1
|
Yan C, Li Y. Causal Relationships Between Gut Microbiota, Inflammatory Cells/Proteins, and Subarachnoid Hemorrhage: A Multi-omics Bidirectional Mendelian Randomization Study and Meta-analysis. Mol Neurobiol 2024; 61:8590-8599. [PMID: 38523223 DOI: 10.1007/s12035-024-04101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a neurological emergency that can lead to fatal outcomes. It occurs when bleeding happens in the subarachnoid space, a small gap between the arachnoid and pia mater. This condition results from the rupture of diseased or damaged blood vessels at the brain's base or surface. This study combined various omics approaches with Mendelian randomization analysis, including MR-IVW, MR Egger, MR weight median, and MR weight mode, to generate preliminary results. It also employed reverse Mendelian randomization, treating SAH as the exposure. Finally, a meta-analysis was conducted to summarize these findings. The study found positive correlations between SAH and both GBPA-Pyridoxal 5 phosphate biosynthesis I (OR=1.48, 95% CI, 1.04-2.12) and GBPA-glucose biosynthesis I (OR=0.68, 95% CI, 0.52-0.90). Increased levels of urokinase-type plasma activator were also associated with SAH (OR=1.17, 95% CI, 1.04-1.32). Associations were observed with SAH for CD80 on CD62L+ plasmacytoid dendritic cells, CD80 on plasmacytoid dendritic cells, CD123 on CD62L+ plasmacytoid dendritic cells, and SSC-A on plasmacytoid dendritic cells. This study, through Mendelian randomization and meta-analysis, established links between SAH and four inflammatory cells, one inflammatory protein, and two gut microbiota-related pathways. These findings suggest potential treatment targets for SAH, highlighting the importance of modulating gut microbiota and utilizing anti-inflammatory drugs in its management.
Collapse
Affiliation(s)
| | - Yun Li
- Zhejiang Hospital, Zhejiang, China.
| |
Collapse
|
2
|
Huguenard A, Tan G, Johnson G, Adamek M, Coxon A, Kummer T, Osbun J, Vellimana A, Limbrick Jr D, Zipfel G, Brunner P, Leuthardt E. Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH): Protocol for a prospective, triple-blinded, randomized controlled trial. PLoS One 2024; 19:e0301154. [PMID: 39178291 PMCID: PMC11343404 DOI: 10.1371/journal.pone.0301154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Inflammation has been implicated in driving the morbidity associated with subarachnoid hemorrhage (SAH). Despite understanding the important role of inflammation in morbidity following SAH, there is no current effective way to modulate this deleterious response. There is a critical need for a novel approach to immunomodulation that can be safely, rapidly, and effectively deployed in SAH patients. Vagus nerve stimulation (VNS) provides a non-pharmacologic approach to immunomodulation, with prior studies demonstrating VNS can reduce systemic inflammatory markers, and VNS has had early success treating inflammatory conditions such as arthritis, sepsis, and inflammatory bowel diseases. The aim of the Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH) trial is to translate the use of non-invasive transcutaneous auricular VNS (taVNS) to spontaneous SAH, with our central hypothesis being that implementing taVNS in the acute period following spontaneous SAH attenuates the expected inflammatory response to hemorrhage and curtails morbidity associated with inflammatory-mediated clinical endpoints. MATERIALS AND METHODS The overall objectives for the NAHSaH trial are to 1) Define the impact that taVNS has on SAH-induced inflammatory markers in the plasma and cerebrospinal fluid (CSF), 2) Determine whether taVNS following SAH reduces radiographic vasospasm, and 3) Determine whether taVNS following SAH reduces chronic hydrocephalus. Following presentation to a single enrollment site, enrolled SAH patients are randomly assigned twice daily treatment with either taVNS or sham stimulation for the duration of their intensive care unit stay. Blood and CSF are drawn before initiation of treatment sessions, and then every three days during a patient's hospital stay. Primary endpoints include change in the inflammatory cytokine TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt. Secondary outcomes include exploratory analyses of a panel of additional cytokines, number and type of hospitalized acquired infections, duration of external ventricular drain in days, interventions required for vasospasm, continuous physiology data before, during, and after treatment sessions, hospital length of stay, intensive care unit length of stay, and modified Rankin Scale score (mRS) at admission, discharge, and each at follow-up appointment for up to two years following SAH. DISCUSSION Inflammation plays a central role in morbidity following SAH. This NAVSaH trial is innovative because it diverges from the pharmacologic status quo by harnessing a novel non-invasive neuromodulatory approach and its known anti-inflammatory effects to alter the pathophysiology of SAH. The investigation of a new, effective, and rapidly deployable intervention in SAH offers a new route to improve outcomes following SAH. TRIAL REGISTRATION Clinical Trials Registered, NCT04557618. Registered on September 21, 2020, and the first patient was enrolled on January 4, 2021.
Collapse
Affiliation(s)
- Anna Huguenard
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Gansheng Tan
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Gabrielle Johnson
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Markus Adamek
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Andrew Coxon
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Terrance Kummer
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Joshua Osbun
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ananth Vellimana
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David Limbrick Jr
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Gregory Zipfel
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Peter Brunner
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Eric Leuthardt
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Huguenard AL, Tan G, Rivet DJ, Gao F, Johnson GW, Adamek M, Coxon AT, Kummer TT, Osbun JW, Vellimana AK, Limbrick DD, Zipfel GJ, Brunner P, Leuthardt EC. Auricular Vagus Nerve Stimulation Mitigates Inflammation and Vasospasm in Subarachnoid Hemorrhage: A Randomized Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.29.24306598. [PMID: 38746275 PMCID: PMC11092685 DOI: 10.1101/2024.04.29.24306598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Inflammation contributes to morbidity following subarachnoid hemorrhage (SAH). Transauricular vagus nerve stimulation (taVNS) offers a noninvasive approach to target the inflammatory response following SAH. Methods In this prospective, triple-blinded, randomized, controlled trial, twenty-seven patients were randomized to taVNS or sham stimulation. Blood and cerebrospinal fluid (CSF) were collected to quantify inflammatory markers. Cerebral vasospasm severity and functional outcomes (modified Rankin Scale, mRS) were analyzed. Results No adverse events occurred. Radiographic vasospasm was significantly reduced (p = 0.018), with serial vessel caliber measurements demonstrating a more rapid return to normal than sham (p < 0.001). In the taVNS group, TNF-α was significantly reduced in both plasma (days 7 and 10) and CSF (day 13); IL-6 was also significantly reduced in plasma (day 4) and CSF (day 13) (p < 0.05). Patients receiving taVNS had higher rates of favorable outcomes at discharge (38.4% vs 21.4%) and first follow-up (76.9% vs 57.1%), with significant improvement from admission to first follow-up (p = 0.014), unlike the sham group (p = 0.18). The taVNS group had a significantly lower rate of discharge to skilled nursing facility or hospice (p = 0.04). Conclusion taVNS is a non-invasive method of neuro- and systemic immunomodulation. This trial supports that taVNS following SAH can mitigate the inflammatory response, reduce radiographic vasospasm, and potentially improve functional and neurological outcomes. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04557618.
Collapse
|
4
|
Zhang J, Zhu Q, Wang J, Peng Z, Zhuang Z, Hang C, Li W. Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage. Neural Regen Res 2024; 19:825-832. [PMID: 37843218 PMCID: PMC10664111 DOI: 10.4103/1673-5374.381493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 10/17/2023] Open
Abstract
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow. Mitochondria are directly affected by direct factors such as ischemia, hypoxia, excitotoxicity, and toxicity of free hemoglobin and its degradation products, which trigger mitochondrial dysfunction. Dysfunctional mitochondria release large amounts of reactive oxygen species, inflammatory mediators, and apoptotic proteins that activate apoptotic pathways, further damaging cells. In response to this array of damage, cells have adopted multiple mitochondrial quality control mechanisms through evolution, including mitochondrial protein quality control, mitochondrial dynamics, mitophagy, mitochondrial biogenesis, and intercellular mitochondrial transfer, to maintain mitochondrial homeostasis under pathological conditions. Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage. This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage, particularly mitochondrial quality control mechanisms. It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jiatong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Huguenard AL, Tan G, Johnson GW, Adamek M, Coxon AT, Kummer TT, Osbun JW, Vellimana AK, Limbrick DD, Zipfel GJ, Brunner P, Leuthardt EC. Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH): Protocol for a prospective, triple-blinded, randomized controlled trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304239. [PMID: 38562875 PMCID: PMC10984059 DOI: 10.1101/2024.03.18.24304239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Inflammation has been implicated in driving the morbidity associated with subarachnoid hemorrhage (SAH). Despite understanding the important role of inflammation in morbidity following SAH, there is no current effective way to modulate this deleterious response. There is a critical need for a novel approach to immunomodulation that can be safely, rapidly, and effectively deployed in SAH patients. Vagus nerve stimulation (VNS) provides a non-pharmacologic approach to immunomodulation, with prior studies demonstrating VNS can reduce systemic inflammatory markers, and VNS has had early success treating inflammatory conditions such as arthritis, sepsis, and inflammatory bowel diseases. The aim of the Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH) trial is to translate the use of non-invasive transcutaneous auricular VNS (taVNS) to spontaneous SAH, with our central hypothesis being that implementing taVNS in the acute period following spontaneous SAH attenuates the expected inflammatory response to hemorrhage and curtails morbidity associated with inflammatory-mediated clinical endpoints. Materials and methods The overall objectives for the NAHSaH trial are to 1) Define the impact that taVNS has on SAH-induced inflammatory markers in the plasma and cerebrospinal fluid (CSF), 2) Determine whether taVNS following SAH reduces radiographic vasospasm, and 3) Determine whether taVNS following SAH reduces chronic hydrocephalus. Following presentation to a single enrollment site, enrolled SAH patients are randomly assigned twice daily treatment with either taVNS or sham stimulation for the duration of their intensive care unit stay. Blood and CSF are drawn before initiation of treatment sessions, and then every three days during a patient's hospital stay. Primary endpoints include change in the inflammatory cytokine TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt. Secondary outcomes include exploratory analyses of a panel of additional cytokines, number and type of hospitalized acquired infections, duration of external ventricular drain in days, interventions required for vasospasm, continuous physiology data before, during, and after treatment sessions, hospital length of stay, intensive care unit length of stay, and modified Rankin Scale score (mRS) at admission, discharge, and each at follow-up appointment for up to two years following SAH. Discussion Inflammation plays a central role in morbidity following SAH. This NAVSaH trial is innovative because it diverges from the pharmacologic status quo by harnessing a novel non-invasive neuromodulatory approach and its known anti-inflammatory effects to alter the pathophysiology of SAH. The investigation of a new, effective, and rapidly deployable intervention in SAH offers a new route to improve outcomes following SAH. Trial registration Clinical Trials Registered, NCT04557618. Registered on September 21, 2020, and the first patient was enrolled on January 4, 2021.
Collapse
Affiliation(s)
- Anna L Huguenard
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gansheng Tan
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gabrielle W Johnson
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Markus Adamek
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrew T Coxon
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Terrance T Kummer
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joshua W Osbun
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ananth K Vellimana
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David D. Limbrick
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gregory J Zipfel
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Peter Brunner
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Wang J, Wang L, Wu Q, Cai Y, Cui C, Yang M, Sun B, Mao L, Wang Y. Interleukin-4 Modulates Neuroinflammation by Inducing Phenotypic Transformation of Microglia Following Subarachnoid Hemorrhage. Inflammation 2024; 47:390-403. [PMID: 37898992 PMCID: PMC10799105 DOI: 10.1007/s10753-023-01917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Neuroinflammation, a key pathological feature following subarachnoid hemorrhage (SAH), can be therapeutically targeted by inhibiting microglia M1 polarization and promoting phenotypic transformation to M2 microglia. Interleukin-4 (IL-4) is a pleiotropic cytokine known to its regulation of physiological functions of the central nervous system (CNS) and mediate neuroinflammatory processes. However, its specific role in neuroinflammation and microglia responses following SAH remains unexplored. In this investigation, we established both in vivo and in vitro SAH models and employed a comprehensive array of assessments, including ELISA, neurofunctional profiling, immunofluorescence staining, qRT-PCR, determination of phagocytic capacity, and RNA-Seq analyses. The findings demonstrate an elevated expression of IL-4 within cerebrospinal fluid (CSF) subsequent to SAH. Furthermore, exogenous administration of IL-4 ameliorates post-SAH neurofunctional deficits, attenuates cellular apoptosis, fosters M2 microglia phenotype conversion, and mitigates neuroinflammatory responses. The RNA-Seq analysis signifies that IL-4 governs the modulation of neuroinflammation in microglia within an in vitro SAH model through intricate cascades of signaling pathways, encompassing interactions between cytokines and cytokine receptors. These discoveries not only augment comprehension of the neuropathogenesis associated with post-SAH neuroinflammation but also present novel therapeutic targets for the management thereof.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Lili Wang
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province, 272011, China
| | - Yichen Cai
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Chengfu Cui
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China
| | - Ming Yang
- Department of Ultrasonic Diagnosis and Treatment, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Baoliang Sun
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China.
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Leilei Mao
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Yuan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Liao L, Wang H, Wei D, Yi M, Gu Y, Zhang M, Wang L. Exosomal microRNAs: implications in the pathogenesis and clinical applications of subarachnoid hemorrhage. Front Mol Neurosci 2023; 16:1300864. [PMID: 38143562 PMCID: PMC10748509 DOI: 10.3389/fnmol.2023.1300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe acute neurological disorder with a high fatality rate. Early brain injury (EBI) and cerebral vasospasm are two critical complications of SAH that significantly contribute to poor prognosis. Currently, surgical intervention and interventional therapy are the main treatment options for SAH, but their effectiveness is limited. Exosomes, which are a type of extracellular vesicles, play a crucial role in intercellular communication and have been extensively studied in the past decade due to their potential influence on disease progression, diagnosis, and treatment. As one of the most important components of exosomes, miRNA plays both direct and indirect roles in affecting disease progression. Previous research has found that exosomal miRNA is involved in the development of various diseases, such as tumors, chronic hepatitis, atherosclerosis, diabetes, and SAH. This review focuses on exploring the impact of exosomal miRNA on SAH, including its influence on neuronal apoptosis, inflammatory response, and immune activation following SAH. Furthermore, this review highlights the potential clinical applications of exosomal miRNA in the treatment of SAH. Although current research on this topic is limited and the clinical application of exosomal miRNA has inherent limitations, we aim to provide a concise summary of existing research progress and offer new insights for future research directions and trends in this field.
Collapse
Affiliation(s)
- Lishang Liao
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haoran Wang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Deli Wei
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingliang Yi
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingwei Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Wang
- Department of Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Umana GE, Tomasi SO, Palmisciano P, Scalia G, Da Ros V, Al-Schameri R, Priola SM, Brunasso L, Giammalva GR, Paolini F, Costanzo R, Bonosi L, Gerardi RM, Maugeri R, Strigari L, Stieg PE, Esposito G, Lawton MT, Griessenauer CJ, Winkler PA. Intracranial Venous Alteration in Patients With Aneurysmal Subarachnoid Hemorrhage: Protocol for the Prospective and Observational SAH Multicenter Study (SMS). Front Surg 2022; 9:847429. [PMID: 35449549 PMCID: PMC9018107 DOI: 10.3389/fsurg.2022.847429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundArterial vasospasm has been ascribed as the responsible etiology of delayed cerebral infarction in patients with aneurysmal subarachnoid hemorrhage (aSAH), but other neurovascular structures may be involved. We present the protocol for a multicenter, prospective, observational study focused on analyzing morphological changes in cerebral veins of patients with aSAH.Methods and AnalysisIn a retrospective arm, we will collect head arterial and venous CT angiograms (CTA) of 50 patients with aSAH and 50 matching healthy controls at days 0–2 and 7–10, comparing morphological venous changes. A multicenter prospective observational study will follow. Patients aged ≥18 years of any gender with aSAH will be enrolled at 9 participating centers based on the predetermined eligibility criteria. A sample size of 52 aSAH patients is expected, and 52 healthy controls matched per age, gender, and comorbidities will be identified. For each patient, sequential CTA will be conducted upon admission (day 0–2), at 7–10 days, and at 14–21 days after aSAH, evaluating volumes and morphology of the cerebral deep veins and main cortical veins. One specialized image collecting center will analyze all anonymized CTA scans, performing volumetric calculation of targeted veins. Morphological venous changes over time will be evaluated using the Dice coefficient and the Jaccard index and scored using the Boeckh–Behrens system. Morphological venous changes will be correlated to clinical outcomes and compared between patients with aSAH and healthy-controls, and among groups based on surgical/endovascular treatments for aSAH.Ethics and DisseminationThis protocol has been approved by the ethics committee and institutional review board of Ethikkommission, SALK, Salzburg, Austria, and will be approved at all participating sites. The study will comply with the Declaration of Helsinki. Written informed consent will be obtained from all enrolled patients or their legal tutors. We will present our findings at academic conferences and peer-reviewed journals.Approved Protocol Version and RegistrationVersion 2, 09 June 2021.
Collapse
Affiliation(s)
- Giuseppe E. Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
- *Correspondence: Giuseppe E. Umana
| | - S. Ottavio Tomasi
- Department of Neurological Surgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Laboratory for Microsurgical Neuroanatomy, Christian Doppler Klinik, Salzburg, Austria
| | - Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, Catania, Italy
| | - Valerio Da Ros
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Rahman Al-Schameri
- Department of Neurological Surgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Stefano M. Priola
- Division of Neurosurgery Health Sciences North, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Lara Brunasso
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Giuseppe Roberto Giammalva
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Federica Paolini
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Roberta Costanzo
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Lapo Bonosi
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Rosa Maria Gerardi
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Rosario Maugeri
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS University Hospital of Bologna, Bologna, Italy
| | - Philip E. Stieg
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY, United States
| | - Giuseppe Esposito
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael T. Lawton
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Christoph J. Griessenauer
- Department of Neurological Surgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Laboratory for Microsurgical Neuroanatomy, Christian Doppler Klinik, Salzburg, Austria
| | - Peter A. Winkler
- Department of Neurological Surgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Weng Y. Investigation of molecular regulation mechanism under the pathophysiology of subarachnoid hemorrhage. Open Life Sci 2022; 16:1377-1392. [PMID: 35087950 PMCID: PMC8768506 DOI: 10.1515/biol-2021-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the molecular mechanism under the pathophysiology of subarachnoid hemorrhage (SAH) and identify the potential biomarkers for predicting the risk of SAH. Differentially expressed mRNAs (DEGs), microRNAs, and lncRNAs were screened. Protein-protein interaction (PPI), drug-gene, and competing endogenous RNA (ceRNA) networks were constructed to determine candidate RNAs. The optimized RNAs signature was established using least absolute shrinkage and selection operator and recursive feature elimination algorithms. A total of 124 SAH-related DEGs were identified, and were enriched in inflammatory response, TNF signaling pathway, and others. PPI network revealed 118 hub genes such as TNF, MMP9, and TLR4. Drug-gene network revealed that chrysin targeted more genes, such as TNF and MMP9. JMJD1C-AS-hsa-miR-204-HDAC4/SIRT1 and LINC01144-hsa-miR-128-ADRB2/TGFBR3 regulatory axes were found from ceRNA network. From these networks, 125 candidate RNAs were obtained. Of which, an optimal 38 RNAs signatures (2 lncRNAs, 1 miRNA, and 35 genes) were identified to construct a Support Vector Machine classifier. The predictive value of 38 biomarkers had an AUC of 0.990. Similar predictive performance was found in external validation dataset (AUC of 0.845). Our findings provided the potential for 38 RNAs to serve as biomarkers for predicting the risk of SAH. However, their application values should be further validated in clinical.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Neurology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo City, Zhejiang Province, 315040, People's Republic of China
| |
Collapse
|
10
|
Ikram A, Javaid MA, Ortega-Gutierrez S, Selim M, Kelangi S, Anwar SMH, Torbey MT, Divani AA. Delayed Cerebral Ischemia after Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:106064. [PMID: 34464924 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is the most feared complication of aneurysmal subarachnoid hemorrhage (aSAH). It increases the mortality and morbidity associated with aSAH. Previously, large cerebral artery vasospasm was thought to be the sole major contributing factor associated with increased risk of DCI. Recent literature has challenged this concept. We conducted a literature search using PUBMED as the prime source of articles discussing various other factors which may contribute to the development of DCI both in the presence or absence of large cerebral artery vasospasm. These factors include microvascular spasm, micro-thrombosis, cerebrovascular dysregulation, and cortical spreading depolarization. These factors collectively result in inflammation of brain parenchyma, which is thought to precipitate early brain injury and DCI. We conclude that diagnostic modalities need to be refined in order to diagnose DCI more efficiently in its early phase, and newer interventions need to be developed to prevent and treat this condition. These newer interventions are currently being studied in experimental models. However, their effectiveness on patients with aSAH is yet to be determined.
Collapse
Affiliation(s)
- Asad Ikram
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Muhammad Ali Javaid
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Kelangi
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Michel T Torbey
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA.
| |
Collapse
|