1
|
Best FV, Hartings JA, Alfawares Y, Danzer SC, Ngwenya LB. Behavioral and Cognitive Consequences of Spreading Depolarizations: A Translational Scoping Review. J Neurotrauma 2024. [PMID: 39494515 DOI: 10.1089/neu.2024.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Spreading depolarizations (SDs) are self-propagating waves of mass depolarization that cause silencing of brain activity and have the potential to impact brain function and behavior. In the eight decades following their initial discovery in 1944, numerous publications have studied the cellular and molecular underpinning of SDs, but fewer have focused on the impact of SDs on behavior and cognition. It is now known that SDs occur in more than 60% of patients with moderate-to-severe traumatic brain injury (TBI), and their presence is associated with poor 6-month outcomes. Since cognitive dysfunction is a key component of TBI pathology and recovery, understanding the impact of SDs on behavior and cognition is an important step in developing diagnostic and therapeutic approaches. This study summarizes the known behavioral and cognitive consequences of SDs based on historical studies on awake animals, recent experimental paradigms, and modern clinical examples. This scoping review showcases our current understanding of the impact of SDs on cognition and behavior and highlights the need for continued research on the consequences of SDs.
Collapse
Affiliation(s)
- Faith V Best
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yara Alfawares
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
van Hameren G, Aboghazleh R, Parker E, Dreier JP, Kaufer D, Friedman A. From spreading depolarization to blood-brain barrier dysfunction: navigating traumatic brain injury for novel diagnosis and therapy. Nat Rev Neurol 2024; 20:408-425. [PMID: 38886512 DOI: 10.1038/s41582-024-00973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Considerable strides in medical interventions during the acute phase of traumatic brain injury (TBI) have brought improved overall survival rates. However, following TBI, people often face ongoing, persistent and debilitating long-term complications. Here, we review the recent literature to propose possible mechanisms that lead from TBI to long-term complications, focusing particularly on the involvement of a compromised blood-brain barrier (BBB). We discuss evidence for the role of spreading depolarization as a key pathological mechanism associated with microvascular dysfunction and the transformation of astrocytes to an inflammatory phenotype. Finally, we summarize new predictive and diagnostic biomarkers and explore potential therapeutic targets for treating long-term complications of TBI.
Collapse
Affiliation(s)
- Gerben van Hameren
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Refat Aboghazleh
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ellen Parker
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Neurosurgery, Dalhousie University QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Jens P Dreier
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada.
- Department of Cell Biology, Cognitive and Brain Sciences, Zelman Inter-Disciplinary Center of Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
3
|
Pinkowski NJ, Fish B, Mehos CJ, Carlson VL, Hess BR, Mayer AR, Morton RA. Spreading Depolarizations Contribute to the Acute Behavior Deficits Associated With a Mild Traumatic Brain Injury in Mice. J Neurotrauma 2024; 41:271-291. [PMID: 37742105 PMCID: PMC11071091 DOI: 10.1089/neu.2023.0152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023] Open
Abstract
Concussions or mild traumatic brain injuries (mTBIs) are often described and diagnosed by the acute signs and symptoms of neurological dysfunction including weakness, dizziness, disorientation, headaches, and altered mental state. The cellular and physiological mechanisms of neurological dysfunction and acute symptoms are unclear. Spreading depolarizations (SDs) occur after severe TBIs and have recently been identified in closed-skull mouse models of mTBIs. SDs are massive waves of complete depolarization that result in suppression of cortical activity for multiple minutes. Despite the clear disruption of brain physiology after SDs, the role of SDs in the acute neurological dysfunction and acute behavioral deficits following mTBIs remains unclear. We used a closed-skull mouse model of mTBI and a series of behavioral tasks collectively scored as the neurological severity score (NSS) to assess acute behavior. Our results indicate that mTBIs are associated with significant behavioral deficits in the open field and NSS tasks relative to sham-condition animals. The behavioral deficits associated with the mTBI recovered within 3 h. We show here that the presence of mTBI-induced bilateral SDs were significantly associated with the acute behavioral deficits. To identify the role of SDs in the acute behavioral deficits, we used exogenous potassium and optogenetic approaches to induce SDs in the absence of the mTBI. Bilateral SDs alone were associated with similar behavioral deficits in the open field and NSS tasks. Collectively, these studies demonstrate that bilateral SDs are linked to the acute behavioral deficits associated with mTBIs.
Collapse
Affiliation(s)
- Natalie J. Pinkowski
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Betty Fish
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Carissa J. Mehos
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Victoria L. Carlson
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
| | - Brandi R. Hess
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Andrew R. Mayer
- Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
- Department of Psychology, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
| | - Russell A. Morton
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, New Mexico, USA
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
Balu R, Foreman B. Introduction to Spreading Depolarizations Special Edition Volume 2. Neurocrit Care 2022; 37:1-2. [PMID: 35763259 DOI: 10.1007/s12028-022-01554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ramani Balu
- Neurocritical Care Division, Inova Fairfax Hospital, Falls Church, VA, USA.
| | - Brandon Foreman
- Neurocritical Care Division, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|