, BCL-XL, and MCL-1 via Western blots and immunohistochemistry, in cell lines, primary cells derived from SCCHN patients and in tissue microarrays containing tumor tissue from a cohort of 191 SCCHN patients. All preclinical models exhibited moderate to high levels of BCL-XL and MCL-1, with little or no BCL-2. Although expression levels of BCL-XL and MCL-1 did not correlate with patient outcome, a combination of BH3 mimetics to target these proteins resulted in decreased clonogenic potential and enhanced apoptosis in all preclinical models, including tumor tissue resected from patients, as well as a reduction of tumor volume in a zebrafish xenograft model of SCCHN. Our results show that SCCHN is dependent on both BCL-XL and MCL-1 for apoptosis evasion and combination therapy targeting both proteins may offer significant therapeutic benefits in this disease.
Collapse
Affiliation(s)
- Rachel J Carter
- Liverpool Head and Neck Centre, Liverpool, L69 3GE, UK.,Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GE, UK
| | - Mateus Milani
- Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GE, UK
| | - Michael Butterworth
- Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GE, UK
| | - Ahoud Alotibi
- Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GE, UK
| | - Nicholas Harper
- Department of Molecular and Clinical Pharmacology, Liverpool, L69 3GE, UK
| | - Govindaraju Yedida
- Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GE, UK
| | - Georgia Greaves
- Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GE, UK
| | - Aoula Al-Zebeeby
- Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GE, UK
| | - Andrea L Jorgensen
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GE, UK
| | | | - Janet M Risk
- Liverpool Head and Neck Centre, Liverpool, L69 3GE, UK
| | | | - Terry M Jones
- Liverpool Head and Neck Centre, Liverpool, L69 3GE, UK
| | | | - Adam Hurlstone
- Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, M13 9PT, UK
| | - Gerald M Cohen
- Liverpool Head and Neck Centre, Liverpool, L69 3GE, UK.,Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GE, UK.,Department of Molecular and Clinical Pharmacology, Liverpool, L69 3GE, UK
| | - Shankar Varadarajan
- Liverpool Head and Neck Centre, Liverpool, L69 3GE, UK. .,Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GE, UK. .,Department of Molecular and Clinical Pharmacology, Liverpool, L69 3GE, UK.
| |
Collapse
|
10
|
Fontaine MAC, Westra MM, Bot I, Jin H, Franssen AJPM, Bot M, de Jager SCA, Dzhagalov I, He YW, van Vlijmen BJM, Gijbels MJJ, Reutelingsperger CP, van Berkel TJC, Sluimer JC, Temmerman L, Biessen EAL. Low human and murine Mcl-1 expression leads to a pro-apoptotic plaque phenotype enriched in giant-cells. Sci Rep 2019; 9:14547. [PMID: 31601924 PMCID: PMC6787218 DOI: 10.1038/s41598-019-51020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
The anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) plays an important role in survival and differentiation of leukocytes, more specifically of neutrophils. Here, we investigated the impact of myeloid Mcl-1 deletion in atherosclerosis. Western type diet fed LDL receptor-deficient mice were transplanted with either wild-type (WT) or LysMCre Mcl-1fl/fl (Mcl-1−/−) bone marrow. Mcl-1 myeloid deletion resulted in enhanced apoptosis and lipid accumulation in atherosclerotic plaques. In vitro, Mcl-1 deficient macrophages also showed increased lipid accumulation, resulting in increased sensitivity to lipid-induced cell death. However, plaque size, necrotic core and macrophage content were similar in Mcl-1−/− compared to WT mice, most likely due to decreased circulating and plaque-residing neutrophils. Interestingly, Mcl-1−/− peritoneal foam cells formed up to 45% more multinucleated giant cells (MGCs) in vitro compared to WT, which concurred with an increased MGC presence in atherosclerotic lesions of Mcl-1−/− mice. Moreover, analysis of human unstable atherosclerotic lesions also revealed a significant inverse correlation between MGC lesion content and Mcl-1 gene expression, coinciding with the mouse data. Taken together, these findings suggest that myeloid Mcl-1 deletion leads to a more apoptotic, lipid and MGC-enriched phenotype. These potentially pro-atherogenic effects are however counteracted by neutropenia in circulation and plaque.
Collapse
Affiliation(s)
- Margaux A C Fontaine
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marijke M Westra
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Han Jin
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Aimée J P M Franssen
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Martine Bot
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Saskia C A de Jager
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands.,Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ivan Dzhagalov
- Institue of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - You-Wen He
- Institue of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Bart J M van Vlijmen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Marion J J Gijbels
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Theo J C van Berkel
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Judith C Sluimer
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.,Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lieve Temmerman
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Erik A L Biessen
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
11
|
Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Knowledge of the pathophysiology of organ failure in sepsis is crucial for optimizing the management and treatment of patients and for the development of potential new therapies. In clinical practice, six major organ systems - the cardiovascular (including the microcirculation), respiratory, renal, neurological, haematological and hepatic systems - can be assessed and monitored, whereas others, such as the gut, are less accessible. Over the past 2 decades, considerable amounts of new data have helped improve our understanding of sepsis pathophysiology, including the regulation of inflammatory pathways and the role played by immune suppression during sepsis. The effects of impaired cellular function, including mitochondrial dysfunction and altered cell death mechanisms, on the development of organ dysfunction are also being unravelled. Insights have been gained into interactions between key organs (such as the kidneys and the gut) and organ-organ crosstalk during sepsis. The important role of the microcirculation in sepsis is increasingly apparent, and new techniques have been developed that make it possible to visualize the microcirculation at the bedside, although these techniques are only research tools at present.
Collapse
Affiliation(s)
- Christophe Lelubre
- Laboratoire de Médecine Expérimentale (ULB 222 Unit), Université Libre de Bruxelles, CHU de Charleroi, A. Vésale Hospital, Montigny-Le-Tilleul, Belgium.,Department of Internal Medicine, CHU Charleroi - Hôpital Civil Marie Curie, Lodelinsart, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
12
|
Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, Boyd KL, Strickland SA, Sensintaffar J, Hogdal LJ, Ayers GD, Olejniczak ET, Fesik SW, Savona MR. A Novel MCL1 Inhibitor Combined with Venetoclax Rescues Venetoclax-Resistant Acute Myelogenous Leukemia. Cancer Discov 2018; 8:1566-1581. [PMID: 30185627 PMCID: PMC6279595 DOI: 10.1158/2159-8290.cd-18-0140] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/14/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Suppression of apoptosis by expression of antiapoptotic BCL2 family members is a hallmark of acute myeloblastic leukemia (AML). Induced myeloid leukemia cell differentiation protein (MCL1), an antiapoptotic BCL2 family member, is commonly upregulated in AML cells and is often a primary mode of resistance to treatment with the BCL2 inhibitor venetoclax. Here, we describe VU661013, a novel, potent, selective MCL1 inhibitor that destabilizes BIM/MCL1 association, leads to apoptosis in AML, and is active in venetoclax-resistant cells and patient-derived xenografts. In addition, VU661013 was safely combined with venetoclax for synergy in murine models of AML. Importantly, BH3 profiling of patient samples and drug-sensitivity testing ex vivo accurately predicted cellular responses to selective inhibitors of MCL1 or BCL2 and showed benefit of the combination. Taken together, these data suggest a strategy of rationally using BCL2 and MCL1 inhibitors in sequence or in combination in AML clinical trials. SIGNIFICANCE: Targeting antiapoptotic proteins in AML is a key therapeutic strategy, and MCL1 is a critical antiapoptotic oncoprotein. Armed with novel MCL1 inhibitors and the potent BCL2 inhibitor venetoclax, it may be possible to selectively induce apoptosis by combining or thoughtfully sequencing these inhibitors based on a rational evaluation of AML.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.
Collapse
Affiliation(s)
- Haley E Ramsey
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melissa A Fischer
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Agnieszka E Gorska
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Maria Pia Arrate
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Londa Fuller
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Stephen A Strickland
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - John Sensintaffar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Leah J Hogdal
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Gregory D Ayers
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University, Nashville, Tennessee
| | - Edward T Olejniczak
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Michael R Savona
- Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
13
|
Csepregi JZ, Orosz A, Zajta E, Kása O, Németh T, Simon E, Fodor S, Csonka K, Barátki BL, Kövesdi D, He YW, Gácser A, Mócsai A. Myeloid-Specific Deletion of Mcl-1 Yields Severely Neutropenic Mice That Survive and Breed in Homozygous Form. THE JOURNAL OF IMMUNOLOGY 2018; 201:3793-3803. [PMID: 30464050 PMCID: PMC6287103 DOI: 10.4049/jimmunol.1701803] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Mouse strains with specific deficiency of given hematopoietic lineages provide invaluable tools for understanding blood cell function in health and disease. Whereas neutrophils are dominant leukocytes in humans and mice, there are no widely useful genetic models of neutrophil deficiency in mice. In this study, we show that myeloid-specific deletion of the Mcl-1 antiapoptotic protein in Lyz2Cre/CreMcl1flox/flox (Mcl1ΔMyelo) mice leads to dramatic reduction of circulating and tissue neutrophil counts without affecting circulating lymphocyte, monocyte, or eosinophil numbers. Surprisingly, Mcl1ΔMyelo mice appeared normally, and their survival was mostly normal both under specific pathogen-free and conventional housing conditions. Mcl1ΔMyelo mice were also able to breed in homozygous form, making them highly useful for in vivo experimental studies. The functional relevance of neutropenia was confirmed by the complete protection of Mcl1ΔMyelo mice from arthritis development in the K/B×N serum-transfer model and from skin inflammation in an autoantibody-induced mouse model of epidermolysis bullosa acquisita. Mcl1ΔMyelo mice were also highly susceptible to systemic Staphylococcus aureus or Candida albicans infection, due to defective clearance of the invading pathogens. Although neutrophil-specific deletion of Mcl-1 in MRP8-CreMcl1flox/flox (Mcl1ΔPMN) mice also led to severe neutropenia, those mice showed an overt wasting phenotype and strongly reduced survival and breeding, limiting their use as an experimental model of neutrophil deficiency. Taken together, our results with the Mcl1ΔMyelo mice indicate that severe neutropenia does not abrogate the viability and fertility of mice, and they provide a useful genetic mouse model for the analysis of the role of neutrophils in health and disease.
Collapse
Affiliation(s)
- Janka Zsófia Csepregi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Anita Orosz
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Erik Zajta
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
| | - Orsolya Kása
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Edina Simon
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Szabina Fodor
- Department of Computer Science, Corvinus University of Budapest, 1093 Budapest, Hungary
| | - Katalin Csonka
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
| | - Balázs L Barátki
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary.,Office of Supported Research Groups of the Hungarian Academy of Sciences, 1051 Budapest, Hungary; and
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Attila Gácser
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; .,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
14
|
E3 ligase FBXW7 aggravates TMPD-induced systemic lupus erythematosus by promoting cell apoptosis. Cell Mol Immunol 2018; 15:1057-1070. [PMID: 30275535 DOI: 10.1038/s41423-018-0167-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, and the pathogenesis of SLE has not been fully elucidated. The E3 ubiquitin ligase FBXW7 has been well characterized in cancer as a tumor suppressor that can promote the ubiquitination and subsequent degradation of various oncoproteins; however, the potential role of FBXW7 in autoimmune diseases is unclear. In the present study, we identified that FBXW7 is a crucial exacerbating factor for SLE development and progression in a mouse model induced by 2, 6, 10, 14-tetramethylpentadecane (TMPD). Myeloid cell-specific FBXW7-deficient (Lysm+FBXW7f/f) C57BL/6 mice showed decreased immune complex accumulation, glomerulonephritis, glomerular mesangial cell proliferation, and base-membrane thickness in the kidney. Lysm+FBXW7f/f mice produced fewer anti-Sm/RNP and anti-ANA autoantibodies and showed a decreased MHC II expression in B cells. In Lysm+FBXW7f/f mice, we observed that cell apoptosis was reduced and that fewer CD11b+Ly6Chi inflammatory monocytes were recruited to the peritoneal cavity. Consistently, diffuse pulmonary hemorrhage (DPH) was also decreased in Lysm+FBXW7f/f mice. Mechanistically, we clarified that FBXW7 promoted TMPD-induced cell apoptosis by catalyzing MCL1 degradation through K48-linked ubiquitination. Our work revealed that FBXW7 expression in myeloid cells played a crucial role in TMPD-induced SLE progression in mice, which may provide novel ideas and theoretical support for understanding the pathogenesis of SLE.
Collapse
|
15
|
Chatfield SM, Thieblemont N, Witko-Sarsat V. Expanding Neutrophil Horizons: New Concepts in Inflammation. J Innate Immun 2018; 10:422-431. [PMID: 30257246 DOI: 10.1159/000493101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Research into neutrophil biology in the last 10 years has uncovered a number of unexpected aspects of this still mysterious innate immune cell. Advances in technology have allowed visualisation of neutrophil trafficking to sites of inflammation, and, remarkably, neutrophils have been observed to depart from the scene in what has been termed reverse migration. There has also been increasing appreciation of the heterogeneity of neutrophils with ongoing categorisation of neutrophil subsets, including myeloid-derived suppressor cells and low-density granulocytes. Newly recognised neutrophil functions include the ability to release novel immune mediators such as extracellular DNA and microvesicles. Finally, studies of neutrophil cell death, both apoptotic and non-apoptotic, have revealed remarkable differences compared to other cell types. This review will highlight important discoveries in these facets of neutrophil biology and how the new findings will inform treatment of diseases where neutrophils are implicated.
Collapse
|
16
|
García-Rodríguez S, Rosal-Vela A, Botta D, Cumba Garcia LM, Zumaquero E, Prados-Maniviesa V, Cerezo-Wallis D, Lo Buono N, Robles-Guirado JÁ, Guerrero S, González-Paredes E, Andrés-León E, Corbí Á, Mack M, Koch-Nolte F, Merino R, Zubiaur M, Lund FE, Sancho J. CD38 promotes pristane-induced chronic inflammation and increases susceptibility to experimental lupus by an apoptosis-driven and TRPM2-dependent mechanism. Sci Rep 2018; 8:3357. [PMID: 29463868 PMCID: PMC5820326 DOI: 10.1038/s41598-018-21337-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022] Open
Abstract
In this study, we investigated the role of CD38 in a pristane-induced murine model of lupus. CD38-deficient (Cd38-/-) but not ART2-deficient (Art2-/-) mice developed less severe lupus compared to wild type (WT) mice, and their protective phenotype consisted of (i) decreased IFN-I-stimulated gene expression, (ii) decreased numbers of peritoneal CCR2hiLy6Chi inflammatory monocytes, TNF-α-producing Ly6G+ neutrophils and Ly6Clo monocytes/macrophages, (iii) decreased production of anti-single-stranded DNA and anti-nRNP autoantibodies, and (iv) ameliorated glomerulonephritis. Cd38-/- pristane-elicited peritoneal exudate cells had defective CCL2 and TNF-α secretion following TLR7 stimulation. However, Tnf-α and Cxcl12 gene expression in Cd38-/- bone marrow (BM) cells was intact, suggesting a CD38-independent TLR7/TNF-α/CXCL12 axis in the BM. Chemotactic responses of Cd38-/- Ly6Chi monocytes and Ly6G+ neutrophils were not impaired. However, Cd38-/- Ly6Chi monocytes and Ly6Clo monocytes/macrophages had defective apoptosis-mediated cell death. Importantly, mice lacking the cation channel TRPM2 (Trpm2-/-) exhibited very similar protection, with decreased numbers of PECs, and apoptotic Ly6Chi monocytes and Ly6Clo monocytes/macrophages compared to WT mice. These findings reveal a new role for CD38 in promoting aberrant inflammation and lupus-like autoimmunity via an apoptosis-driven mechanism. Furthermore, given the implications of CD38 in the activation of TRPM2, our data suggest that CD38 modulation of pristane-induced apoptosis is TRPM2-dependent.
Collapse
Affiliation(s)
| | - Antonio Rosal-Vela
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
| | - Davide Botta
- Department of Microbiology, UAB, Birmingham, Alabama, USA
| | - Luz M Cumba Garcia
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
- Immunology Graduate Program, Mayo Clinic, Rochester, MN, USA
| | | | | | - Daniela Cerezo-Wallis
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
- Melanoma Group, CNIO, Madrid, Spain
| | - Nicola Lo Buono
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
- Laboratory of Immune-mediated Diseases, San Raffaele Diabetes Research Institute (DRI), Milano, Italy
| | | | | | | | | | - Ángel Corbí
- Department of Molecular Microbiology and Infection Biology, CIB-CSIC, Madrid, Spain
| | - Matthias Mack
- Department of Internal Medicine II, Nephrology, Regensburg University Medical Center, Regensburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Eppendorf-Hamburg, Hamburg, Germany
| | - Ramón Merino
- Department of Molecular and Cellular Signalling, IBBTEC-CSIC-UC, Santander, Spain
| | - Mercedes Zubiaur
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
| | - Frances E Lund
- Department of Microbiology, UAB, Birmingham, Alabama, USA
| | - Jaime Sancho
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain.
| |
Collapse
|
17
|
Non-canonical PI3K-Cdc42-Pak-Mek-Erk Signaling Promotes Immune-Complex-Induced Apoptosis in Human Neutrophils. Cell Rep 2017; 17:374-386. [PMID: 27705787 PMCID: PMC5067281 DOI: 10.1016/j.celrep.2016.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/08/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are peripheral blood leukocytes that represent the first line of immune cell defense against bacterial and fungal infections but are also crucial players in the generation of the inflammatory response. Many neutrophil cell surface receptors regulate important cellular processes via activation of agonist-activated PI3Ks. We show here that activation of human neutrophils with insoluble immune complexes drives a previously uncharacterized, PI3K-dependent, non-canonical, pro-apoptotic signaling pathway, FcγR-PI3Kβ/δ-Cdc42-Pak-Mek-Erk. This is a rare demonstration of Ras/Raf-independent activation of Erk and of PI3K-mediated activation of Cdc42. In addition, comparative analysis of immune-complex- and fMLF-induced signaling uncovers key differences in pathways used by human and murine neutrophils. The non-canonical pathway we identify in this study may be important for the resolution of inflammation in chronic inflammatory diseases that rely on immune-complex-driven neutrophil activation. Immune-complex-activated human neutrophils use PI3Kβ/δ-Cdc42-Pak-Mek-Erk signaling Immune-complex-induced non-canonical neutrophil signaling is pro-apoptotic Other immune-complex-induced neutrophil functions depend on alternative PI3K effectors Immune-complex-induced PI3K signaling is not conserved between humans and mice
Collapse
|
18
|
Apoptotic resistance of human skin mast cells is mediated by Mcl-1. Cell Death Discov 2017; 3:17048. [PMID: 28845295 PMCID: PMC5563844 DOI: 10.1038/cddiscovery.2017.48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/03/2017] [Indexed: 12/16/2022] Open
Abstract
Mast cells (MCs) are major effector cells of allergic reactions and contribute to multiple other pathophysiological processes. MCs are long-lived in the tissue microenvironment, in which they matured, but it remains ill-defined how longevity is established by the natural habitat, as research on human MCs chiefly employs cells generated and expanded in culture. In this study, we report that naturally differentiated skin MCs exhibit substantial resilience to cell death with considerable portions surviving up to 3 days in the complete absence of growth factors (GF). This was evidenced by kinetic resolution of membrane alterations (Annexin-V, YoPro), DNA degradation (propidium iodide), mitochondrial membrane disruption (Depsipher), and Caspase-3 activity. Because of the high basal survival, further protection by SCF was modest. Conversely, survival was severely compromised by staurosporine, implying functional caspase machinery. Contrary to the resistance of freshly purified MCs, their culture-expanded counterpart readily underwent cell death upon GF deprivation. Searching for the molecular underpinnings explaining the difference, we identified Mcl-1 as a critical protector. In fact, silencing Mcl-1 by RNAi led to impaired survival in skin MCs ex vivo, but not their cultured equivalent. Therefore, MCs matured in the skin have not only higher expression of Mcl-1 than proliferating MCs, but also greater reliance on Mcl-1 for their survival. Collectively, we report that human skin MCs display low susceptibility to cell death through vast expression of Mcl-1, which protects from mortality and may contribute to MC longevity in the tissue.
Collapse
|
19
|
Abstract
The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack.
Collapse
Affiliation(s)
- Véronique Witko-Sarsat
- INSERM U1016, Paris, France.,Institut Cochin, Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, Paris, France
| | - Delphine Ohayon
- INSERM U1016, Paris, France.,Institut Cochin, Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, Paris, France
| |
Collapse
|
20
|
Lima KM, Vago JP, Caux TR, Negreiros-Lima GL, Sugimoto MA, Tavares LP, Arribada RG, Carmo AAF, Galvão I, Costa BRC, Soriani FM, Pinho V, Solito E, Perretti M, Teixeira MM, Sousa LP. The resolution of acute inflammation induced by cyclic AMP is dependent on annexin A1. J Biol Chem 2017; 292:13758-13773. [PMID: 28655761 DOI: 10.1074/jbc.m117.800391] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 12/17/2022] Open
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-regulated protein known for its anti-inflammatory and pro-resolving effects. We have shown previously that the cAMP-enhancing compounds rolipram (ROL; a PDE4 inhibitor) and Bt2cAMP (a cAMP mimetic) drive caspase-dependent resolution of neutrophilic inflammation. In this follow-up study, we investigated whether AnxA1 could be involved in the pro-resolving properties of these compounds using a model of LPS-induced inflammation in BALB/c mice. The treatment with ROL or Bt2cAMP at the peak of inflammation shortened resolution intervals, improved resolution indices, and increased AnxA1 expression. In vitro studies showed that ROL and Bt2cAMP induced AnxA1 expression and phosphorylation, and this effect was prevented by PKA inhibitors, suggesting the involvement of PKA in ROL-induced AnxA1 expression. Akin to these in vitro findings, H89 prevented ROL- and Bt2cAMP-induced resolution of inflammation, and it was associated with decreased levels of intact AnxA1. Moreover, two different strategies to block the AnxA1 pathway (by using N-t-Boc-Met-Leu-Phe, a nonselective AnxA1 receptor antagonist, or by using an anti-AnxA1 neutralizing antiserum) prevented ROL- and Bt2cAMP-induced resolution and neutrophil apoptosis. Likewise, the ability of ROL or Bt2cAMP to induce neutrophil apoptosis was impaired in AnxA-knock-out mice. Finally, in in vitro settings, ROL and Bt2cAMP overrode the survival-inducing effect of LPS in human neutrophils in an AnxA1-dependent manner. Our results show that AnxA1 is at least one of the endogenous determinants mediating the pro-resolving properties of cAMP-elevating agents and cAMP-mimetic drugs.
Collapse
Affiliation(s)
- Kátia M Lima
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas.,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Juliana P Vago
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas.,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Thaís R Caux
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Graziele Letícia Negreiros-Lima
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Michelle A Sugimoto
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Luciana P Tavares
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Raquel G Arribada
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Aline Alves F Carmo
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Izabela Galvão
- the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Bruno Rocha C Costa
- the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Frederico M Soriani
- the Departamento de Biologia Geral, Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha 31270-901, Belo Horizonte, Brazil and
| | - Vanessa Pinho
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas.,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Egle Solito
- the William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Mauro Perretti
- the William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Mauro M Teixeira
- the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| | - Lirlândia P Sousa
- From the Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, .,the Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia.,the Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, and
| |
Collapse
|
21
|
Lee NR, Park BS, Kim SY, Gu A, Kim DH, Lee JS, Kim IS. Cytokine secreted by S100A9 via TLR4 in monocytes delays neutrophil apoptosis by inhibition of caspase 9/3 pathway. Cytokine 2016; 86:53-63. [PMID: 27459393 DOI: 10.1016/j.cyto.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 02/08/2023]
Abstract
Dysregulation of neutrophil apoptosis causes pathogenesis and aggravation of allergy. S100A9 exists as one of the proteins in the neutrophils, triggering inflammatory responses by activating the immune cells. In this study, we investigated whether S100A9 affects constitutive neutrophil apoptosis by activating the monocytes in normal and allergic subjects. Supernatant from human monocytic THP-1 cells after treatment with S100A9 suppressed normal neutrophil apoptosis by inhibiting the activations of caspase 9 and caspase 3. S100A9 upregulated the release of MCP-1, IL-6, and IL-8 in THP-1 cells. An increase in cytokine was suppressed by CLI-095, a Toll-like receptor (TLR) 4 inhibitor, PP2, a Src inhibitor, rottlerin, a PKCδ inhibitor, MAP kinase inhibitors, including PD98059, SB202190, and SP600125, and BAY-11-7085, an NF-κB inhibitor. Src, PKCδ, ERK1/2, p38 MAPK, and JNK were phosphorylated by S100A9. The phosphorylation of Src and PKCδ was suppressed by CLI-095, and the activation of ERK1/2, p38 MAPK, and JNK was inhibited by CLI-095, PP2, and rottlerin. S100A9 induced NF-κB activity, and the activation was suppressed by CLI-095, PP2, rottlerin, and MAPK kinase inhibitors. In normal and allergic subjects, supernatant from normal and allergic monocytes after stimulation with S100A9 suppressed normal and allergic neutrophil apoptosis, respectively; MCP-1, IL-6, and IL-8 in the supernatant was increased by S100A9. The cytokine secretion induced by S100A9 is related to TLR4, Src, PKCδ, ERK1/2, p38 MAPK, JNK, and NF-κB. Taken together, S100A9 induces anti-apoptotic effect on normal and allergic neutrophils by increasing cytokine secretion of monocytes. These findings may help us to better understand neutrophil apoptosis regulated by S100A9 and pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Na Rae Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Seong Yeol Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Ayoung Gu
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Da Hye Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Republic of Korea.
| | - In Sik Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea.
| |
Collapse
|
22
|
Chari A, Htut M, Zonder JA, Fay JW, Jakubowiak AJ, Levy JB, Lau K, Burt SM, Tunquist BJ, Hilder BW, Rush SA, Walker DH, Ptaszynski M, Kaufman JL. A phase 1 dose-escalation study of filanesib plus bortezomib and dexamethasone in patients with recurrent/refractory multiple myeloma. Cancer 2016; 122:3327-3335. [PMID: 27433944 DOI: 10.1002/cncr.30174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Filanesib is a kinesin spindle protein inhibitor that has demonstrated encouraging activity in patients with recurrent/refractory multiple myeloma. Preclinical synergy with bortezomib was the rationale for the current phase 1 study. METHODS The current study was a multicenter study with an initial dose-escalation phase to determine the maximum tolerated dose of 2 schedules of filanesib plus bortezomib with and without dexamethasone, followed by a dose-expansion phase. RESULTS With the addition of prophylactic filgastrim, the maximum planned dose was attained: 1.3 mg/m2 /day of bortezomib plus 40 mg of dexamethasone on days 1, 8, and 15 of a 28-day cycle, with filanesib given intravenously either at a dose of 1.5 mg/m2 /day (schedule 1: days 1, 2, 15, and 16) or 3 mg/m2 /day (schedule 2: days 1 and 15). The most common adverse events (assessed for severity using version 4.0 of the National Cancer Institute Common Terminology Criteria for Adverse Events) were transient, noncumulative neutropenia and thrombocytopenia with grade 3/4 events reported in 44% (16% in cycle 1 with filgastrim) and 29% of patients, respectively. A low (≤11%) overall rate of nonhematological grade 3/4 toxicity was observed. With a median of 3 prior lines of therapy and 56% of patients with disease that was refractory to proteasome inhibitors, the overall response rate was 20% (55 patients), and was 29% in 14 patients with proteasome inhibitors-refractory disease receiving filanesib at a dose of ≥1.25 mg/m2 (duration of response, 5.2 to ≥21.2 months). CONCLUSIONS The current phase 1 study established a dosing schedule for the combination of these agents that demonstrated a favorable safety profile with a low incidence of nonhematologic toxicity and manageable hematologic toxicity. The combination of filanesib, bortezomib, and dexamethasone appears to have durable activity in patients with recurrent/refractory multiple myeloma. Cancer 2016;122:3327-3335. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Ajai Chari
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Myo Htut
- City of Hope, Duarte, California
| | - Jeffrey A Zonder
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | | | | | - Joan B Levy
- Multiple Myeloma Research Consortium, Norwalk, Connecticut
| | - Kenneth Lau
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven M Burt
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | | | | | | | | | | | | |
Collapse
|