1
|
Li X, Deng J, Long Y, Ma Y, Wu Y, Hu Y, He X, Yu S, Li D, Li N, He F. Focus on brain-lung crosstalk: Preventing or treating the pathological vicious circle between the brain and the lung. Neurochem Int 2024; 178:105768. [PMID: 38768685 DOI: 10.1016/j.neuint.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Recently, there has been increasing attention to bidirectional information exchange between the brain and lungs. Typical physiological data is communicated by channels like the circulation and sympathetic nervous system. However, communication between the brain and lungs can also occur in pathological conditions. Studies have shown that severe traumatic brain injury (TBI), cerebral hemorrhage, subarachnoid hemorrhage (SAH), and other brain diseases can lead to lung damage. Conversely, severe lung diseases such as acute respiratory distress syndrome (ARDS), pneumonia, and respiratory failure can exacerbate neuroinflammatory responses, aggravate brain damage, deteriorate neurological function, and result in poor prognosis. A brain or lung injury can have adverse effects on another organ through various pathways, including inflammation, immunity, oxidative stress, neurosecretory factors, microbiome and oxygen. Researchers have increasingly concentrated on possible links between the brain and lungs. However, there has been little attention given to how the interaction between the brain and lungs affects the development of brain or lung disorders, which can lead to clinical states that are susceptible to alterations and can directly affect treatment results. This review described the relationships between the brain and lung in both physiological and pathological conditions, detailing the various pathways of communication such as neurological, inflammatory, immunological, endocrine, and microbiological pathways. Meanwhile, this review provides a comprehensive summary of both pharmacological and non-pharmacological interventions for diseases related to the brain and lungs. It aims to support clinical endeavors in preventing and treating such ailments and serve as a reference for the development of relevant medications.
Collapse
Affiliation(s)
- Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei He
- Department of Geratology, Yongchuan Hospital of Chongqing Medical University(the Fifth Clinical College of Chongqing Medical University), Chongqing, 402160, China.
| |
Collapse
|
2
|
Yang R, Li J, Zhao L, Zhang M, Qin Y, Tong X, Wang S, Yang F, Jiang G. Edaravone dexborneol regulates γ-aminobutyric acid transaminase in rats with acute intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2024; 33:107738. [PMID: 38701940 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVES Edaravone dexborneol is neuroprotective against ischemic stroke, with free radical-scavenging and anti-inflammatory effects, but its effects in hemorrhagic stroke remain unclear. We evaluated whether edaravone dexborneol has a neuroprotective effect in intracerebral hemorrhage, and its underlying mechanisms. MATERIALS AND METHODS Bioinformatics were used to predict the pathway of action of edaravone dexborneol. An intracerebral hemorrhage model was established using type IV collagenase in edaravone dexborneol, intracerebral hemorrhage, Sham, adeno-associated virus + edaravone dexborneol, and adeno-associated virus + intracerebral hemorrhage groups. The modified Neurological Severity Score was used to evaluate neurological function in rats. Brain water content was measured using the dry-wet weight method. Tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and γ-aminobutyric acid levels were determined by enzyme-linked immunosorbent assay. The expression levels of neurofilament light chain and γ-aminobutyric acid transaminase were determined by western blot. Nissl staining was used to examine neuronal morphology. Cognitive behavior was evaluated using a small-animal treadmill. RESULTS Edaravone dexborneol alleviated neurological defects, improved cognitive function, and reduced cerebral edema, neuronal degeneration, and necrosis in rats with cerebral hemorrhage. The expression levels of neurofilament light chain, tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and γ-aminobutyric acid were decreased, while γ-aminobutyric acid transaminase expression was up-regulated. CONCLUSIONS Edaravone dexborneol regulates γ-aminobutyric acid content by acting on the γ-aminobutyric acid transaminase signaling pathway, thus alleviating oxidative stress, neuroinflammation, neuronal degeneration, and death caused by excitatory toxic injury of neurons after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Rui Yang
- North Sichuan Medical College, Nanchong, Sichuan, China; Department of Neurology, Xichang People's Hospital, Xichang, Sichuan, China
| | - Jia Li
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Li Zhao
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Zhang
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yaya Qin
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoqiong Tong
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shenglin Wang
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fanhui Yang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College; North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
3
|
Wang G, Hou G, Tian Q, Liu C, Guo Y, Wei H, Zhang Z, Li M. Inhibition of S100A9 alleviates neurogenic pulmonary edema after subarachnoid hemorrhage. Biochem Pharmacol 2023; 218:115905. [PMID: 37949322 DOI: 10.1016/j.bcp.2023.115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND PURPOSE Neurogenic pulmonary edema (NPE) frequently arises as a complication subsequent to subarachnoid hemorrhage (SAH). Heterodimers of S100A8 and S100A9 are commonly formed, thereby initiating an inflammatory reaction through receptor binding on the cell surface. Paquinimod serves as a specific inhibitor of S100A9. The objective of this investigation is to assess the impact of Paquinimod administration and S100A9 knockout on NPE following SAH. METHODS In this study, SAH models of C57BL/6J wild-type (WT) and S100A9 knockout mice were established through intravascular perforation. These models were then divided into several groups, including the WT-sham group, S100A9-KO-sham group, WT-SAH group, WT-SAH + Paquinimod group, and S100A9-KO-SAH group. After 24 h of SAH induction, pulmonary edema was assessed using the lung wet-dry weight method and Hematoxylin and eosin (HE) staining. Additionally, the expression levels of various proteins, such as interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), occludin, claudin-3, Bax, Bcl-2, TLR4, MYD88, and pNF-κB, in lung tissue were analyzed using western blot and immunofluorescence staining. Lung tissue apoptosis was detected by TUNEL staining. RESULTS Firstly, our findings indicate that the knockout of S100A9 has a protective effect on early brain injury following subarachnoid hemorrhage (SAH). Additionally, the reduction of brain injury after SAH can also alleviate neurogenic pulmonary edema (NPE). Immunofluorescence staining and western blot analysis revealed that compared to SAH mice with wild-type S100A9 expression (WT-SAH), the lungs of S100A9 knockout SAH mice (S100A9-KO-SAH) and mice treated with Paquinimod exhibited decreased levels of inflammatory molecules (IL-1β and TNF-α) and increased levels of tight junction proteins. Furthermore, the knockout of S100A9 resulted in upregulated expression of the apoptotic-associated protein Bax and down-regulated expression of Bcl-2. Furthermore, a decrease in TLR4, MYD88, and phosphorylated pNF-κB was noted in S100A9-KO-SAH and Paquinimod treated mice, indicating the potential involvement of the TLR4/MYD88/NF-κB signaling pathway in the inhibition of the protective effect of S100A9 on NPE following SAH. CONCLUSION The knockout of S100A9 not only ameliorated initial cerebral injury following subarachnoid hemorrhage (SAH), but also mitigated SAH-associated neurogenic pulmonary edema (NPE). Additionally, Paquinimod was found to diminish NPE. These findings imply a correlation between the central nervous system and peripheral organs, highlighting the potential of safeguarding the brain to mitigate harm to peripheral organs.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guo Hou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Heng Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhan Zhang
- Department of Rehabilitation Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
4
|
Yang B, Nie Y, Wang L, Xiong W. Flurbiprofen axetil protects against cerebral ischemia/reperfusion injury via regulating miR-30c-5p and SOX9. Chem Biol Drug Des 2021; 99:197-205. [PMID: 34651418 DOI: 10.1111/cbdd.13973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022]
Abstract
The modulatory mechanism of flurbiprofen axetil (FPA) by which it relieves cerebral ischemia/reperfusion (I/R) injury (CIRI) is still obscure. In the present work, adult male Sprague-Dawley (SD) rats were pre-treated with FPA before the construction of a rat model of CIRI. Longa's scoring method and dry-wet method were employed to examine the neurological function and brain water content of the rats. MiR-30c-5p, SOX9, AQP4, SOX9, NF-κB, and p-NF-κB expression levels in the brain tissues of the rats were examined by qRT-PCR or Western blot. ELISA was executed to evaluate the IL-10, IL-6, and TNF-α levels in the serum of rat. SOD and MDA levels in rat brain homogenates were also examined to indicate the oxidative stress. Hematoxylin-eosin (HE) staining was used to examine the pathological changes of the brain tissues. Dual-luciferase reporter gene experiment was implemented to validate the binding relationship between miR-30c-5p and SOX9. In the present work, compared with the rats with CIRI, FPA pre-treatment attenuated neurological injury, cerebral edema, oxidative stress, inflammatory response, and cerebral pathological changes in the rat model with CIRI. FPA up-modulated miR-30c-5p expression. SOX9 was a downstream target of miR-30c-5p. In conclusion, FPA ameliorates CIRI through up-modulating miR-30c-5p expression and reducing SOX9 expression.
Collapse
Affiliation(s)
- Bangkun Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Nie
- Department of Pediatrics, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Lesheng Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenping Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Hasegawa Y, Uchikawa H, Kajiwara S, Morioka M. Central sympathetic nerve activation in subarachnoid hemorrhage. J Neurochem 2021; 160:34-50. [PMID: 34525222 DOI: 10.1111/jnc.15511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening condition, and although its two main complications-cerebral vasospasm (CVS)/delayed cerebral ischemia (DCI) and early brain injury (EBI)-have been widely studied, prognosis has not improved over time. The sympathetic nerve (SN) system is important for the regulation of cardiovascular function and is closely associated with cerebral vessels and the regulation of cerebral blood flow and cerebrovascular function; thus, excessive SN activation leads to a rapid breakdown of homeostasis in the brain. In the hyperacute phase, patients with SAH can experience possibly lethal conditions that are thought to be associated with SN activation (catecholamine surge)-related arrhythmia, neurogenic pulmonary edema, and irreversible injury to the hypothalamus and brainstem. Although the role of the SN system in SAH has long been investigated and considerable evidence has been collected, the exact pathophysiology remains undetermined, mainly because the relationships between the SN system and SAH are complicated, and many SN-modulating factors are involved. Thus, research concerning these relationships needs to explore novel findings that correlate with the relevant concepts based on past reliable evidence. Here, we explore the role of the central SN (CSN) system in SAH pathophysiology and provide a comprehensive review of the functional CSN network; brain injury in hyperacute phase involving the CSN system; pathophysiological overlap between the CSN system and the two major SAH complications, CVS/DCI and EBI; CSN-modulating factors; and SAH-related extracerebral organ injury. Further studies are warranted to determine the specific roles of the CSN system in the brain injuries associated with SAH.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Pharmaceutical Science, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan.,Department of Neurosurgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroki Uchikawa
- Department of Neurosurgery, Kumamoto University School of Medicine, Kumamoto, Kumamoto, Japan
| | - Sosho Kajiwara
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
6
|
Activation of Paraventricular Melatonin Receptor 2 Mediates Melatonin-Conferred Cardioprotection Against Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol 2021; 76:197-206. [PMID: 32433359 DOI: 10.1097/fjc.0000000000000851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that melatonin (Mel) can effectively ameliorate myocardial ischemia/reperfusion (MI/R) injury, but the mechanism is yet to be fully elucidated. Mel receptors are expressed in the paraventricular nucleus (PVN), which is also involved in regulating cardiac sympathetic nerve activity. The aim of this study was to examine whether Mel receptors in the PVN are involved in the protective effects of Mel against MI/R injury. The results of quantitative polymerase chain reaction, western blot, and immunofluorescence assays indicated that Mel receptor 2 (MT2) expression in the PVN was upregulated after MI/R. Intraperitoneal administration of Mel significantly improved post-MI/R cardiac function and reduced the infarct size, whereas shRNA silencing of MT2 in the PVN partially blocked this effect. Intraperitoneal administration of Mel reduced sympathetic nerve overexcitation caused by MI/R, whereas shRNA silencing of MT2 in the PVN partially diminished this effect. Furthermore, enzyme-linked immunosorbent assay and western blot results indicated that intraperitoneal administration of Mel lowered the levels of inflammatory cytokines in the PVN after MI/R injury, whereas the application of sh-MT2 in the PVN reduced this effect of Mel. Mel significantly reduced the levels of NF-κB after astrocyte oxygen and glucose deprivation/reoxygenation injury, and this effect was offset when MT2 was silenced. The above experimental results suggest that MT2 in the PVN partially mediated the protective effects of Mel against MI/R injury, and its underlying mechanisms may be related to postactivation amelioration of PVN inflammation and reduction of cardiac sympathetic nerve overexcitation.
Collapse
|
7
|
Xie C, Wu S, Li Z, Huang B, Zeng W. [Electroacupuncture protects septic rats from acute lung injury through the JAK1/STAT3 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1662-1667. [PMID: 33243749 DOI: 10.12122/j.issn.1673-4254.2020.11.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To explore the protective effect of electroacupuncture against acute lung injury (ALI) in septic rats and explore the mechanism. METHODS Sixty male SD rats were randomly divided into cecal ligation and puncture (CLP)-induced sepsis group (n=45) and sham operation group (n=15; with laparotomy but without CLP). The rat models of sepsis were randomized into ALI group (n=15) without further treatment, ALI + SEA group (n=15) treated with electroacupuncture at the point far from the Zusanli acupoint for 30 min, and ALI + EA group (n=15) with electroacupuncture at Zusanli with identical frequency, intensity and duration of electrical stimulation. All the rats were sacrificed at 12 h after CLP for measurement of the weight and the wet/dry weight (W/D) ratio of the lungs. Pathological changes of the lung tissues were examined using HE staining, and the contents of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the homogenate of the lung tissues were detected using enzyme-linked immunosorbent assay (ELISA). TUNEL staining was used to detect the apoptotic cells, and the expressions of Bax, caspase-3 and the important proteins in the JAK1/STAT3 signaling pathway (JAK1 and STAT3) were detected with Western blotting. RESULTS Compared with those in the sham operation group, the rats in ALI group showed obvious lung pathologies with significantly increased lung W/D ratio (P < 0.01), pulmonary expressions of TNF-α and IL-6 (P < 0.01), and obvious up-regulation of JAK1, STAT3, caspase-3, and Bax expressions (P < 0.01); similar changes were also observed in ALI+SEA group (P > 0.05). Compared with those in ALI+SEA group, the rats in ALI+EA group showed significantly milder lung pathologies, lowered lung W/D ratio (P < 0.01) and decreased pulmonary expressions of TNF-α, IL-6, JAK1, STAT3, caspase-3 and Bax (P < 0.01). CONCLUSIONS Electroacupuncture can inhibit the release of inflammatory mediators and cell apoptosis via the JAK1/STAT3 pathway to reduce lung injuries in septic rats.
Collapse
Affiliation(s)
- Cancan Xie
- Department of Critical Medicine, Zhuzhou Central Hospital, Zhuzhou 412000, China
| | - Shuanghua Wu
- Department of Critical Medicine, Zhuzhou Central Hospital, Zhuzhou 412000, China
| | - Zhengrong Li
- Department of Critical Medicine, Zhuzhou Central Hospital, Zhuzhou 412000, China
| | - Bing Huang
- Department of Critical Medicine, Zhuzhou Central Hospital, Zhuzhou 412000, China
| | - Weizhong Zeng
- Department of Critical Medicine, Zhuzhou Central Hospital, Zhuzhou 412000, China
| |
Collapse
|
8
|
Chen Y, Li Z. Protective Effects of Propofol on Rats with Cerebral Ischemia-Reperfusion Injury Via the PI3K/Akt Pathway. J Mol Neurosci 2020; 71:810-820. [PMID: 32984935 DOI: 10.1007/s12031-020-01703-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
In this study, we explored the effects of propofol on oxidative stress response, cytokine secretion, and autophagy in rats with ischemia-reperfusion (I/R) injury and oxygen-glucose deprivation (OGD)-stimulated primary microglia and analyzed the role of the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway in this process. Rat models of I/R injury and OGD models of primary microglia were established. Neurobehavioral scores were evaluated 24 h after reperfusion, and oxidative stress indicators, cytokine levels, and autophagy-related markers of rats and OGD-activated primary microglia were evaluated. Activation of the PI3K/Akt pathway was also assessed. The results showed that propofol pretreatment can improve nerve function in rats with I/R injury, inhibit oxidative stress response and inflammatory cytokine secretion, and promote autophagy in rats with I/R injury and OGD-activated primary microglia, and that the PI3K-Akt pathway was activated in this process. Following the addition of a PI3K/Akt pathway inhibitor, the effects of propofol on autophagy in rats with I/R injury and primary microglia were inhibited significantly. The results indicate that propofol promotes autophagy via the PI3K/Akt pathway in cerebral I/R injury.
Collapse
Affiliation(s)
- Yaru Chen
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Zhenzhou Li
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750001, Ningxia, China.
| |
Collapse
|
9
|
Zhao J, Xuan NX, Cui W, Tian BP. Neurogenic pulmonary edema following acute stroke: The progress and perspective. Biomed Pharmacother 2020; 130:110478. [PMID: 32739737 DOI: 10.1016/j.biopha.2020.110478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Neurogenic pulmonary edema (NPE) following acute stroke is an acute respiratory distress syndrome (ARDS) with clinical characteristics that include acute onset, apparent pulmonary interstitial fluid infiltration and rapid resolution. The pathological process of NPE centers on sympathetic stimulation and fulminant release of catecholamines, which cause contraction of resistance vessels. Elevated systemic resistance forces fluid into pulmonary circulation, while pulmonary circulation overload induces pulmonary capillary pressure that elevates, and in turn damages the alveolar capillary barrier. Damage to the alveolar capillary barrier leads to pulmonary ventilation disorder, blood perfusion disorder and oxygenation disorder. Eventually, NPE will cause post-stroke patients' prognosis to further deteriorate. At present, we lack specific biological diagnostic indicators and a meticulously unified diagnostic criterion, and this results in a situation in which many patients are not recognized quickly and/or diagnosed accurately. There are no drugs that are effective against NPE. Therefore, understanding how to diagnose NPE early by identifying the risk factors and how to apply appropriate treatment to avoid a deteriorating prognosis are important scientific goals. We will elaborate the progress of NPE after acute stroke in terms of its pathophysiological mechanisms, etiology, epidemiology, clinical diagnosis and early prediction, comprehensive treatment strategies, and novel drug development. We also propose our own thinking and prospects regarding NPE.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Nan-Xia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Bao-Ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
10
|
Regionally infused lidocaine can dose-dependently protect the ischemic spinal cord in rabbits and may be associated with the EAA changes. Neurosci Lett 2020; 725:134889. [PMID: 32147499 DOI: 10.1016/j.neulet.2020.134889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE In our previous study, we found that lidocaine, infused through the abdominal aorta, could protect the spinal cord against the ischemia-reperfusion (I/R) injury caused by aortic occlusion. However, whether lidocaine protective effects have dose-dependent properties and its underlying mechanisms still remain unclear. This study was designed to investigate whether regionally infused lidocaine could dose-dependently protect spinal cord against I/R injury in rabbits and its underlying mechanism. METHODS 46 New Zealand white rabbits were randomized into six groups: Group NS (normal saline control); Group L10 (lidocaine 10 mg/kg); Group L20 (lidocaine 20 mg/kg); Group L40 (lidocaine 40 mg/kg); Group L80 (lidocaine 80 mg/kg) and Group Sham. In Group NS, Group L10, Group L20, Group L40 and Group L80, spinal cord ischemia was induced by infrarenal aortic occlusion for 30 min. The sham group did not receive spinal cord ischemia. During the occlusion, normal saline or lidocaine at different doses was infused continuously through a catheter into the clamped abdominal aorta respectively. Neurologic behavior functions were assessed according to the Tarlov scale system at the moments of 0, 6, 24 and 48 h after reperfusion. The neural injuries were evaluated by the histological examination and the count of normal α-motor neurons in the ventral horn. The levels of excitatory amino acids (EAAs) in the spinal cord, including glutamate (Glu) and aspartic acid (Asp), were analyzed by high performance liquid chromatography with fluorescence detection. RESULTS The Tarlov scales in the Group L20 and the Group L40 were significantly higher than those in the Group NS at 24 and 48 h after reperfusion (P < 0.05). 12.5 % animals in Group L40 and 25 % animals in Group L20 were paraplegic versus 75 % animals in Group NS at 48 h after reperfusion (P < 0.05). The median of normal α-motor neurons in the L20, L40 and L80 groups was 7.5, 9 and 5 respectively which was significantly higher than in the NS group (count 0, P < 0.05). The levels of L-ASP and L-Glu remarkably decreased in the Group L10 and the Group L40 compared to Group NS (P < 0.05). CONCLUSIONS These data revealed that regional administration of lidocaine through the abdominal aorta can provide dose-dependent protection on spinal cord I/R in rabbits. Inhibition of EAA release may be one of the underlying mechanisms.
Collapse
|
11
|
Suleiman S, Klassen S, Katz I, Balakirski G, Krabbe J, von Stillfried S, Kintsler S, Braunschweig T, Babendreyer A, Spillner J, Kalverkamp S, Schröder T, Moeller M, Coburn M, Uhlig S, Martin C, Rieg AD. Argon reduces the pulmonary vascular tone in rats and humans by GABA-receptor activation. Sci Rep 2019; 9:1902. [PMID: 30760775 PMCID: PMC6374423 DOI: 10.1038/s41598-018-38267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Argon exerts neuroprotection. Thus, it might improve patients' neurological outcome after cerebral disorders or cardiopulmonary resuscitation. However, limited data are available concerning its effect on pulmonary vessel and airways. We used rat isolated perfused lungs (IPL) and precision-cut lung slices (PCLS) of rats and humans to assess this topic. IPL: Airway and perfusion parameters, oedema formation and the pulmonary capillary pressure (Pcap) were measured and the precapillary and postcapillary resistance (Rpost) was calculated. In IPLs and PCLS, the pulmonary vessel tone was enhanced with ET-1 or remained unchanged. IPLs were ventilated and PCLS were gassed with argon-mixture or room-air. IPL: Argon reduced the ET-1-induced increase of Pcap, Rpost and oedema formation (p < 0.05). PCLS (rat): Argon relaxed naïve pulmonary arteries (PAs) (p < 0.05). PCLS (rat/human): Argon attenuated the ET-1-induced contraction in PAs (p < 0.05). Inhibition of GABAB-receptors abolished argon-induced relaxation (p < 0.05) in naïve or ET-1-pre-contracted PAs; whereas inhibition of GABAA-receptors only affected ET-1-pre-contracted PAs (p < 0.01). GABAA/B-receptor agonists attenuated ET-1-induced contraction in PAs and baclofen (GABAB-agonist) even in pulmonary veins (p < 0.001). PLCS (rat): Argon did not affect the airways. Finally, argon decreases the pulmonary vessel tone by activation of GABA-receptors. Hence, argon might be applicable in patients with pulmonary hypertension and right ventricular failure.
Collapse
Affiliation(s)
- Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Sergej Klassen
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Ira Katz
- Medical Research & Development, Air Liquide Santé Internationale, Centre de Recherche Paris-Saclay, 78354, Jouy-en-Josas, France
| | - Galina Balakirski
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Julia Krabbe
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | | | - Svetlana Kintsler
- Institute of Pathology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Jan Spillner
- Department of Cardiac and Thoracic Surgery, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Sebastian Kalverkamp
- Department of Cardiac and Thoracic Surgery, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, 52064, Aachen, Germany
| | - Manfred Moeller
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Mark Coburn
- Department of Anaesthesiology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Annette D Rieg
- Department of Anaesthesiology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Tian H, Kang YM, Gao HL, Shi XL, Fu LY, Li Y, Jia XY, Liu KL, Qi J, Li HB, Chen YM, Chen WS, Cui W, Zhu GQ, Yu XJ. Chronic infusion of berberine into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:216-224. [PMID: 30599901 DOI: 10.1016/j.phymed.2018.09.206] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Berberine (BBR), a Chinese traditional herbal medicine, has many pharmacologic benefits such as anti-inflammation and anti-oxidation. It is widely used in clinical treatment of cardiovascular diseases such as hypertension. However, the mechanism of how BBR attenuates hypertension through affecting central neural system is not clear. PURPOSE This study was designed to determine whether chronic infusion of BBR into the hypothalamic paraventricular nucleus (PVN) attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway. METHODS Two-kidney, one-clip (2K1C) renovascular hypertensive rats were randomly assigned and treated with bilateral PVN infusion of BBR (2μg/h) or vehicle (artificial cerebrospinal fluid) via osmotic minipumps for 28 days. RESULTS 2K1C rats showed higher mean arterial pressure (MAP) and PVN Fra-like activity, plasma levels of norepinephrine (NE), PVN levels of NOX2, NOX4, Erk1/2 and iNOS, and lower PVN levels of copper/zinc superoxide dismutase (Cu/Zn-SOD). Chronic infusion of BBR reduced MAP, PVN Fra-like activity and plasma levels of NE, reduced NOX2, NOX4, Erk1/2, iNOS and induced Cu/Zn-SOD in the PVN. CONCLUSIONS These results suggest that BBR attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway in 2K1C renovascular hypertensive rats.
Collapse
Affiliation(s)
- Hua Tian
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China; Department of Diagnosis, Shaanxi University of Chinese Medicine Xi'an, 712046, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiu-Yue Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan-Mei Chen
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
13
|
Tan Z, Wang H, Sun J, Li M. Effects of propofol pretreatment on lung morphology and heme oxygenase-1 expression in oleic acid-induced acute lung injury in rats. Acta Cir Bras 2018; 33:250-258. [PMID: 29668779 DOI: 10.1590/s0102-865020180030000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/28/2018] [Indexed: 03/16/2023] Open
Abstract
PURPOSE To investigate the effects of propofol pretreatment on lung morphology and heme oxygenase-1 expression in oleic acid -induced acute lung injury in rats. METHODS A total of 32 male Sprague-Dawley rats (250-300g) were randomly divided into the following four groups (n=8/group): group C, group OA, group OA+PR, and group OA+IX to compare related parameter changes. RESULTS PaO2, PCO2, and PaO2/FiO2 were significantly different among the four treatment groups (P<0.05 or P<0.01). Lung wet/dry weight ratio and HO-1 protein expression also significantly differed among the groups (P<0.01). Immunohistochemistry showed that the expression of HO-1 in group OA+PR was stronger than those in groups OA, OA+IX, and C. Light microscopy revealed that pathological changes in lung tissues in group OA+PR were milder than those in group OA and group OA+IX. Electron microscopy showed that alveolar type II epithelial cell ultrastructure in group OA was relatively irregular with cell degeneration and disintegration and cytoplasmic lamellar bodies were vacuolized. Changes in group OA+PR were milder than those in group OA; however, they were more severe in group OA+IX than in group OA. CONCLUSION Propofol significantly increases the expression of HO-1 in the lung tissueand prevents changes in lung morphology due to ALI in rats.
Collapse
Affiliation(s)
- Zelong Tan
- Department of Anesthesiology, Tai'an Central Hospital, Tai'an, Shandong, China
| | - Huaizhou Wang
- Department of Anesthesiology, Yantai Stomatological Hospital, Yantai, Shandong, China
| | - Jing Sun
- Tai'an Maternal and Child Health Hospital, Tai'an, Shandong, China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an Central Hospital, Tai'an, Shandong, China
| |
Collapse
|
14
|
Autism-like behavior in the BTBR mouse model of autism is improved by propofol. Neuropharmacology 2017; 118:175-187. [PMID: 28341205 DOI: 10.1016/j.neuropharm.2017.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that is characterized by symptoms of impaired social interactions, restricted interests and repetitive behaviors. Recent studies in humans and animal-models suggest that reduced GABAergic neurotransmission in the brain may underlie autism-related behavioral symptoms. It has been shown that propofol, a commonly used anesthetic, facilitates γ-aminobutyric acid-mediated inhibitory synaptic transmission. The present study investigated whether propofol improved autistic phenotypes in BTBR T + Itpr3tf/J (BTBR) mice, a model of idiopathic autism. We found that i.p. injection of propofol in BTBR mice significantly improved aspects of social approach and repetitive behaviors without affecting reciprocal social interactions and without any detrimental effects in C57BL/6J mice. The ability of propofol to improve autistic phenotypes in BTBR mice through GABAergic neurotransmission suggests a potential pharmacological target for interventions to treat symptoms of autism.
Collapse
|
15
|
Gao HL, Yu XJ, Liu KL, Shi XL, Qi J, Chen YM, Zhang Y, Bai J, Yi QY, Feng ZP, Chen WS, Cui W, Liu JJ, Zhu GQ, Kang YM. PVN Blockade of p44/42 MAPK Pathway Attenuates Salt-induced Hypertension through Modulating Neurotransmitters and Attenuating Oxidative Stress. Sci Rep 2017; 7:43038. [PMID: 28225041 PMCID: PMC5320530 DOI: 10.1038/srep43038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/18/2017] [Indexed: 11/09/2022] Open
Abstract
The imbalance of neurotransmitters and excessive oxidative stress responses contribute to the pathogenesis of hypertension. In this study, we determined whether blockade of p44/42 MAPK pathway in the hypothalamic paraventricular nucleus (PVN) ameliorates the development of hypertension through modulating neurotransmitters and attenuating oxidative stress. Dahl salt-sensitive (S) rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 6 weeks and were treated with bilateral PVN infusion of PD-98059 (0.025 μg/h), a p44/42 MAPK inhibitor, or vehicle via osmotic minipump. HS resulted in higher mean arterial pressure (MAP) and Fra-like (Fra-LI) activity, and plasma and PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. PD-98059 infusion reduced NE, TH, NOX2 and NOX4 in the PVN, and induced Cu/Zn-SOD and GAD67 in the PVN. It suggests that PVN blockade of p44/42 MAPK attenuates hypertension through modulating neurotransmitters and attenuating oxidative stress.
Collapse
Affiliation(s)
- Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Yan-Mei Chen
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Juan Bai
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| |
Collapse
|
16
|
Gao HL, Yu XJ, Qi J, Yi QY, Jing WH, Sun WY, Cui W, Mu JJ, Yuan ZY, Zhao XF, Liu KL, Zhu GQ, Shi XL, Liu JJ, Kang YM. Oral CoQ10 attenuates high salt-induced hypertension by restoring neurotransmitters and cytokines in the hypothalamic paraventricular nucleus. Sci Rep 2016; 6:30301. [PMID: 27452860 PMCID: PMC4958989 DOI: 10.1038/srep30301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/04/2016] [Indexed: 01/26/2023] Open
Abstract
High salt intake leads to an increase in some proinflammatory cytokines and neurotransmitters involved in the pathogenesis of hypertension. The purpose of this work was to know if oral administration of anti-oxidant and free-radical scavenger CoQ10 may attenuate high salt-induced hypertension via regulating neurotransmitters and cytokines in the hypothalamic paraventricular nucleus (PVN). Adult male Sprague-Dawley (SD) rats were fed with a normal salt diet (NS, 0.3% NaCl) or a high salt diet (HS, 8% NaCl) for 15 weeks to induce hypertension. These rats received CoQ10 (10 mg/kg/day) dissolved in olive oil was given by gavage (10 mg/kg/day) for 15 weeks. HS resulted in higher mean arterial pressure (MAP) and the sympathetic nerve activity (RSNA). These HS rats had higher PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), interleukin (IL)-1β, NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), IL-10, copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. CoQ10 supplementation reduced NE, TH, IL-1β, NOX2 and NOX4 in the PVN, and induced IL-10, Cu/Zn-SOD and GAD67 in the PVN. These findings suggest that CoQ10 supplementation restores neurotransmitters and cytokines in the PVN, thereby attenuating high salt-induced hypertension.
Collapse
Affiliation(s)
- Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wang-Hui Jing
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wen-Yan Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiu-Fang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|