1
|
Ma C, Li H, Lu S, Li X. The Role and Therapeutic Potential of Melatonin in Degenerative Fundus Diseases: Diabetes Retinopathy and Age-Related Macular Degeneration. Drug Des Devel Ther 2024; 18:2329-2346. [PMID: 38911030 PMCID: PMC11193467 DOI: 10.2147/dddt.s471525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
Degenerative fundus disease encompasses a spectrum of ocular diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), which are major contributors to visual impairment and blindness worldwide. The development and implementation of effective strategies for managing and preventing the onset and progression of these diseases are crucial for preserving patients' visual acuity. Melatonin, a neurohormone primarily produced by the pineal gland, exhibits properties such as circadian rhythm modulation, antioxidant activity, anti-inflammatory effects, and neuroprotection within the ocular environment. Furthermore, melatonin has been shown to suppress neovascularization and reduce vascular leakage, both of which are critical in the pathogenesis of degenerative fundus lesions. Consequently, melatonin emerges as a promising therapeutic candidate for degenerative ocular diseases. This review provides a comprehensive overview of melatonin synthesis, its localization within ocular tissues, and its mechanisms of action, particularly in regulating melatonin production, thereby underscoring its potential as a therapeutic agent for degenerative fundus diseases.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, People’s Republic of China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Blasiak J, Szczepanska J, Fila M, Pawlowska E, Kaarniranta K. Potential of Telomerase in Age-Related Macular Degeneration-Involvement of Senescence, DNA Damage Response and Autophagy and a Key Role of PGC-1α. Int J Mol Sci 2021; 22:ijms22137194. [PMID: 34281248 PMCID: PMC8268995 DOI: 10.3390/ijms22137194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD), the main cause of vision loss in the elderly, is associated with oxidation in the retina cells promoting telomere attrition. Activation of telomerase was reported to improve macular functions in AMD patients. The catalytic subunit of human telomerase (hTERT) may directly interact with proteins important for senescence, DNA damage response, and autophagy, which are impaired in AMD. hTERT interaction with mTORC1 (mTOR (mechanistic target of rapamycin) complex 1) and PINK1 (PTEN-induced kinase 1) activates macroautophagy and mitophagy, respectively, and removes cellular debris accumulated over AMD progression. Ectopic expression of telomerase in retinal pigment epithelium (RPE) cells lengthened telomeres, reduced senescence, and extended their lifespan. These effects provide evidence for the potential of telomerase in AMD therapy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be involved in AMD pathogenesis through decreasing oxidative stress and senescence, regulation of vascular endothelial growth factor (VEGF), and improving autophagy. PGC-1α and TERT form an inhibitory positive feedback loop. In conclusion, telomerase activation and its ectopic expression in RPE cells, as well as controlled clinical trials on the effects of telomerase activation in AMD patients, are justified and should be assisted by PGC-1α modulators to increase the therapeutic potential of telomerase in AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: (J.B.); (K.K.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: (J.B.); (K.K.)
| |
Collapse
|
3
|
Crooke A, Huete-Toral F, Colligris B, Pintor J. The role and therapeutic potential of melatonin in age-related ocular diseases. J Pineal Res 2017; 63. [PMID: 28658514 DOI: 10.1111/jpi.12430] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022]
Abstract
The eye is continuously exposed to solar UV radiation and pollutants, making it prone to oxidative attacks. In fact, oxidative damage is a major cause of age-related ocular diseases including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. As the nature of lens cells, trabecular meshwork cells, retinal ganglion cells, retinal pigment epithelial cells, and photoreceptors is postmitotic, autophagy plays a critical role in their cellular homeostasis. In age-related ocular diseases, this process is impaired, and thus, oxidative damage becomes irreversible. Other conditions such as low-grade chronic inflammation and angiogenesis also contribute to the development of retinal diseases (glaucoma, age-related macular degeneration and diabetic retinopathy). As melatonin is known to have remarkable qualities such as antioxidant/antinitridergic, mitochondrial protector, autophagy modulator, anti-inflammatory, and anti-angiogenic, it can represent a powerful tool to counteract all these diseases. The present review analyzes the role and therapeutic potential of melatonin in age-related ocular diseases, focusing on nitro-oxidative stress, autophagy, inflammation, and angiogenesis mechanisms.
Collapse
Affiliation(s)
- Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Huete-Toral
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Basilio Colligris
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Melatonin in Retinal Physiology and Pathology: The Case of Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6819736. [PMID: 27688828 PMCID: PMC5027321 DOI: 10.1155/2016/6819736] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
Melatonin, an indoleamine, is synthesized mainly in the pineal gland in a circadian fashion, but it is produced in many other organs, including the retina, which seems to be especially important as the eye is a primary recipient of circadian signals. Melatonin displays strong antioxidative properties, which predispose it to play a protective role in many human pathologies associated with oxidative stress, including premature aging and degenerative disease. Therefore, melatonin may play a role in age-related macular degeneration (AMD), a disease affecting photoreceptors, and retinal pigment epithelium (RPE) with an established role of oxidative stress in its pathogenesis. Several studies have shown that melatonin could exert the protective effect against damage to RPE cells evoked by reactive oxygen species (ROS), but it has also been reported to increase ROS-induced damage to photoreceptors and RPE. Melatonin behaves like synthetic mitochondria-targeted antioxidants, which concentrate in mitochondria at relatively high levels; thus, melatonin may prevent mitochondrial damage in AMD. The retina contains telomerase, an enzyme implicated in maintaining the length of telomeres, and oxidative stress inhibits telomere synthesis, while melatonin overcomes this effect. These features support considering melatonin as a preventive and therapeutic agent in the treatment of AMD.
Collapse
|
5
|
López de Abechuco E, Bilbao E, Soto M, Díez G. Molecular cloning and measurement of telomerase reverse transcriptase (TERT) transcription patterns in tissues of European hake (Merluccius merluccius) and Atlantic cod (Gadus morhua) during aging. Gene 2014; 541:8-18. [PMID: 24607378 DOI: 10.1016/j.gene.2014.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 01/01/2023]
Abstract
Telomerase is a reverse transcriptase ribonucleoprotein that maintains the ends of linear chromosomes. This enzyme plays a major role in cell processes like proliferation, differentiation and tumorigenesis, being associated with aging and survival of species. In this study, the gene coding for TERT (Telomerase Reverse Transcriptase) of two commercial fish species, European hake (Merluccius merluccius) and Atlantic cod (Gadus morhua), has been partially cloned. A fragment of 1581bp (hake) and 633bp (cod) showed high homology (identity 74%, query cover 99%, E-value=0) with known Perciformes TERT sequences. TERT transcription patterns were assessed by qRT-PCR in different tissues of hake (brain, ovary, testis, muscle, skin, gills, liver and kidney) and cod (brain, muscle and skin) of different sizes/ages in order to understand its role in the physiological aging of teleosts. TERT was found to be ubiquitously transcribed in all tissues and size/age groups studied in both species. Significantly higher relative transcription levels (p<0.05) were found with increasing size/age of M. merluccius in the kidney, muscle, skin and gonad, the latter exhibiting particularly high relative transcription levels. Male hakes showed higher TERT relative transcription levels in the brain, gonad and liver than females, although these differences were not statistically significant (p<0.05). In G. morhua, higher TERT relative transcription levels were recorded in the muscle and brain of fry and juvenile individuals. Therefore, TERT relative transcription pattern exhibited a higher telomerase demand in early developmental stages and also in mature stages, suggesting tissue renewal or regeneration processes as a conserved mechanism for maintaining long-term cell proliferation capacity and preventing senescence. Thus, it can be concluded that TERT relative transcription level was species and tissue specific and changed with the age of fishes.
Collapse
Affiliation(s)
- E López de Abechuco
- AZTI-Tecnalia, Marine Research Division, Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Bizkaia, Spain
| | - E Bilbao
- Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), University of the Basque Country, Areatza z/g, Plentzia, Bizkaia, Spain
| | - M Soto
- Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), University of the Basque Country, Areatza z/g, Plentzia, Bizkaia, Spain
| | - G Díez
- AZTI-Tecnalia, Marine Research Division, Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Bizkaia, Spain
| |
Collapse
|
6
|
Wang D, Li Y, Wang Z, Sun GY, Zhang QH. Nimodipine rescues N-methyl-N-nitrosourea-induced retinal degeneration in rats. Pharmacogn Mag 2013; 9:149-54. [PMID: 23772111 PMCID: PMC3680855 DOI: 10.4103/0973-1296.111276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 02/29/2012] [Accepted: 04/30/2013] [Indexed: 11/09/2022] Open
Abstract
Background: That nimodipine (NMD) is potentially useful for ophthalmic treatment. However, the effect of NMD is unknown on retinal degenerative diseases. Objective: The purpose of the present study was to investigate the effect of NMD on N-methyl-N-nitrosourea (MNU)-induced retinal degeneration (RD) and elucidate its possible mechanisms. Materials and Methods: Morphological observation of NMD on MNU-induced RD was evaluated by light microscopy and electron microscopy. Nonenzymatic antioxidant glutathione (GSH) was measured by a colorimetric method. Transforming growth factor-beta (TGF-β) was measured by enzyme-linked immunosorbent assay (ELISA). Telomerase was detected by reverse transcriptase polymerase chain reaction (RT-PCR). Results: The significantly protective effect of NMD on MNU-induced RD was demonstrated morphologically. NMD increased the content of GSH and decreased the level of TGF-β in rat retina. RT-PCR analysis demonstrated that NMD treatment significantly decreased mRNA level of telomerase. Conclusion: These data suggest that NMD inhibit MNU-induced RD in rats. The expressions of TGF-β, telomerase and GSH contents might partially contribute to its protective effects on MNU-induced RD.
Collapse
Affiliation(s)
- Dan Wang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, P. R. China ; Department of Pharmacology, HE's University, P. R. China
| | | | | | | | | |
Collapse
|
7
|
Rastmanesh R. Potential of melatonin to treat or prevent age-related macular degeneration through stimulation of telomerase activity. Med Hypotheses 2011; 76:79-85. [DOI: 10.1016/j.mehy.2010.08.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 08/07/2010] [Indexed: 12/15/2022]
|
8
|
Sun C, Wu Z, Jia F, Wang Y, Li T, Zhao M. Identification of zebrafish LPTS: a gene with similarities to human LPTS/PinX1 that inhibits telomerase activity. Gene 2008; 420:90-8. [PMID: 18583067 DOI: 10.1016/j.gene.2008.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 01/15/2023]
Abstract
Human LPTS/PinX1 is a newly identified telomerase inhibitory protein. Overexpression of the LPTS/PinX1 gene suppresses telomerase activity, results in shortened telomeres. To investigate the role of the LPTS gene in zebrafish, we cloned the homologous gene, zLPTS, which encodes a protein of 355 amino acids. Sequence analysis revealed that, like human LPTS/PinX1, the zLPTS protein has a conserved G-patch domain at its N-terminus and a lysine-rich domain at its C-terminus. Bioinformatics analysis showed the evolutionary conservation of zLPTS. Using RT-PCR and northern blot, we found that zLPTS was expressed in all zebrafish tissues with higher level in ovary, and in all embryonic developmental stages examined. Whole mount in situ hybridization revealed that zLPTS was expressed in all regions of early developmental embryos. The subcellular localization of zLPTS protein was showed in the nucleolus and telomeres. We also cloned the gene for zebrafish Telomerase Reverse Transcriptase (zTERT), a catalytic subunit of telomerase, and demonstrated that zLPTS protein can interact with zTERT through the TR-binding domain of zTERT. Further, we verified that zLPTS could inhibit telomerase activities in zebrafish embryos and human cancer cell line by TRAP assay. Our results clearly demonstrate that zLPTS is ubiquitously expressed in tissues and embryos and plays a function of inhibiting telomerase activity. This study may provide a useful system for further investigating the mechanism of telomere length regulation.
Collapse
Affiliation(s)
- Chengfu Sun
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|