1
|
Agarwal N, Benedetti GM. Neuromonitoring in the ICU: noninvasive and invasive modalities for critically ill children and neonates. Curr Opin Pediatr 2024; 36:630-643. [PMID: 39297699 DOI: 10.1097/mop.0000000000001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW Critically ill children are at risk of neurologic dysfunction and acquiring primary and secondary brain injury. Close monitoring of cerebral function is crucial to prevent, detect, and treat these complications. RECENT FINDINGS A variety of neuromonitoring modalities are currently used in pediatric and neonatal ICUs. These include noninvasive modalities, such as electroencephalography, transcranial Doppler, and near-infrared spectroscopy, as well as invasive methods including intracranial pressure monitoring, brain tissue oxygen measurement, and cerebral microdialysis. Each modality offers unique insights into neurologic function, cerebral circulation, or metabolism to support individualized neurologic care based on a patient's own physiology. Utilization of these modalities in ICUs results in reduced neurologic injury and mortality and improved neurodevelopmental outcomes. SUMMARY Monitoring of neurologic function can significantly improve care of critically ill children. Additional research is needed to establish normative values in pediatric patients and to standardize the use of these modalities.
Collapse
Affiliation(s)
- Neha Agarwal
- Division of Pediatric Neurology, Department of Pediatrics, University of Michigan, C.S. Mott Children's Hospital, Ann Arbor, Michigan, USA
| | | |
Collapse
|
2
|
Plante V, Basu M, Gettings JV, Luchette M, LaRovere KL. Update in Pediatric Neurocritical Care: What a Neurologist Caring for Critically Ill Children Needs to Know. Semin Neurol 2024; 44:362-388. [PMID: 38788765 DOI: 10.1055/s-0044-1787047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Currently nearly one-quarter of admissions to pediatric intensive care units (PICUs) worldwide are for neurocritical care diagnoses that are associated with significant morbidity and mortality. Pediatric neurocritical care is a rapidly evolving field with unique challenges due to not only age-related responses to primary neurologic insults and their treatments but also the rarity of pediatric neurocritical care conditions at any given institution. The structure of pediatric neurocritical care services therefore is most commonly a collaborative model where critical care medicine physicians coordinate care and are supported by a multidisciplinary team of pediatric subspecialists, including neurologists. While pediatric neurocritical care lies at the intersection between critical care and the neurosciences, this narrative review focuses on the most common clinical scenarios encountered by pediatric neurologists as consultants in the PICU and synthesizes the recent evidence, best practices, and ongoing research in these cases. We provide an in-depth review of (1) the evaluation and management of abnormal movements (seizures/status epilepticus and status dystonicus); (2) acute weakness and paralysis (focusing on pediatric stroke and select pediatric neuroimmune conditions); (3) neuromonitoring modalities using a pathophysiology-driven approach; (4) neuroprotective strategies for which there is evidence (e.g., pediatric severe traumatic brain injury, post-cardiac arrest care, and ischemic stroke and hemorrhagic stroke); and (5) best practices for neuroprognostication in pediatric traumatic brain injury, cardiac arrest, and disorders of consciousness, with highlights of the 2023 updates on Brain Death/Death by Neurological Criteria. Our review of the current state of pediatric neurocritical care from the viewpoint of what a pediatric neurologist in the PICU needs to know is intended to improve knowledge for providers at the bedside with the goal of better patient care and outcomes.
Collapse
Affiliation(s)
- Virginie Plante
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Meera Basu
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Matthew Luchette
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Appavu B, Riviello JJ. Multimodal neuromonitoring in the pediatric intensive care unit. Semin Pediatr Neurol 2024; 49:101117. [PMID: 38677796 DOI: 10.1016/j.spen.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 04/29/2024]
Abstract
Neuromonitoring is used to assess the central nervous system in the intensive care unit. The purpose of neuromonitoring is to detect neurologic deterioration and intervene to prevent irreversible nervous system dysfunction. Neuromonitoring starts with the standard neurologic examination, which may lag behind the pathophysiologic changes. Additional modalities including continuous electroencephalography (CEEG), multiple physiologic parameters, and structural neuroimaging may detect changes earlier. Multimodal neuromonitoring now refers to an integrated combination and display of non-invasive and invasive modalities, permitting tailored treatment for the individual patient. This chapter reviews the non-invasive and invasive modalities used in pediatric neurocritical care.
Collapse
Affiliation(s)
- Brian Appavu
- Clinical Assistant Professor of Child Health and Neurology, University of Arizona School of Medicine-Phoenix, Barrow Neurological Institute at Phoenix Children's, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ 85016, United States.
| | - James J Riviello
- Associate Division Chief for Epilepsy, Neurophysiology, and Neurocritical Care, Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Professor of Pediatrics and Neurology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, United States
| |
Collapse
|
4
|
Agrawal S, Abecasis F, Jalloh I. Neuromonitoring in Children with Traumatic Brain Injury. Neurocrit Care 2024; 40:147-158. [PMID: 37386341 PMCID: PMC10861621 DOI: 10.1007/s12028-023-01779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Traumatic brain injury remains a major cause of mortality and morbidity in children across the world. Current management based on international guidelines focuses on a fixed therapeutic target of less than 20 mm Hg for managing intracranial pressure and 40-50 mm Hg for cerebral perfusion pressure across the pediatric age group. To improve outcome from this complex disease, it is essential to understand the pathophysiological mechanisms responsible for disease evolution by using different monitoring tools. In this narrative review, we discuss the neuromonitoring tools available for use to help guide management of severe traumatic brain injury in children and some of the techniques that can in future help with individualizing treatment targets based on advanced cerebral physiology monitoring.
Collapse
Affiliation(s)
- Shruti Agrawal
- Department of Paediatric Intensive Care, Cambridge University Hospitals National Health Service Foundation Trust, Level 3, Box 7, Addenbrookes Hospital Hills Road, Cambridge, UK.
- University of Cambridge, Cambridge, UK.
| | - Francisco Abecasis
- Paediatric Intensive Care Unit, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Ibrahim Jalloh
- University of Cambridge, Cambridge, UK
- Department of Neurosurgery, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| |
Collapse
|
5
|
Figaji A. An update on pediatric traumatic brain injury. Childs Nerv Syst 2023; 39:3071-3081. [PMID: 37801113 PMCID: PMC10643295 DOI: 10.1007/s00381-023-06173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) remains the commonest neurological and neurosurgical cause of death and survivor disability among children and young adults. This review summarizes some of the important recent publications that have added to our understanding of the condition and advanced clinical practice. METHODS Targeted review of the literature on various aspects of paediatric TBI over the last 5 years. RESULTS Recent literature has provided new insights into the burden of paediatric TBI and patient outcome across geographical divides and the severity spectrum. Although CT scans remain a standard, rapid sequence MRI without sedation has been increasingly used in the frontline. Advanced MRI sequences are also being used to better understand pathology and to improve prognostication. Various initiatives in paediatric and adult TBI have contributed regionally and internationally to harmonising research efforts in mild and severe TBI. Emerging data on advanced brain monitoring from paediatric studies and extrapolated from adult studies continues to slowly advance our understanding of its role. There has been growing interest in non-invasive monitoring, although the clinical applications remain somewhat unclear. Contributions of the first large scale comparative effectiveness trial have advanced knowledge, especially for the use of hyperosmolar therapies and cerebrospinal fluid drainage in severe paediatric TBI. Finally, the growth of large and even global networks is a welcome development that addresses the limitations of small sample size and generalizability typical of single-centre studies. CONCLUSION Publications in recent years have contributed iteratively to progress in understanding paediatric TBI and how best to manage patients.
Collapse
Affiliation(s)
- Anthony Figaji
- Division of Neurosurgery and Neurosciences Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
6
|
Lang SS, Kumar N, Zhao C, Rahman R, Flanders TM, Heuer GG, Huh JW. Intracranial Pressure and Brain Tissue Oxygen Multimodality Neuromonitoring in Gunshot Wounds to the Head in Children. World Neurosurg 2023; 178:101-113. [PMID: 37479026 DOI: 10.1016/j.wneu.2023.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVE Gunshot wounds to the head (GSWH) are a cause of severe penetrating traumatic brain injury (TBI). Although multimodal neuromonitoring has been increasingly used in blunt pediatric TBI, its role in the pediatric population with GSWH is not known. We report on 3 patients who received multimodal neuromonitoring as part of clinical management at our institution and review the existing literature on pediatric GSWH. METHODS We identified 3 patients ≤18 years of age who were admitted to a quaternary children's hospital from 2005 to 2021 with GSWH and received invasive intracranial pressure (ICP) and Pbto2 (brain tissue oxygenation) monitoring with or without noninvasive near-infrared spectroscopy (NIRS). We analyzed clinical and demographic characteristics, imaging findings, and ICP, Pbto2, cerebral perfusion pressure, and rSo2 (regional cerebral oxygen saturation) NIRS trends. RESULTS All patients were male with an average admission Glasgow Coma Scale score of 4. One patient received additional NIRS monitoring. Episodes of intracranial hypertension (ICP ≥20 mm Hg) and brain tissue hypoxia (Pbto2 <15 mm Hg) or hyperemia (Pbto2 >35 mm Hg) frequently occurred independently of each other, requiring unique targeted treatments. rSo2 did not consistently mirror Pbto2. All children survived, with favorable Glasgow Outcome Scale-Extended score at 6 months after injury. CONCLUSIONS Use of ICP and Pbto2 multimodality neuromonitoring enabled specific management for intracranial hypertension or brain tissue hypoxia episodes that occurred independently of one another. Multimodality neuromonitoring has not been studied extensively in pediatric GSWH; however, its use may provide a more complete picture of patient injury and prognosis without significant added procedural risk.
Collapse
Affiliation(s)
- Shih-Shan Lang
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | - Nankee Kumar
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chao Zhao
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raphia Rahman
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Tracy M Flanders
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gregory G Heuer
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Davis DP, McKnight B, Meier E, Drennan IR, Newgard C, Wang HE, Bulger E, Schreiber M, Austin M, Vaillancourt C. Higher Oxygenation Is Associated with Improved Survival in Severe Traumatic Brain Injury but Not Traumatic Shock. Neurotrauma Rep 2023; 4:51-63. [PMID: 36726869 PMCID: PMC9886195 DOI: 10.1089/neur.2022.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pre-hospital resuscitation of critically injured patients traditionally includes supplemental oxygen therapy to address potential hypoxemia. The objective of this study was to explore the association between pre-hospital hypoxemia, hyperoxemia, and mortality in patients with traumatic brain injury (TBI) and traumatic shock. We hypothesized that both hypoxemia and hyperoxemia would be associated with increased mortality. We used the Resuscitation Outcomes Consortium Prospective Observational Prehospital and Hospital Registry for Trauma (ROC PROPHET) database of critically injured patients to identify a severe TBI cohort (pre-hospital Glasgow Coma Scale [GCS] 3-8) and a traumatic shock cohort (systolic blood pressure ≤90 mm Hg and pre-hospital GCS >8). Arterial blood gas (ABG) obtained within 30 min of hospital arrival was required for inclusion. Patients with hypoxemia (PaO2 <80 mm Hg) and hyperoxemia (PaO2 >400 mm Hg) were compared to those with normoxemia (PaO2 80-400 mm Hg) with regard to the primary outcome measure of in-hospital mortality in both the TBI and traumatic shock cohorts. Multiple logistic regression was used to calculate odds ratios (ORs) after adjustment for multiple covariables. In addition, regression spline curves were generated to estimate the risk of death as a continuous function of PaO2 levels. A total of 1248 TBI patients were included, of whom 396 (32%) died before hospital discharge. Associations between hypoxemia and increased mortality (OR, 1.8; 95% confidence interval [CI], 1.2-2.8; p = 0.008) and between hyperoxemia and decreased mortality (OR, 0.6; 95% CI, 0.4-0.9; p = 0.018) were observed. A total of 582 traumatic shock patients were included, of whom 52 (9%) died before hospital discharge. No statistically significant associations were observed between in-hospital mortality and either hypoxemia (OR, 1.0; 95% CI, 0.4-2.4; p = 0.987) or hyperoxemia (OR, 1.9; 95% CI, 0.6-5.7; p = 0.269). Among patients with severe TBI but not traumatic shock, hypoxemia was associated with an increase of in-hospital mortality and hyperoxemia was associated with a decrease of in-hospital mortality.
Collapse
Affiliation(s)
- Daniel P. Davis
- Logan Health EMS, Kalispell, Montana, USA.,Department of Emergency Medicine, UC San Diego Medical Center, San Diego, California, USA.,*Address correspondence to: Daniel P. Davis, MD, Logan Health EMS, 310 Sunnyview Lane, Kalispell, MT 59901, USA;
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Eric Meier
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Ian R. Drennan
- Rescu, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Craig Newgard
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Henry E. Wang
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eileen Bulger
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Martin Schreiber
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Austin
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|