1
|
Inhibitory Effect of Trihydroxy Isoflavone on Neuronal Apoptosis in Natural Aging Rats. DISEASE MARKERS 2022; 2022:4688203. [PMID: 36046381 PMCID: PMC9420620 DOI: 10.1155/2022/4688203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
Objective To explore the impact of genistein (Gen) on the apoptosis of neuronal cells in naturally aged rats and its mechanism. Methods Fifty SD male rats were allocated into five groups at random, including youth group (3M group), natural aging group (24M group), and Gen low-, medium-, and high-dose groups. Starting from 18 months of age, Gen 10, 30, and 60 mg-kg−1 were administered via gavage to the Gen low-, medium-, and high-dose groups, respectively, while the rats in the natural aging group was given saline by gavage until 24 months of age, and the drug was stopped for 1 d per week for 6 months. The protein expression of target genes was examined using western blotting. Results In contrast to the 3M group, the 24M group rats showed disturbed neuronal cell arrangement and massive cell degeneration. After 6 months of Gen intervention, in contrast to the 24M group, the neural cell pathology in the CA3 area of the hippocampus improved and cell apoptotic decreased observably. In contrast to the 3M group, the protein expression of c-Jun amino-terminal kinase (p-JNK), C/EBP homologous protein (CHOP), inflammatory vesicle 3-associated factor (NLRP3), cysteine protease-1 (Caspase-1), and apoptosis-related punctate protein (ASC) and downstream inflammatory factors in the hippocampus was obviously increased in the 24M group. In contrast to the 24M group, the protein expression of p-JNK, CHOP, NLRP3, Caspase-1, and ASC and downstream inflammatory factors in the hippocampus was observably declined in Gen groups. Conclusion Gen has a protective effect on hippocampal neurons in aging rat brain tissue via the inhibition of the ERS apoptotic signaling pathway and NLRP3 inflammatory vesicle activation.
Collapse
|
2
|
Caruso G, Torrisi SA, Mogavero MP, Currenti W, Castellano S, Godos J, Ferri R, Galvano F, Leggio GM, Grosso G, Caraci F. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol Ther 2021; 232:108013. [PMID: 34624428 DOI: 10.1016/j.pharmthera.2021.108013] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 02/09/2023]
Abstract
Dietary polyphenols have been the focus of major interest for their potential benefits on human health. Several preclinical studies have been conducted to provide a rationale for their potential use as therapeutic agents in preventing or ameliorating cognitive decline. However, results from human studies are scarce and poorly documented. The aim of this review was to discuss the potential mechanisms involved in age-related cognitive decline or early stage cognitive impairment and current evidence from clinical human studies conducted on polyphenols and the aforementioned outcomes. The evidence published so far is encouraging but contrasting findings are to be taken into account. Most studies on anthocyanins showed a consistent positive effect on various cognitive aspects related to aging or early stages of cognitive impairment. Studies on cocoa flavanols, resveratrol, and isoflavones provided substantial contrasting results and further research is needed to clarify the therapeutic potential of these compounds. Results from other studies on quercetin, green tea flavanols, hydroxycinnamic acids (such as chlorogenic acid), curcumin, and olive oil tyrosol and derivatives are rather promising but still too few to provide any real conclusions. Future translational studies are needed to address issues related to dosage, optimal formulations to improve bioavailability, as well as better control for the overall diet, and correct target population.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Paola Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
3
|
Li Q, Zhang X. Genistein attenuates cognitive deficits and neuroapoptosis in hippocampus induced by ketamine exposure in neonatal rats. Synapse 2020; 75:e22181. [PMID: 32639628 DOI: 10.1002/syn.22181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Ketamine is a frequently used anesthetic in pediatric patients that can cause cognitive impairment. Genistein, a bioactive component of soy products, has been shown to suppress neuronal death through regulating the expression of apoptosis related genes. In this study, we hypothesized that genistein could alleviate ketamine-induced cognitive impairment by ameliorating hippocampal neuronal loss and tested this hypothesis in rats. Neonatal rats were treated with ketamine and genistein. Hippocampal tissue was harvested for histological and biochemical analysis to determine neuronal apoptosis and proteins involved in the apoptotic pathways. Behavioral assays including contextual fear conditioning test and Morris water maze test were performed to assess cognitive functions, including learning and memory. We found that in fear conditioning test, genistein restored freezing time in ketamine treated rats in a dose dependent manner. Similarly, genistein attenuated impaired learning and memory in Morris water maze test in rats treated with ketamine. Additionally, ketamine-induced neuronal apoptosis in rat hippocampus was attenuated by genistein treatment. Finally, we found that genistein partially restored proteins associated with apoptosis, including Bax, Bcl-2, cleaved caspase 3, and phosphorylated GSK-3ß and Akt. Genistein suppresses hippocampal neuronal loss and cognitive disruption induced by ketamine in rats.
Collapse
Affiliation(s)
- Qingsong Li
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xi Zhang
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Lee B, Choi GM, Shim I, Lee H. Genistein Prevents Single Prolonged Stress-Induced Cognitive Impairment in a Post-Traumatic Stress Disorder Rat Model via Activation of the Serotonergic System. J Med Food 2020; 23:476-484. [PMID: 32267780 DOI: 10.1089/jmf.2019.4519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated mental disorder characterized by an imbalance of neurotransmitters in response to traumatic events or fear. Genistein (GEN), a natural isoflavone, has been shown to exhibit neuroprotective effects. Here, we used the Morris water maze (MWM) and object recognition task (ORT) tests to examine the effects of GEN on cognitive impairment in rats after exposure to single prolonged stress (SPS), and its interaction with the serotonergic system. After exposure to SPS, male rats received GEN (2, 4, and 10 mg/kg, i.p.) for 14 days. Daily GEN administration significantly improved cognitive function in the ORT and MWM tests. GEN treatment also inhibited SPS-induced decreases in serotonin (5-HT) levels in the medial prefrontal cortex and hippocampus. These increased 5-HT concentrations in response to GEN treatment could be partially attributed to the ratio of 5-hydroxyindoleacetic acid/5-HT in the hippocampus. Our findings suggest that GEN significantly attenuates SPS-induced memory deficits in rats and may represent an effective therapeutic option for the treatment of PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Korea.,Center for Converging Humanities, Kyung Hee University, Seoul, Korea
| | - Gwang Muk Choi
- The Graduate School of Basic Science of Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Korea
| |
Collapse
|
5
|
Thangavel P, Puga-Olguín A, Rodríguez-Landa JF, Zepeda RC. Genistein as Potential Therapeutic Candidate for Menopausal Symptoms and Other Related Diseases. Molecules 2019; 24:molecules24213892. [PMID: 31671813 PMCID: PMC6864469 DOI: 10.3390/molecules24213892] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Plant-derived compounds have recently attracted greater interest in the field of new therapeutic agent development. These compounds have been widely screened for their pharmacological effects. Polyphenols, such as soy-derived isoflavones, also called phytoestrogens, have been extensively studied due to their ability to inhibit carcinogenesis. These compounds are chemically similar to 17β-estradiol, and mimic the binding of estrogens to its receptors, exerting estrogenic effects in target organs. Genistein is an isoflavone derived from soy-rich products and accounts for about 60% of total isoflavones found in soybeans. Genistein has been reported to exhibit several biological effects, such as anti-tumor activity (inhibition of cell proliferation, regulation of the cell cycle, induction of apoptosis), improvement of glucose metabolism, impairment of angiogenesis in both hormone-related and hormone-unrelated cancer cells, reduction of peri-menopausal and postmenopausal hot flashes, and modulation of antioxidant effects. Additionally, epidemiological and clinical studies have reported health benefits of genistein in many chronic diseases, such as cardiovascular disease, diabetes, and osteoporosis, and aid in the amelioration of typical menopausal symptoms, such as anxiety and depression. Although the biological effects are promising, certain limitations, such as low bioavailability, biological estrogenic activity, and effects on target organs, have limited the clinical applications of genistein to some extent. Moreover, studies report that modification of its molecular structure may eliminate the biological estrogenic activity and its effects on target organs. In this review, we summarize the potential benefits of genistein on menopause symptoms and menopause-related diseases like cardiovascular, osteoporosis, obesity, diabetes, anxiety, depression, and breast cancer.
Collapse
Affiliation(s)
- Prakash Thangavel
- Programa de Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa C.P. 91190, Veracruz, Mexico.
| | - Abraham Puga-Olguín
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa C.P. 91190, Veracruz, Mexico.
| | - Juan F Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa C.P. 91190, Veracruz, Mexico.
| | - Rossana C Zepeda
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa C.P. 91190, Veracruz, Mexico.
| |
Collapse
|
6
|
Rajaei S, Alihemmati Ph D A, Abedelahi Ph D A. Antioxidant effect of genistein on ovarian tissue morphology, oxidant and antioxidant activity in rats with induced polycystic ovary syndrome. Int J Reprod Biomed 2019; 17. [PMID: 31435584 PMCID: PMC6652161 DOI: 10.18502/ijrm.v17i1.3816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/07/2018] [Accepted: 09/12/2018] [Indexed: 11/24/2022] Open
Abstract
Background Oxidative stress is the most frequent cause of female infertility disorders including polycystic ovary syndrome (PCOS). Genistein as a major component of soybean isoflavone scavenges free radicals by antioxidant activities. Objective The present study examines the antioxidant effects of genistein on ovarian tissue following experimental PCOS in rats. Materials and Methods Twenty female Wistar rat were randomly divided into the following groups (n=5 each group): (I) control group (no treatment); (II) induced PCOS (injection of estradiol valerate); (III) genistein-treated non-PCOS (received genistein); and (IV) genistein-treated PCOS groups. The weight of rats were measured and the blood samples collected and centrifuged. The oxidant and antioxidant activity of plasma and ovaries were measured. All rats were sacrificed under anesthesia, and ovaries were collected and weighted. Histological examination and follicular quality were assessed by staining. Results In histological observation, the induced PCOS rats displayed more number of atretic follicles and the follicular quality in genistein-treated rats was similar to the control groups. The plasma and ovaries malondialdehyde levels significantly increased in PCOS rats (p < 0.001), while the total antioxidant capacity levels, glutathione peroxidase, and superoxide dismutase activities significantly decreased (p < 0.001). The plasma and ovary malondialdehyde levels significantly decreased in PCOS rats that were treated with genistein (p < 0.001) and the total antioxidant capacity (p < 0.05), glutathione peroxidase, and superoxide dismutase activities significantly increased (p < 0.001). Conclusion Treatment with genistein preserved follicular quality by increasing antioxidant activities and scavenging oxidant levels in PCOS rats.
Collapse
Affiliation(s)
- Samira Rajaei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Abedelahi Ph D
- Department of Anatomical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Lu C, Wang Y, Xu T, Li Q, Wang D, Zhang L, Fan B, Wang F, Liu X. Genistein Ameliorates Scopolamine-Induced Amnesia in Mice Through the Regulation of the Cholinergic Neurotransmission, Antioxidant System and the ERK/CREB/BDNF Signaling. Front Pharmacol 2018; 9:1153. [PMID: 30369882 PMCID: PMC6194227 DOI: 10.3389/fphar.2018.01153] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/24/2018] [Indexed: 01/16/2023] Open
Abstract
Genistein (GE) was reported to exert a wide spectrum of biological activities, including antioxidant, anti-inflammatory, anti-mutagenic, anticancer, and cardio-protective effects. In addition, both clinical and preclinical studies have recently suggested GE a potential neuroprotective and memory-enhancing drug against neurodegenerative diseases. The animal model of scopolamine (Scop)-induced amnesia is widely used to study underlying mechanisms and treatment of cognitive impairment in neurodegenerative diseases. However, there is no report about the effects of GE on Scop-induced amnesia in mice. Therefore, the present study was carried out to investigate the beneficial effects and potential mechanism of GE against Scop-induced deficits in mice. The mice were orally pretreated with either GE (10, 20, and 40 mg/kg) or donepezil (1.60 mg/kg) for 14 days. After the pretreatment, the open field test was conducted to assess the effect of GE on the locomotor activity of mice. Thereafter, mice were daily injected with Scop (0.75 mg/kg) intraperitoneally to induce memory deficits and subjected to the cognitive behavioral tests including the Object Location Recognition (OLR) experiment and Morris Water Maze (MWM) task. After the behavioral tests, biochemical parameter assay and western blot analysis were used to examine the underlying mechanisms of its action. The results showed that GE administration significantly improved the cognitive performance of Scop-treated mice in OLR and Morris water maze tests, exerting the memory-enhancing effects. Additionally, GE remarkably promoted the cholinergic neurotransmission and protected against the oxidative stress damage in the hippocampus of Scop-treated mice, as indicated by decreasing AChE activity, elevating ChAT activity and Ach level, increasing SOD activity, lowering the level of MDA and increasing GSH content. Furthermore, GE was found to significantly upregulate the expression levels of p-ERK, p-CREB and BDNF proteins in the hippocampus of Scop-treated mice. Taken together, these results for the first time found that GE exerts cognitive-improving effects in Scop-induced amnesia and suggested it may be a potential candidate compound for the treatment of some neurodegenerative diseases such as Alzheimer's Disease (AD).
Collapse
Affiliation(s)
- Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Teng Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijing Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Mirahmadi SMS, Shahmohammadi A, Rousta AM, Azadi MR, Fahanik-Babaei J, Baluchnejadmojarad T, Roghani M. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 2018; 104:151-159. [PMID: 29102164 DOI: 10.1016/j.cyto.2017.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 12/16/2022]
Abstract
Systemic inflammation during infectious disorders usually accompanies chronic complications including cognitive dysfunction. Neuroinflammation and cognitive deficit are also observed in some debilitating neurological disorders like Alzheimer's and Parkinson's diseases. Genistein is a soy isoflavone with multiple beneficial effects including anti-inflammatory, anti-oxidative, and protective properties. In this research study, the effect of genistein in prevention of lipopolysaccharide (LPS)-induced cognitive dysfunction was investigated. LPS was given i.p. (500 μg/kg/day) and genistein was orally given (10, 50, or 100 mg/kg) for one week. Findings showed that genistein could dose-dependently attenuate spatial recognition, discrimination, and memory deficits. Additionally, genistein treatment of LPS-challenged group lowered hippocampal level of malondialdehyde (MDA) and increased activity of superoxide dismutase (SOD) and catalase and glutathione (GSH) level. Furthermore, genistein ameliorated hippocampal acetylcholinesterase (AChE) activity in LPS-challenged rats. Furthermore, genistein administration to LPS-injected group lowered hippocampal level of interleukin 6 (IL-6), nuclear factor-kappaB (NF-κB) p65, toll-like receptor 4 (TLR4), tumor necrosis factor α (TNFα), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP), and increased hippocampal level of antioxidant element nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In conclusion, genistein alleviated LPS-induced cognitive dysfunctions and neural inflammation attenuation of oxidative stress and AChE activity and appropriate modulation of Nrf2/NF-κB/IL-6/TNFα/COX2/iNOS/TLR4/GFAP.
Collapse
Affiliation(s)
| | | | | | | | - Javad Fahanik-Babaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
9
|
Edible Bird's Nest Prevents Menopause-Related Memory and Cognitive Decline in Rats via Increased Hippocampal Sirtuin-1 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7205082. [PMID: 29104731 PMCID: PMC5632468 DOI: 10.1155/2017/7205082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Menopause causes cognitive and memory dysfunction due to impaired neuronal plasticity in the hippocampus. Sirtuin-1 (SIRT1) downregulation in the hippocampus is implicated in the underlying molecular mechanism. Edible bird's nest (EBN) is traditionally used to improve general wellbeing, and in this study, we evaluated its effects on SIRT1 expression in the hippocampus and implications on ovariectomy-induced memory and cognitive decline in rats. Ovariectomized female Sprague-Dawley rats were fed with normal pellet alone or normal pellet + EBN (6, 3, or 1.5%), compared with estrogen therapy (0.2 mg/kg/day). After 12 weeks of intervention, Morris water maze (four-day trial and one probe trial) was conducted, and serum estrogen levels, toxicity markers (alanine transaminase, alkaline phosphatase, urea, and creatinine), and hippocampal SIRT1 immunohistochemistry were estimated after sacrifice. The results indicated that EBN and estrogen enhanced spatial learning and memory and increased serum estrogen and hippocampal SIRT1 expression. In addition, the EBN groups did not show as much toxicity to the liver as the estrogen group. The data suggested that EBN treatment for 12 weeks could improve cognition and memory in ovariectomized female rats and may be an effective alternative to estrogen therapy for menopause-induced aging-related memory loss.
Collapse
|
10
|
Bahadir A, Demir S, Orallar H, Beyazcicek E, Cetinkaya A, Ankarali S, Ankarali H. Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Yan X, Hu G, Yan W, Chen T, Yang F, Zhang X, Zhao G, Liu J. Ginsenoside Rd promotes non-amyloidogenic pathway of amyloid precursor protein processing by regulating phosphorylation of estrogen receptor alpha. Life Sci 2016; 168:16-23. [PMID: 27825720 DOI: 10.1016/j.lfs.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022]
Abstract
AIMS Previous study demonstrated that Ginsenoside Rd. (GS-Rd) could improve cognitive and memory function in animal model of Alzheimer's disease. This study was aimed to investigate whether GS-Rd could improve non-amyloidogenic pathway by activating estrogen receptor (ER). MAIN METHODS 10mg/kg GS-Rd in ovariectomy (OVX)+GS-Rd group and equivalent volume of saline in sham operated group and OVX group were administrated intraperitoneally for two months, respectively. The Morris Water Maze was used to examine cognitive function of rats, with sAPPα and Aβ levels in the hippocampi measured. The culture medium of HT22 hippocampal neuronal cells were incubated with GS-Rd, ER antagonist ICI182.780, MAPK inhibitor PD98059, or PI3Kinhibitor LY294002, respectively. sAPPα levels was measured, and expression of α-secretase, sAPPα, β-secretase, Aβ, phosphorylation form of AKT (p-AKT), total AKT, p-ERK, total ERK, p-ERα, total ERα, p-ERβ and total ERβ were examined by Western blot to explore the estrogenic-like activity of GS-Rd. KEY FINDINGS GS-Rd attenuate cognitive and memory impairment, increased levels of sAPPα and reduced extracellular Aβ of OVX rats. In HT22, GS-Rd could upregulate sAPPα level, which can be inhibited by inhibitor of MAPK and PI3K pathway. In addition, inhibitor of estrogen receptor prevented GS-Rd triggered release of sAPPα and activation of MAPK and PI3K pathways. GS-Rd could increase expression of α-secretase and sAPPα, while decrease expression of β-secretase and Aβ. Besides, GS-Rd promoted phosphorylation of estrogen receptor alpha at Ser118 residue. SIGNIFICANCE Our findings show that GS-Rd enhances learning and memory function of OVX rats by activating estrogen-like activity.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Gengyao Hu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Weiming Yan
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Tao Chen
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China; Department of Health Service, Faculty of Aerospace, The Fourth Military Medical University, Xi'an 710032, China
| | - Feng Yang
- Department of Orthopaedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China; Diagnosis, Treatment and Rehabilitation Center of Neurological Diseases, Second Sanatorium, Qingdao 266071, China
| | - Xiao Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
12
|
Afsordeh N, Heydari A, Salami M, Sadat Alavi S, Arbabi E, Karimi S, Hamidi G. Effect of Estradiol and Soy Extract on the Onset of PTZ-Induced Seizure in Ovariectomized Rats: Implications for Nurses and Midwives. Nurs Midwifery Stud 2016. [DOI: 10.17795/nmsjournal33428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Zhiping H, Imam MU, Ismail M, Ismail N, Yida Z, Ideris A, Sarega N, Mahmud R. Effects of edible bird's nest on hippocampal and cortical neurodegeneration in ovariectomized rats. Food Funct 2016; 6:1701-11. [PMID: 25920003 DOI: 10.1039/c5fo00226e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this research is to investigate whether edible bird's nest (EBN) attenuates cortical and hippocampal neurodegeneration in ovariectomized rats. Ovariectomized rats were randomly divided into seven experimental groups (n = 6): the ovariectomy (OVX) group had their ovaries surgically removed; the sham group underwent surgical procedure similar to OVX group, but ovaries were left intact; estrogen group had OVX and received estrogen therapy (0.2 mg kg(-1) per day); EBN treatment groups received 6%, 3%, and 1.5% EBN, respectively. Control group was not ovariectomized. After 12 weeks of intervention, biochemical assays were performed for markers of neurodegeneration, and messenger ribonucleic acid (mRNA) levels of oxidative stress-related genes in the hippocampus and frontal cortex of the brain were analysed. Caspase 3 (cysteine-aspartic proteases 3) protein levels in the hippocampus and frontal cortex were also determined using western blotting. The results show that EBNs significantly decreased estrogen deficiency-associated serum elevation of advanced glycation end-products (AGEs), and they changed redox status as evidenced by oxidative damage (malondialdehyde content) and enzymatic antioxidant defense (superoxide dismutase and catalase) markers. Furthermore, genes associated with neurodegeneration and apoptosis were downregulated in the hippocampus and frontal cortex by EBN supplementation. Taken together, the results suggest that EBN has potential for neuroprotection against estrogen deficiency-associated senescence, at least in part via modification of the redox system and attenuation of AGEs.
Collapse
Affiliation(s)
- Hou Zhiping
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Menze ET, Esmat A, Tadros MG, Abdel-Naim AB, Khalifa AE. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS One 2015; 10:e0117223. [PMID: 25675218 PMCID: PMC4326416 DOI: 10.1371/journal.pone.0117223] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/20/2014] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder. The pre-motor symptomatic stages of the disease are commonly characterized by cognitive problems including memory loss. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD and was proven to cause memory impairment in rodents. Phytoestrogens have well-established neuroprotective and memory enhancing effects with fewer side effects in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effect of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β-estradiol (2.5 mg/kg). Systemic administration of 3-NPA for 4 consecutive days impaired locomotor activity, decreased retention latencies in the passive avoidance task, decreased striatal, cortical and hippocampal ATP levels, increased oxidative stress, acetylcholinesterase (AChE) activity, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. Pretreatment with genistein and 17β-estradiol attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task, increased ATP levels, improved the oxidative stress profile, attenuated the increase in AChE activity and decreased the expression of COX-2 and iNOS. Overall, the higher genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed to its antioxidant, anti-inflammatory and cholinesterase inhibitory activities.
Collapse
Affiliation(s)
- Esther T. Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G. Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E. Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Kohara Y, Kawaguchi S, Kuwahara R, Uchida Y, Oku Y, Yamashita K. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation. Physiol Behav 2014; 140:15-22. [PMID: 25481356 DOI: 10.1016/j.physbeh.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation.
Collapse
Affiliation(s)
- Yumi Kohara
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Shinichiro Kawaguchi
- Graduate School of Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Rika Kuwahara
- Division of Environmental Chemistry and Ecotoxicology, Institute of Environmental Studies, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yutaro Uchida
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yushi Oku
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kimihiro Yamashita
- Division of Environmental Chemistry and Ecotoxicology, Institute of Environmental Studies, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan.
| |
Collapse
|
16
|
Monthakantirat O, Sukano W, Umehara K, Noguchi H, Chulikhit Y, Matsumoto K. Effect of miroestrol on ovariectomy-induced cognitive impairment and lipid peroxidation in mouse brain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1249-1255. [PMID: 25172786 DOI: 10.1016/j.phymed.2014.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/29/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Miroestrol (MR) is a phytoestrogen isolated from Pueraria candollei var. mirifica (KwaoKrueaKhao), a Thai medicinal plant used for rejuvenation. We examined the effects of MR on cognitive function, oxidative brain damage, and the expression of genes encoding brain-derived neurotrophic factor (BDNF) and cyclic AMP-responsive element-binding protein (CREB), factors implicated in neurogenesis and synaptic plasticity, in ovariectomized (OVX) mice. OVX decreased serum 17β-estradiol level and uterine weight. OVX also impaired object recognition performance in the novel object recognition test and spatial cognitive performance in the Y-maze test and the water maze test. Daily treatment of MR dose-dependently attenuated OVX-induced cognitive dysfunction. Moreover, OVX mice had a significantly increased level of thiobarbituric acid-reactive substances, and down-regulated expression levels of BDNF and CREB mRNAs in the hippocampus and frontal cortex. MR treatment as well as hormone replacement therapy with 17β-estradiol significantly reversed these neurochemical alterations caused by OVX. These results suggest that MR ameliorates cognitive deficits in OVX animals via attenuation of OVX-induced oxidative stress and down-regulation of BDNF and CREB mRNA transcription in the brain. Our findings raise the possibility that MR and Pueraria candollei var. mirifica, the plant of origin of MR, may have a beneficial effect on cognitive deficits like AD in which menopause/ovariectomy are implicated as risk factors.
Collapse
Affiliation(s)
- Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Wichitsak Sukano
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Kaoru Umehara
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Hiroshi Noguchi
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand; Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
17
|
Morán J, Garrido P, Cabello E, Alonso A, González C. Effects of estradiol and genistein on the insulin signaling pathway in the cerebral cortex of aged female rats. Exp Gerontol 2014; 58:104-12. [PMID: 25086228 DOI: 10.1016/j.exger.2014.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 01/29/2023]
Abstract
Menopause leads to a decrease in estrogen production that increases central insulin resistance, contributing to the development of neurodegenerative diseases. We have evaluated the influence of aging and estradiol or genistein treatments on some key stages of the insulin signaling pathway in the cerebral cortex. Young and aged female Wistar rats were ovariectomized and treated acutely with 17β-estradiol (1.4μg/kg body weight), two doses of genistein (10 or 40mg/kg body weight), or vehicle. The cortical expression of several key insulin signaling pathway components was analyzed by western blotting. Our results showed an age-related deterioration in the interactions between the regulatory subunit of phosphatidylinositol 3-kinase (p85α) and the activated form of insulin receptor substrate 1 (p-IRS1tyr612), as well as between p85α and the 46kDa isoform of the estrogen receptor α (ERα46). Moreover, aging also decreased the translocation of glucose transporter-4 (GLUT4) to the plasma membrane. 17β-Estradiol but not genistein reduced the negative impact of aging on central insulin sensitivity by favoring this GLUT4 translocation, and therefore could be neuroprotective against the associated neurodegenerative diseases. However, protein kinase B (Akt) activation by genistein suggests that other possible mechanisms are involved in the neuroprotective effects of this phytoestrogen during the aging process.
Collapse
Affiliation(s)
- Javier Morán
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Pablo Garrido
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Estefanía Cabello
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Ana Alonso
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Celestino González
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| |
Collapse
|
18
|
Kohara Y, Kuwahara R, Kawaguchi S, Jojima T, Yamashita K. Perinatal exposure to genistein, a soy phytoestrogen, improves spatial learning and memory but impairs passive avoidance learning and memory in offspring. Physiol Behav 2014; 130:40-6. [PMID: 24637062 DOI: 10.1016/j.physbeh.2014.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/07/2014] [Indexed: 01/21/2023]
Abstract
This study investigated the effects of perinatal genistein (GEN) exposure on the central nervous system of rat offspring. Pregnant dams orally received GEN (1 or 10 mg/kg/day) or vehicle (1 ml/kg/day) from gestation day 10 to postnatal day 14. In order to assess the effects of GEN on rat offspring, we used a battery of behavioral tests, including the open-field, elevated plus-maze, MAZE and step-through passive avoidance tests. MAZE test is an appetite-motivation test, and we used this mainly for assessing spatial learning and memory. In the MAZE test, GEN groups exhibited shorter latency from start to goal than the vehicle-treated group in both sexes. On the other hand, performances in the step-through passive avoidance test were non-monotonically inhibited by GEN in both sexes, and a significant difference was observed in low dose of the GEN-treated group compared to the vehicle-treated group in female rats. Furthermore, we found that perinatal exposure to GEN did not significantly alter locomotor activity or emotionality as assessed by the open-field and elevated-plus maze tests. These results suggest that perinatal exposure to GEN improved spatial learning and memory of rat offspring, but impaired their passive avoidance learning and memory.
Collapse
Affiliation(s)
- Yumi Kohara
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Rika Kuwahara
- Graduate School of Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Shinichiro Kawaguchi
- Graduate School of Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Takeshi Jojima
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kimihiro Yamashita
- Division of Environmental Chemistry and Ecotoxicology, Institute of Environmental Studies, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan.
| |
Collapse
|
19
|
Wang TJ, Chen JR, Wang WJ, Wang YJ, Tseng GF. Genistein partly eases aging and estropause-induced primary cortical neuronal changes in rats. PLoS One 2014; 9:e89819. [PMID: 24587060 PMCID: PMC3934964 DOI: 10.1371/journal.pone.0089819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/26/2014] [Indexed: 01/11/2023] Open
Abstract
Gonadal hormones can modulate brain morphology and behavior. Recent studies have shown that hypogonadism could result in cortical function deficits. To this end, hormone therapy has been used to ease associated symptoms but the risk may outweigh the benefits. Here we explored whether genistein, a phytoestrogen, is effective in restoring the cognitive and central neuronal changes in late middle age and surgically estropause female rats. Both animal groups showed poorer spatial learning than young adults. The dendritic arbors and spines of the somatosensory cortical and CA1 hippocampal pyramidal neurons were revealed with intracellular dye injection and analyzed. The results showed that dendritic spines on these neurons were significantly decreased. Remarkably, genistein treatment rescued spatial learning deficits and restored the spine density on all neurons in the surgically estropause young females. In late middle age females, genistein was as effective as estradiol in restoring spines; however, the recovery was less thorough than on young OHE rats. Neither genistein nor estradiol rectified the shortened dendritic arbors of the aging cortical pyramidal neurons suggesting that dendritic arbors and spines are differently modulated. Thus, genistein could work at central level to restore excitatory connectivity and appears to be potent alternative to estradiol for easing aging and menopausal syndromes.
Collapse
Affiliation(s)
- Tsyr-Jiuan Wang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Wen-Jay Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yueh-Jan Wang
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
20
|
Pisani SL, Neese SL, Doerge DR, Helferich WG, Schantz SL, Korol DL. Acute genistein treatment mimics the effects of estradiol by enhancing place learning and impairing response learning in young adult female rats. Horm Behav 2012; 62:491-9. [PMID: 22944517 PMCID: PMC3495242 DOI: 10.1016/j.yhbeh.2012.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 12/12/2022]
Abstract
Endogenous estrogens have bidirectional effects on learning and memory, enhancing or impairing cognition depending on many variables, including the task and the memory systems that are engaged. Moderate increases in estradiol enhance hippocampus-sensitive place learning, yet impair response learning that taps dorsal striatal function. This memory modulation likely occurs via activation of estrogen receptors, resulting in altered neural function. Supplements containing estrogenic compounds from plants are widely consumed despite limited information about their effects on brain function, including learning and memory. Phytoestrogens can enter the brain and signal through estrogen receptors to affect cognition. Enhancements in spatial memory and impairments in executive function have been found following treatment with soy phytoestrogens, but no tests of actions on striatum-sensitive tasks have been made to date. The present study compared the effects of acute exposure to the isoflavone genistein with the effects of estradiol on performance in place and response learning tasks. Long-Evans rats were ovariectomized, treated with 17β-estradiol benzoate, genistein-containing sucrose pellets, or vehicle (oil or plain sucrose pellets) for 2 days prior to behavioral training. Compared to vehicle controls, estradiol treatment enhanced place learning at a low (4.5 μg/kg) but not high dose (45 μg/kg), indicating an inverted pattern of spatial memory facilitation. Treatment with 4.4 mg of genistein over 2 days also significantly enhanced place learning over vehicle controls. For the response task, treatment with estradiol impaired learning at both low and high doses; likewise, genistein treatment impaired response learning compared to rats receiving vehicle. Overall, genistein was found to mimic estradiol-induced shifts in place and response learning, facilitating hippocampus-sensitive learning and slowing striatum-sensitive learning. These results suggest signaling through estrogen receptor β and membrane-associated estrogen receptors in learning enhancements and impairments given the preferential binding of genistein to the ERβ subtype and affinity for GPER.
Collapse
Affiliation(s)
- Samantha L Pisani
- Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Neese SL, Bandara SB, Doerge DR, Helferich WG, Korol DL, Schantz SL. Effects of multiple daily genistein treatments on delayed alternation and a differential reinforcement of low rates of responding task in middle-aged rats. Neurotoxicol Teratol 2012; 34:187-95. [PMID: 21945133 PMCID: PMC3267004 DOI: 10.1016/j.ntt.2011.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 01/20/2023]
Abstract
The use of extracts that are highly enriched in phytoestrogens, such as genistein, has become popular to promote various aspects of healthy aging, including maintenance of cognitive function. These compounds are promoted to menopausal women as safe, natural alternatives to traditional estrogen therapies, yet their safety and efficacy are poorly understood. Previous research in our lab found that once daily oral treatment of ovariectomized female Long-Evans (LE) rats with the soy phytoestrogen, genistein resulted in subtle deficits in performance on cognitive tasks assessing working memory and response inhibition/timing ability. The present study further modeled exposure of the menopausal woman to genistein by treating 14-month old ovariectomized female LE rats three times daily at a dose of genistein resulting in serum concentrations similar to those that could be achieved in humans consuming either a commercially available soy isoflavone supplement or a diet high in these phytoestrogens. Genistein (3.4 mg/kg) or sucrose control pellets were orally administered to animals daily, 30 min before behavioral testing, and again both 4 and 8 h after the first treatment. The test battery consisted of a delayed spatial alternation task (DSA) that tested working memory and a differential reinforcement of low rates of responding (DRL) task that tested inhibitory control/timing. Genistein treatment impaired DSA performance relative to sucrose controls. Performance on the DRL task was largely unaffected by genistein treatment. Although the impairment measured on DSA was less pronounced than that we have previously reported following chronic treatment with 17β-estradiol, the pattern of the deficit was very similar to that observed with 17β-estradiol.
Collapse
Affiliation(s)
- Steven L Neese
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Gao QG, Xie JX, Wong MS, Chen WF. IGF-I receptor signaling pathway is involved in the neuroprotective effect of genistein in the neuroblastoma SK-N-SH cells. Eur J Pharmacol 2011; 677:39-46. [PMID: 22227334 DOI: 10.1016/j.ejphar.2011.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 12/11/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Genistein, an isoflavone naturally found in soy products, displays estrogenic properties. Our previous study clearly demonstrated that genistein can activate the insulin-like growth factor-I receptor (IGF-IR) signaling pathway in human breast cancer MCF-7 cells. The present study aims to test the hypothesis that the IGF-I receptor signaling pathway is involved in the neuroprotective effects of genistein in neuroblastoma SK-N-SH cells. Our results revealed that pretreatment with genistein resulted in an enhancement in the survival of human neuroblastoma SK-N-SH cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. 6-OHDA arrested the cells at G(0)G(1) phase and prevented S phase entry. Genistein pretreatment could reverse the cytostatic effect of 6-OHDA on cell cycle. The decreased mitochondrial membrane potential induced by 6-OHDA could be also reversed by genistein pretreatment. These effects could be completely blocked by co-treatment with JB-1, which is the specific antagonist of the IGF-I receptor. Furthermore, genistein pretreatment restored the 6-OHDA-induced up-regulation of Bax and down-regulation of Bcl-2 mRNA and protein expression. Genistein treatment alone could significantly increase the phosphorylation level of MEK and induce ERE luciferase activity. Co-treatment with IGF-I could enhance the effect of genistein on cell proliferation and MEK phosphorylation. This study provides the first evidence that genistein has neuroprotective effects against 6-OHDA-induced neurotoxicity in SK-N-SH cells and activation of the IGF-I receptor signaling pathway might be involved in actions of genistein.
Collapse
Affiliation(s)
- Quan-Gui Gao
- State Key Disciplines: Physiology (in incubation), Department of Physiology, Medical College of Qingdao University, Qingdao, PR China
| | | | | | | |
Collapse
|
23
|
Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J. Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta Gen Subj 2011; 1820:453-60. [PMID: 22178929 DOI: 10.1016/j.bbagen.2011.12.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND The pathogenic accumulation of amyloid β peptide (Aβ), a natural occurring peptide processed from beta-amyloid precursor protein (APP), is considered to play a key role in the development of Alzheimer's disease (AD). Ginsenoside Rg1, an active component in ginseng, has been identified as a phytoestrogen and also found to be neuroprotective. However, it is unknown whether Rg1-induced estrogenic activity intervenes in APP processing, and improves memory performance. METHODS Using HT22 cells and SH-SY5Y cells stably expressing the Swedish mutant APP (APPsw), this study investigated whether Rg1 intervened in APP metabolism through estrogenic activity. Using the ovariectomized (OVX) rats to mimic age-related changes in postmenopausal females, this study also tested the long-term effect of Rg1 on APP metabolism. RESULTS The in vitro study demonstrated that Rg1 increased extracellular secretion of soluble amyloid precursor protein α (sAPPα), enhanced α-secretase activity and decreased extracellular release of Aβ. These effects of Rg1 could be prevented by inhibitors of protein kinase C (PKC), Extracellular-Signal Regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) and Phosphoinositide-3 kinase (PI3K)/Akt pathways. Inhibition of endogenous estrogen receptor (ER) activity abrogated Rg1-triggered release of sAPPα, increase of α-secretase activity, and activation of ERK and Akt signaling. In addition, Rg1 promoted phosphorylation of ERα at Ser118 residue. The in vivo study demonstrated that 8-week Rg1 treatment of OVX rats increased sAPPα levels and decreased Aβ content in the hippocampi, and improved the spatial learning and memory. GENERAL SIGNIFICANCE Rg1 might be used to slow or prevent AD, in particular in postmenopausal females.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Guangzhou Medical University, Guangzhou 510182, China
| | | | | | | | | | | |
Collapse
|
24
|
Mackedanz V, Mattos CB, Feksa LR, Wannmacher CMD, Wyse ATS. Ovariectomy alters energy metabolism in rat striatum: effect of supplementation with soy diet rich in isoflavones. Metab Brain Dis 2011; 26:97-105. [PMID: 21072576 DOI: 10.1007/s11011-010-9216-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/27/2010] [Indexed: 12/28/2022]
Abstract
In the present study we investigated the effect of ovariectomy on some parameters of energy metabolism, namely Na(+),K(+)-ATPase and pyruvate kinase activities, as well as the mitochondrial respiratory chain enzymes activities succinate dehydrogenase, complex II and cytochrome c oxidase in rat striatum. The influence of soy diet rich in isoflavones on the effects elicited by ovariectomy on enzyme activities was also evaluated. Female adult Wistar rats were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries) and ovariectomized. Seven days after surgery animals were fed for 30 days on a special diet with soy protein or a standard diet with casein (control). Rats were sacrificed after treatment and the striatum was dissected. Results showed that rats subjected to ovariectomy presented a significant increase in Na(+),K(+)-ATPase, succinate dehydrogenase and complex II activities. Treatment with isoflavones-rich soy diet was able to reverse the increase of Na(+),K(+)-ATPase activity, but was not effective in reversing the changes caused by ovariectomy on succinate dehydrogenase and complex II activities. Since ovariectomy mimics postmenopausal changes, our findings suggest that dysfunction of brain energy metabolism may be related to neurological symptoms observed in some postmenopausal women.
Collapse
Affiliation(s)
- Vanize Mackedanz
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
25
|
Alonso A, González-Pardo H, Garrido P, Conejo NM, Llaneza P, Díaz F, del Rey CG, González C. Acute effects of 17 β-estradiol and genistein on insulin sensitivity and spatial memory in aged ovariectomized female rats. AGE (DORDRECHT, NETHERLANDS) 2010; 32:421-434. [PMID: 20467821 PMCID: PMC2980599 DOI: 10.1007/s11357-010-9148-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
Aging is characterized by decline in metabolic function and insulin resistance, and both seem to be in the basis of neurodegenerative diseases and cognitive dysfunction. Estrogens prevent age-related changes, and phytoestrogens influence learning and memory. Our hypothesis was that estradiol and genistein, using rapid-action mechanisms, are able to modify insulin sensitivity, process of learning, and spatial memory. Young and aged ovariectomized rats received acute treatment with estradiol or genistein. Aged animals were more insulin-resistant than young. In each age, estradiol and genistein-treated animals were less insulin-resistant than the others, except in the case of young animals treated with high doses of genistein. In aged rats, no differences between groups were found in spatial memory test, showing a poor performance in the water maze task. However, young females treated with estradiol or high doses of genistein performed well in spatial memory task like the control group. Only rats treated with high doses of genistein showed an optimal spatial memory similar to the control group. Conversely, acute treatment with high doses of phytoestrogens improved spatial memory consolidation only in young rats, supporting the critical period hypothesis for the beneficial effects of estrogens on memory. Therefore, genistein treatment seems to be suitable treatment in aged rats in order to prevent insulin resistance but not memory decline associated with aging. Acute genistein treatment is not effective to restore insulin resistance associated to the early loss of ovarian function, although it can be useful to improve memory deficits in this condition.
Collapse
Affiliation(s)
- Ana Alonso
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | - Héctor González-Pardo
- Psychology Department, Laboratory of Psychobiology, University of Oviedo, Oviedo, Spain
| | - Pablo Garrido
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | - Nélida M. Conejo
- Psychology Department, Laboratory of Psychobiology, University of Oviedo, Oviedo, Spain
| | - Plácido Llaneza
- Gynaecology Department, Central University Hospital of Asturias, Oviedo, Spain
| | - Fernando Díaz
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | | | - Celestino González
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| |
Collapse
|
26
|
Pan M, Li Z, Yeung V, Xu RJ. Dietary supplementation of soy germ phytoestrogens or estradiol improves spatial memory performance and increases gene expression of BDNF, TrkB receptor and synaptic factors in ovariectomized rats. Nutr Metab (Lond) 2010; 7:75. [PMID: 20843342 PMCID: PMC2949863 DOI: 10.1186/1743-7075-7-75] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/15/2010] [Indexed: 01/27/2023] Open
Abstract
Background Estrogen or phytoestrogens treatment has been suggested to improve cognitive function of the brain in postmenopausal women. However, there is lack of information on the mechanism of such treatment on the central nervous system. The present study aimed to determine the effects of estradiol and soy germ phytoestrogens on spatial memory performance in ovariectomized rats and to explore the underlying mechanisms affecting the central nervous system. Methods Ovariectomized Sprague-Dawley rats were fed a basic diet supplemented with soy germ phytoestrogens (0.4 g/kg or 1.6 g/kg) or 17β-estradiol (0.15 g/kg) for 12 weeks. At the end of the experiment, animals were evaluated for their spatial learning and memory performance by the Morris Water Maze task. The expressions of brain-derived neurotrophic factor (BDNF) and synaptic formation proteins in the hippocampal tissue were estimated using RT-PCR and ELISA. Results It was found that rats supplemented with soy germ phytoestrogens or estradiol performed significantly better in spatial memory acquisition and retention when compared to the rats fed on the control diet. Estradiol or the high dose of phytoestrogens treatment significantly increased BDNF concentration and the mRNA levels for BDNF and its TrkB receptors as well as the synaptic formation proteins, synaptophysin, spinophilin, synapsin 1 and PSD-95, in the hippocampal tissue of the experimental animals. It was also found that phytoestrogens, in contrast to estradiol, did not show any significant effect on the vaginal and uteri. Conclusion Soy germ phytoestrogens, which may be a substitute of estradiol, improved spatial memory performance in ovariectomized rats without significant side-effects on the vaginal and uteri. The memory enhancement effect may relate to the increase in BDNF and the synaptic formation proteins expression in the hippocampus of the brain.
Collapse
Affiliation(s)
- Meixia Pan
- Dept, of Nutrition, Guangdong Academy of Medical Sciences, Guangdong General Hospital, No,106, Zhongshan Er Road, Guangzhou 510080, China.
| | | | | | | |
Collapse
|
27
|
Genistein reduced the neural apoptosis in the brain of ovariectomised rats by modulating mitochondrial oxidative stress. Br J Nutr 2010; 104:1297-303. [PMID: 20579403 DOI: 10.1017/s0007114510002291] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study was undertaken to investigate the antioxidant effect of chronic ingestion of genistein (Gen) against neural death in the brain of ovariectomised (Ovx) rats. The rats were randomly divided into five groups, i.e. sham-operated (sham), Ovx-only, Ovx with 17β-oestradiol, Ovx with low (15 mg/kg) and high (30 mg/kg) doses of Gen (Gen-L and Gen-H), and were orally administered daily with drugs or vehicle for 6 weeks. The learning and memory abilities were measured by Morris water maze test. Oxidative damages in the brain were evaluated by the level of superoxide dismutase (SOD), malondialdehyde (MDA) and monoamine oxidase (MAO) activities. Neural apoptosis was shown by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining and caspase-3 activity. In the visual learning and memory test, there were no significant differences among the population means of the five groups. While in the probe trial test, the Gen-L group instead of the Gen-H group exhibited reduced escape latency and increased memory frequency than the Ovx group. Although both doses of Gen could reduce acetylcholinesterase activity, only a low dose of Gen could diminish MDA activity significantly in frontal cortex and enhance SOD content in the hippocampus. In contrast, MAO content was decreased in the cortex by either dose of Gen, while in the hippocampus, only a high dose of Gen appeared to be effective. Interestingly, Gen at both the doses could attenuate the increased number of TUNEL-positive neurons and caspase-3 activity in Ovx rats. These results suggest that Gen confers protection against Ovx-induced neurodegeneration by attenuating oxidative stress, lipid peroxidation and the mitochondria-mediated apoptotic pathway in a region- and dose-dependent manner.
Collapse
|
28
|
Shi C, Zou J, Li G, Ge Z, Yao Z, Xu J. Bilobalide protects mitochondrial function in ovariectomized rats by up-regulation of mRNA and protein expression of cytochrome c oxidase subunit I. J Mol Neurosci 2010; 45:69-75. [PMID: 20490713 DOI: 10.1007/s12031-010-9388-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/04/2010] [Indexed: 01/01/2023]
Abstract
Bilobalide (BB), a sesquiterpene trilactone from Ginkgo biloba has been proposed to have protective effects on mitochondrial function. Using ovariectomized rats to mimic the post-menopausal pathophysiological changes in women, this study demonstrated that BB treatment could prevent estrogen withdrawal-induced decrease in mitochondrial adenosine triphosphate content, cytochrome c oxidase subunit I (COXI) mRNA and protein levels and COX activity in hippocampal tissues as effectively as estradiol benzoate. But neither ovariectomy nor BB treatment affected citrate synthase activity. These results suggested that BB was able to regulate COX activity via up-regulation of the gene and protein expression of its mitochondrial DNA-coded subunits, and modulation of COX activity by BB might contribute to its protective effects on mitochondrial function. Given that ovariectomy induces decrease in estrogen levels similar to that of menopause, BB may be useful in developing therapy for neurodegenerative diseases such as Alzheimer's disease in post-menopausal females.
Collapse
Affiliation(s)
- Chun Shi
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | | | | | | | | | | |
Collapse
|
29
|
Shi C, Fang L, Yew DT, Yao Z, Xu J. Ginkgo biloba extract EGb761 protects against mitochondrial dysfunction in platelets and hippocampi in ovariectomized rats. Platelets 2010; 21:53-9. [PMID: 19938886 DOI: 10.3109/09537100903395180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using ovariectomized middle-aged rats to mimic the post-menopausal pathophysiological changes in women, we have previously demonstrated that estrogen withdrawal and age-related decrease in the functional reserve of mitochondria might co-operate to induce persistent mitochondrial dysfunction, which may be critical in inducing degenerative processes in the brain later in post-menopausal women. The standardized Ginkgo biloba extract EGb761 has long been considered a natural antioxidant. More recently it has also proposed to have direct protective effects on the mitochondria. In this work, effects of EGb761 on mitochondrial function in platelets and hippocampi of ovariectomized and sham-operated rats were investigated. It was found that EGb761 protected against the decrease of cytochrome c oxidase (COX) activity, mitochondrial ATP (adenosine-5'-triphosphate) content and mitochondrial glutathione (GSH) content in both platelets and hippocampi of ovariectomized rats, suggesting its peripheral and central effects against estrogen withdrawal-induced degeneration. In contrast, in sham-operated rats, EGb761 increased mitochondrial GSH content in platelets but failed to show similar effect on hippocampi, suggesting that EGb761 may help to enhance the functional reserve of mitochondria, but this effect was limited to the outside of the central nervous system. EGb761 displayed similar effects on platelets and hippocampi of ovariectomized rats but showed differential effects on platelets and hippocampi of sham-operated rats, possibly because estrogen withdrawal induced an increase of blood brain barrier (BBB) permeability. Therefore, while EGb761's effect may be limited to the outside of the nervous system under normal physiological conditions, EGb761 may be a potential protective agent against central neurodegeneration in post-menopausal women.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | | | | | | | | |
Collapse
|
30
|
Park HJ, Han SM, Yoon WJ, Kim KS, Shim I. The Effects of Puerariae Flos on Stress-induced Deficits of Learning and Memory in Ovariectomized Female Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:85-9. [PMID: 19885002 PMCID: PMC2766700 DOI: 10.4196/kjpp.2009.13.2.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Puerariae flos (PF) is a traditional oriental medicinal plant and has clinically been prescribed for a long time. The purpose of the present study was to examine the effect of PF on repeated stress-induced alterations of learning and memory on a Morris water maze (MWM) test in ovariectomized (OVX) female rats. The changes in the reactivity of the cholinergic system were assessed by measuring the immunoreactive neurons of choline acetyltransferase (ChAT) in the hippocampus after behavioral testing. The female rats were randomly divided into four groups: the nonoperated and nonstressed group (normal), the sham-operated and stressed group (control), the ovariectomized and stressed group (OS), and the ovariectomized, stressed and PF treated group (OSF). Rats were exposed to immobilization stress (IMO) for 14 d (2 h/d), and PF (400 mg/kg, p.o.) was administered 30 min before IMO stress. Results showed that treatments with PF caused significant reversals of the stress-induced deficits in learning and memory on a spatial memory task, and also increased the ChAT immunoreactivities. In conclusion, administration of PF improved spatial learning and memory in OVX rats, and PF may be useful for the treatment of postmenopausal-related dementia.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Integrative Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Seung-Moo Han
- Department of Biomedical Engineering, Kyung Hee University, Suwon 446-701, Korea
| | - Won Ju Yoon
- Department of Pharmaceuticaals and Health Foods, Lotte R&D Center, Seoul 150-866, Korea
| | - Kyung-Soo Kim
- Department of Integrative Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Insop Shim
- Department of Integrative Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
31
|
Shi C, Xu J. Increased vulnerability of brain to estrogen withdrawal-induced mitochondrial dysfunction with aging. J Bioenerg Biomembr 2009; 40:625-30. [PMID: 19139976 DOI: 10.1007/s10863-008-9195-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 12/18/2008] [Indexed: 02/06/2023]
Abstract
In the present study, to determine whether aging could increase the vulnerability of the brain to estrogen withdrawal-induced mitochondrial dysfunction, we measured the cytochrome c oxidase (COX) activity and mitochondrial adenosine triphosphate (ATP) content in hippocampi of 2 groups of ovariectomized (OVX) Wistar rats aged 2 months (young) and 9 months (middle-aged), respectively. In addition, effects of genistein and estradiol benzoate (EB) were tested also. We observed only a transient alteration of COX activity and mitochondrial ATP content in hippocampi of young OVX rats but a prolonged lowering of COX activity and mitochondrial ATP content in hippocampi of middle-aged OVX rats. This suggested that with aging compensatory mechanisms of mitochondrial function were attenuated, thus exacerbated estrogen withdrawal-induced mitochondrial dysfunction in hippocampi. Significantly, EB/genistein treatment reversed this estrogen withdrawal-induced mitochondrial dysfunction in both young and middle-aged rats suggesting that genistein may be used as a substitute for estradiol to prevent age-related disease such as Alzheimer's disease in post-menopausal females.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | | |
Collapse
|