1
|
Shi Q, Chen C, Xiao K, Zhou W, Gao C, Gao L, Han J, Wang J, Dong X. Extensive Disturbances of Intracellular Components and Dysfunctions of Biological Pathways in the Brain Tissues During Prion Infection - China's Studies. China CDC Wkly 2022; 4:741-747. [PMID: 36285114 PMCID: PMC9547740 DOI: 10.46234/ccdcw2022.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
The study describes some of the major findings of changes in intracellular components and biological pathways in the brain during prion infection and hypothesizes some important physiological and pathological approaches mainly based on our studies. Omics techniques analysis of messenger RNA (mRNA) and proteins were carried out in the study. Meanwhile, Western blot, immunohistochemistry, and immunofluorescence were used for protein analysis in different signaling pathways. Statistical analyses were used to describe the protein differences in signaling pathways of infected and normal samples. This report reviewed and summarized our studies on the aberrant changes in intracellular components and biological functions in the brains of prion disease (PrD). Omics analyses proposed extensive abnormal alterations of brain mRNAs transcriptions, protein expressions, and post-translational modifications. The molecular disturbances for microtubule instability and depolymerization, the dysregulations of different signals related with neuron loss and synaptic plasticity, the abnormalities of mitochondrial and endoplasmic reticulum stress, and disturbance of intracellular reactive oxygen species homeostasis during prion infection were precisely analyzed and reviewed. Aberrant disturbances of numerous biological molecules and signals in brain tissues were found during prion infection.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,China Academy of Chinese Medical Sciences, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan City, Hubei Province, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jichun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Division of Science and Technology, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,China Academy of Chinese Medical Sciences, Beijing, China,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan City, Hubei Province, China,Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China,Xiaoping Dong,
| |
Collapse
|
2
|
Gu Y, Ren K, Wang L, Jiang C, Yao Q. Rg1 in combination with mannitol protects neurons against glutamate-induced ER stress via the PERK-eIF2 α-ATF4 signaling pathway. Life Sci 2020; 263:118559. [PMID: 33038374 DOI: 10.1016/j.lfs.2020.118559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
AIMS Ginseng and ginsenosides are known for their remarkable effects on the central nervous system. However, pharmacokinetic studies have suggested that the Ginsenoside Rg1 (Rg1) cannot be efficiently transported through the blood-brain barrier. To investigate the effects of Rg1 in combination with mannitol protects neurons against glutamate-induced ER stress via the PERK-eIF2 -ATF4 signaling pathway. MAIN METHODS Rg1, along with the BBB permeabilizer mannitol, exhibited a potent neuroprotective effect by significantly reducing the neurological scores and infarct volume in rats exposed to middle cerebral artery occlusion. We evaluated the effect of Rg1 on neuroprotection after MCAO, and also explored its potential mechanism of action. KEY FINDINGS Our results show that Rg1 reduced the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive neurons. This neuroprotection may be dependent, at least in part, on the preservation of the endoplasmic reticulum and mitochondrial function. Ischemia-induced brain injury is largely caused by the excessive release of glutamate, which results in excitotoxicity and cell death. Neurons were pretreated with Rg1 before inducing endoplasmic reticulum stress with glutamate. A reduction in the expression of Bax and a concomitant increase in Bcl2 expression prevented the induction of apoptosis. Furthermore, Rg1 downregulated the expression of endoplasmic reticulum stress genes. SIGNIFICANCE Our results indicate that Rg1 modulation of stress-responsive genes helps prevent glutamate-induced endoplasmic reticulum stress in neurons through the PERK-eIF2-α-ATF4 signaling pathway.
Collapse
Affiliation(s)
- Yanqing Gu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kewei Ren
- Department of Orthopedics, the Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin, China
| | - Liming Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunzhi Jiang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qingqiang Yao
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Wang H, Shi X, Qiu M, Lv S, Liu H. Hydrogen Sulfide Plays an Important Protective Role through Influencing Endoplasmic Reticulum Stress in Diseases. Int J Biol Sci 2020; 16:264-271. [PMID: 31929754 PMCID: PMC6949148 DOI: 10.7150/ijbs.38143] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum is an important organelle responsible for protein synthesis, modification, folding, assembly and transport of new peptide chains. When the endoplasmic reticulum protein folding ability is impaired, the unfolded or misfolded proteins accumulate to lead to endoplasmic reticulum stress. Hydrogen sulfide is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicate that H2S plays an important protective role in many diseases through influencing endoplasmic reticulum stress, but its mechanism is not fully understood. This article reviewed the progress about the effect of H2S on endoplasmic reticulum stress and its mechanisms involved in diseases in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
4
|
Chengji W, Xianjin F. Exercise protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway in rats. J Cell Physiol 2018; 234:1682-1688. [PMID: 30076729 PMCID: PMC6283041 DOI: 10.1002/jcp.27038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
To explore the protective effect of exercise training on the injury of myocardium tissues induced by streptozotocin (STZ) in diabetic rats and the relationship with endoplasmic reticulum stress (ERS), the male sprague‐dawley (SD) rats were fed with high‐fat and high‐sugar diet for 4 weeks, followed by intraperitoneal injection of STZ, 40 mg/kg, to establish a diabetes model, and then 10 rats were randomly selected as diabetes mellitus (DM) controls and 20 eligible diabetic rats were randomized into two groups: low‐intensity exercise training (n = 10) and high‐intensity exercise training (n = 10). After 12 weeks of exercise training, rats were killed and serum samples were used to determine cardiac troponin‐I (cTn‐I). Myocardial tissues were sampled for morphological analysis to detect myocardial cell apoptosis, and to analyze protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase‐12. Different intensities (low and high) significantly reduced serum cTn‐I levels compared with the DCM group (p < 0.01), and significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Hematoxylin and eosin and Masson staining indicated that exercise training could attenuate myocardial apoptosis. Additionally, exercise training significantly reduced GRP78, CHOP, and cleaved caspase‐12 protein expression in an intensity‐dependent manner. These findings suggest that exercise appeared to ameliorate diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress‐induced apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Wang Chengji
- College of Physical Education, Chaohu University, Hefei, Anhui, China
| | - Fan Xianjin
- College of Physical Education, Chaohu University, Hefei, Anhui, China
| |
Collapse
|
5
|
Eigenbrod S, Frick P, Bertsch U, Mitteregger-Kretzschmar G, Mielke J, Maringer M, Piening N, Hepp A, Daude N, Windl O, Levin J, Giese A, Sakthivelu V, Tatzelt J, Kretzschmar H, Westaway D. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice. PLoS One 2017; 12:e0188989. [PMID: 29220360 PMCID: PMC5722314 DOI: 10.1371/journal.pone.0188989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1-4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain.
Collapse
Affiliation(s)
- Sabina Eigenbrod
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Petra Frick
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Uwe Bertsch
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | | | - Janina Mielke
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Marko Maringer
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Niklas Piening
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Alexander Hepp
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Otto Windl
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Johannes Levin
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Vignesh Sakthivelu
- Department of Metabolic Biochemistry/Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Jörg Tatzelt
- Department of Metabolic Biochemistry/Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Hans Kretzschmar
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Wu XJ, Shen WH, He P, Zhou XZ, Zhi Y, Dai Q, Chen ZW, Zhou ZS. Telomerase reverse transcriptase genetically modified adipose tissue derived stem cells improves erectile dysfunction by inhibiting oxidative stress and enhancing proliferation in rat model. Biomed Pharmacother 2017; 92:595-605. [DOI: 10.1016/j.biopha.2017.04.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
|
7
|
Wang S, Meng X, Dong Y. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. Int J Oncol 2017; 50:1330-1340. [PMID: 28259944 DOI: 10.3892/ijo.2017.3890] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/12/2017] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is a cause of cancer death, making it one of the most common causes of death among women globally. Previously, a variety of studies have revealed the molecular mechanisms by which cervical cancer develops. However, there are still limitations in treatment for cervical cancer. Ursolic acid is a naturally derived pentacyclic triterpene acid, exhibiting broad anticancer effects. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of ursolic acid nanoparticles is thought to be sufficient to lead to considerable suppression of cervical cancer progression. We loaded gold-ursolic acid into poly(DL-lactide-co-glycolide) nanoparticles to cervical cancer cell lines due to the properties of ursolic acid in altering cellular processes and the easier absorbance of nanoparticles. In addition, in this study, ursolic acid nanoparticles were administered to cervical cancer cells to find effective treatments for cervical cancer inhibition. In the present study, ELISA, western blotting, flow cytometry and immunohistochemistry assays were carried out to calculate the molecular mechanism by which ursolic acid nanoparticles modulated cervical cancer progression. Data indicated that ursolic acid nanoparticles, indeed, significantly suppress cervial cancer cell proliferation, invasion and migration compared to the control group, and apoptosis was induced by ursolic acid nanoparticles in cervical cancer cells through activating caspases, p53 and suppressing anti-apoptosis-related signals. Furthermore, tumor size was reduced by treatment of ursolic acid nanoparticles in in vivo experiments. In conclusion, this study suggests that ursolic acid nanoparticles inhibited cervical cancer cell proliferation via apoptosis induction, which could be a potential target for future therapeutic strategy clinically.
Collapse
Affiliation(s)
- Shaoguang Wang
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiaomei Meng
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yaozhong Dong
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
8
|
Yang XD, Shi Q, Sun J, Lv Y, Ma Y, Chen C, Xiao K, Zhou W, Dong XP. Aberrant Alterations of Mitochondrial Factors Drp1 and Opa1 in the Brains of Scrapie Experiment Rodents. J Mol Neurosci 2016; 61:368-378. [PMID: 27921253 DOI: 10.1007/s12031-016-0866-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
Abstract
The abnormal mitochondrial dynamics has been reported in the brains of some neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), but limitedly described in prion disease. Dynamin-related protein 1 (Drpl) and optic atrophy protein 1 (Opa1) are two essential elements for mitochondria fission and fusion. To evaluate possible changes of mitochondria dynamics during prion infection, the situations of brain Drp1 and Opa1 of scrapie strains 139A, ME7, and S15 mice, as well as 263K-infected hamsters, were analyzed. Significant decreases of brain Drp1 were observed in scrapie-infected rodents at terminal stage by Western blots and immunohistochemical assays, while the levels of Opa1 also showed declined tendency in the brains of scrapie-infected rodents. Immunofluorescent assays illustrated well localization of Drp1 or Opa1 within NeuN-positive cells. Moreover, the S-nitrosylated forms of Drp1significantly increased in the brain tissues of 139A- and ME7-infected mice at terminal stage. Dynamic analysis of Drp1 and SNO-Dpr1 in the brains collected at different time points within the incubation period of 139A-infected mice demonstrated that the whole Drp1 decreased at all tested samples, whereas the SNO-Drp1 remarkably increased in the sample of 90-day post-infection (dpi), reached to the peak in that of 120 dpi and dropped down but still maintained at higher level at the end of disease. The levels of apoptotic factors cleaved caspase 9, caspase 3, and Bax were also markedly increased in the brain tissues of the mice infected with agents 139A and ME7. Our data indicate a disorder of mitochondria dynamics in the brains of prion infection, largely depending on the abnormal alteration of brain Drp1.
Collapse
Affiliation(s)
- Xiao -Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China. .,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China.
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Yue Ma
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China. .,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China. .,Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Li F, Luo J, Wu Z, Xiao T, Zeng O, Li L, Li Y, Yang J. Hydrogen sulfide exhibits cardioprotective effects by decreasing endoplasmic reticulum stress in a diabetic cardiomyopathy rat model. Mol Med Rep 2016; 14:865-73. [PMID: 27222111 DOI: 10.3892/mmr.2016.5289] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is critical in the occurrence and development of diabetic cardiomyopathy (DC). Hydrogen sulfide (H2S) has been found to be the third gaseous signaling molecule with anti‑ER stress effects. Previous studies have shown that H2S acts as a potent inhibitor of fibrosis in the heart of diabetic rats. This study aimed to demonstrate whether H2S exhibits protective effects on the myocardium of streptozotocin (STZ)‑induced diabetic rats by suppressing ER stress. In this study, diabetic models were established by intraperitoneal (i.p.) injection of 40 mg/kg STZ. The STZ‑treated mice were divided into three groups, and subsequently treated with normal saline, 30 µmol/kg or 100 µmol/kg NaHS, i.p., respectively, for 8 weeks. The extent of myocyte hypertrophy was measured using hematoxylin and eosin‑stained sections and collagen components were investigated using immunostaining. The expression of glucose-regulated protein (Grp78), C/EBP‑homologous protein (CHOP) and caspase‑12 in the heart tissue of each group was detected by western blot analysis. It was demonstrated that H2S could improve myocardial hypertrophy and myocardial collagen deposition in diabetic rats. In addition, it could reduce the expression of Grp78, caspase-12 and CHOP. In conclusion, these findings demonstrate that H2S suppresses STZ‑induced ER stress in the hearts of rats, and it may serve as a novel cardioprotective agent for DC.
Collapse
Affiliation(s)
- Fang Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Luo
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhixiong Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ting Xiao
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ou Zeng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lin Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yan Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
10
|
Ao N, Yang J, Wang X, Du J. Glucagon-like peptide-1 preserves non-alcoholic fatty liver disease through inhibition of the endoplasmic reticulum stress-associated pathway. Hepatol Res 2016; 46:343-53. [PMID: 26147696 DOI: 10.1111/hepr.12551] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/18/2022]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) has been increasingly recognized for treating diabetes mellitus, and for its potential to effectively treat non-alcoholic fatty liver disease (NAFLD). However, the mechanisms of GLP-1 induction in NAFLD are not completely known. We investigated whether GLP-1 can protect against NAFLD by alleviating endoplasmic reticulum (ER) stress. METHODS Male Sprague-Dawley rats were fed a high-fat diet and treated with a long-acting GLP-1 receptor agonist, liraglutide. Biochemical, morphological, genetic and protein expression of ER stress were investigated. In vitro, HepG2 cells were exposed to 0.4 mM palmitate fatty acid and treated with different concentrations of GLP-1, and ER protein 46 (ERp46) and ER stress pathways were analyzed. Cellular response to ER stress and apoptosis were determined upon transfection with either ERp46 siRNA or a negative control siRNA. RESULTS In vivo, the treatment of GLP-1 attenuated the hepatic accumulation of lipids, reduced inflammation and improved metabolic parameters. GLP-1 treatment significantly upregulated the expression of ERp46 and downregulated the ER stress marker. Activation of ER pathways was restrained by GLP-1. Similar observations were made in vitro. Furthermore, inhibition of ERp46 expression by siRNA-mediated silencing increased the ER stress response and enhanced cell apoptosis rates. In addition, GLP-1 could not reduce the levels of ER stress and apoptosis in cells transfected with ERp46 siRNA compared with in negative control transfected cells after palmitate treatment. CONCLUSION GLP-1 protected against NAFLD by inactivating the ER stress-associated apoptosis pathway. In addition, the effect was possibly related to the signaling pathway of ERp46.
Collapse
Affiliation(s)
- Na Ao
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaochen Wang
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Zou Y, Li C, Shu F, Tian Z, Xu W, Xu H, Tian H, Shi R, Mao X. lncRNA expression signatures in periodontitis revealed by microarray: the potential role of lncRNAs in periodontitis pathogenesis. J Cell Biochem 2016; 116:640-7. [PMID: 25399840 DOI: 10.1002/jcb.25015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
Periodontitis, a common chronic inflammatory disease of the periodontium, is caused by dental plaque formation induced by microorganisms. Recent studies have demonstrated that lncRNAs play a critical role in the regulation of gene expression and in the pathogenesis of diseases. To demonstrate that periodontitis is associated with lncRNAs, microarray analysis was used to detect differently expressed lncRNAs in chronic periodontitis and adjacent normal tissues. The results of some differently expressed lncRNAs were further confirmed using real-time PCR. A total of 8925 differentially expressed lncRNAs were detected, including 4313 upregulated lncRNAs and 4612 downregulated lncRNAs. Further lncRNA subgroup analysis showed there were 589 enhancer-like lncRNAs, 238 homeobox (HOX) cluster lncRNAs, and 1218 Rinn's lincRNAs, of which 656 lincRNAs were upregulated and 562 lincRNAs were downregulated. Therefore, we confirmed that lncRNAs were differently expressed in chronic periodontitis tissues compared with adjacent normal tissues, indicating that lncRNAs may exert partial or key roles in periodontitis pathogenesis and development. Taken together, this study may provide potential targets for future treatment of periodontitis and novel diagnostic biomarkers for periodontitis.
Collapse
Affiliation(s)
- Yaguang Zou
- Department of Stomatology, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Do prion protein gene polymorphisms induce apoptosis in non-mammals? J Biosci 2016; 41:97-107. [PMID: 26949092 DOI: 10.1007/s12038-015-9584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Genetic variations such as single nucleotide polymorphisms (SNPs) in prion protein coding gene, Prnp, greatly affect susceptibility to prion diseases in mammals. Here, the coding region of Prnp was screened for polymorphisms in redeared turtle, Trachemys scripta. Four polymorphisms, L203V, N205I, V225A and M237V, were common in 15 out of 30 turtles; in one sample, three SNPs, L203V, N205I and M237V, and in the remaining 14 samples, only L203V and N205I polymorphisms, were investigated. Besides, C658T, C664T, C670A and C823A SNPs were silent mutations. To elucidate the relationship between the SNPs and apoptosis, TUNEL assays and active caspase-3 immunodetection techniques in brain sections of the polymorphic samples were performed. The results revealed that TUNEL-positive cells and active caspase-3-positive cells in the turtles with four polymorphisms were significantly increased compared with those of the turtles with two polymorphisms (P less than 0.01 and P less than 0.05, respectively). In conclusion, this study provides preliminary information about the possible relationship between SNPs within the Prnp locus and apoptosis in a non-mammalian species, Trachemys scripta, in which prion disease has never been reported.
Collapse
|
13
|
Xu K, Pan SY, Song JX, Liu XN, An N, Zheng X. Establishment of a novel therapeutic vector targeting the trigeminal ganglion in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:585-92. [PMID: 26893545 PMCID: PMC4745838 DOI: 10.2147/dddt.s96730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background In the pathogenesis of herpes simplex keratitis, herpes simplex virus type 1 (HSV-1) infection begins in corneal epithelium cells and then progresses through the sensory nerve endings and finally travels up forward to the trigeminal ganglion (TG), where it remains as latent virus. The available anti-HSV therapies do not completely suppress the recurrence of active HSV-1 infection. The aim of this study was to establish a novel replication-defective (rd) HSV-1 (rdHSV) vector (rdHSV-interferon gamma [IFNγ]) that could effectively target the TG. Methods Recombinant HSV-1 virus was inserted into a shuttle plasmid carrying IFNγ to establish the rdHSV-IFNγ vector. Safety was evaluated in vitro by 50% cellular cytotoxicity in transfected SH-SY5Y neuroblastoma cells and in vivo by Kaplan–Meier survival estimate and infection rate. Wistar rats were immunized with rdHSV-IFNγ to evaluate the TG targeting efficiency. Real-time polymerase chain reaction and Western blot assays were used to evaluate IFNγ mRNA and protein expression and rdHSV-IFNγ localization. Results The rdHSV-IFNγ vector was successfully constructed and showed high in vitro safety and overall survival and a corneal infection rate similar to that of control rats immunized with saline (control group; P>0.05). Real-time polymerase chain reaction and immunohistochemistry assays confirmed IFNγ expression and effective TG targeting on days 14 and 21, which increased with postimmunization time. Moreover, IFNγ was expressed sufficiently in the TG tissues. Conclusion The rdHSV-IFNγ can act as an effective gene transporting vector that carries the therapeutic genes to the TG and triggers its expression.
Collapse
Affiliation(s)
- Kun Xu
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| | - Shi-Yin Pan
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin-Xin Song
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China
| | - Xian-Ning Liu
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| | - Na An
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| | - Xuan Zheng
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
14
|
Zhao Z, Cai TZ, Lu Y, Liu WJ, Cheng ML, Ji YQ. Coxsackievirus B3 induces viral myocarditis by upregulating toll-like receptor 4 expression. BIOCHEMISTRY (MOSCOW) 2016; 80:455-62. [PMID: 25869363 DOI: 10.1134/s0006297915040094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the present study, we investigated the potential pathogenesis of coxsackievirus B3 (CVB3)-induced viral myocarditis and the promising protective effect of silencing RNA (small interfering RNA, siRNA). One hundred and twenty mice were included in the study, and 30 mice were intraperitoneally inoculated with CVB3 to establish an acute viral myocarditis model. The survival rate was observed for the CVB3-infected mouse model (MOD), and myocardial injury was examined by HE (hematoxylin and eosin) staining assay. Real-time PCR (RT-PCR) and Western blot assay were selected to detect the toll-like receptor 4 (TLR4) expression in myocardial tissues. The TLR4 gene was silenced for the MOD mice, and the effects of this treatment were observed. The results indicate that the expression of TLR4 mRNA and the protein significantly and persistently increased during the progression of CVB3-induced myocarditis. The activities of cardiac enzymes including CK, LDH, AST, and CK-MB were also enhanced in CVB3-induced myocardial tissues. Interestingly, when the TLR4 gene was silenced, the CVB3-induced TLR4 production was significantly decreased and the severity of myocarditis was significantly lessened. In conclusion, CVB3 may induce viral myocarditis by upregulating toll-like receptor 4 expression. The viral myocarditis can be ameliorated by silencing the TLR4 gene in the CVB3 viral myocarditis model, which may be a feasible therapeutic method for treatment of viral myocarditis.
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Cardiovascular Medicine, First Hospital of Xi'an, Xi'an, 710002, China.
| | | | | | | | | | | |
Collapse
|
15
|
Veber D, Scalabrino G. Are PrPCs involved in some human myelin diseases? Relating experimental studies to human pathology. J Neurol Sci 2015; 359:396-403. [DOI: 10.1016/j.jns.2015.09.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
16
|
Mu JS, Lin H, Ye JX, Lin M, Cui XP. Rg1 exhibits neuroprotective effects by inhibiting the endoplasmic reticulum stress-mediated c-Jun N-terminal protein kinase apoptotic pathway in a rat model of Alzheimer's disease. Mol Med Rep 2015; 12:3862-3868. [PMID: 26016457 DOI: 10.3892/mmr.2015.3853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 12/17/2014] [Indexed: 11/05/2022] Open
Abstract
The neuroprotective agents currently used to treat Alzheimer's disease (AD) often only target one aspect of the disease process. Therefore, identifying effective drug targets associated with the pathogenesis of AD is critical for the production of novel AD therapeutic strategies. The present study aimed to investigate the underlying mechanisms of the neuroprotective effects of Rg1 on a rat model of AD. A double transgenic β‑amyloid (Aβ) precursor protein/PS1 rat model was established, which co‑expressed mutations associated with AD. Aβ plaques and neurofibrillary tangles (NFTs) were detected by immunohistochemistry. The detection of the protein expression levels of caspase‑3 and terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling (TUNEL) staining were used to determine the level of apoptosis in the brain tissue. The expression levels of the endoplasmic reticulum (ER) stress biomarker, glucose‑regulated protein 78 (Grp78), and the mitochondrial apoptosis biomarkers, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein (Bax), were analyzed by western blotting. Furthermore, the expression of the proteins associated with the ER stress unfolded protein response (UPR) was determined, in order to examine the levels of ER stress. The mRNA expression of downstream genes of UPR were also detected by reverse transcription‑polymerase chain reaction. The protein expression levels of the apoptosis‑associated phosphorylated‑c‑Jun N‑terminal protein kinase (p‑JNK), caspase‑12 and cAMP response element‑binding transcription factor homologous protein were determined by western blotting. The results of the present study indicated that the accumulation of NFTs and Aβ plaques was significantly decreased in the Rg1‑treated AD rats, compared with untreated AD rats. The expression of caspase‑3 and the number of TUNEL‑positive cells were also significantly decreased in the Rg1‑treated rats, as compared with the AD rats. Furthermore, treatment with Rg1 significantly reduced the expression of Grp78, and triggered inositol‑requiring enzyme‑1 (IRE‑1) and phosphorylated protein kinase RNA‑like ER kinase‑associated ER stress. The IRE‑1 UPR pathway downstream gene, tumor necrosis factor receptor‑associated factor 2, was significantly decreased in rats treated with Rg1, compared with untreated AD rats. Furthermore, the activation of p‑JNK was also inhibited when AD rats were treated with Rg1. In conclusion, Rg1 was shown to function as an important factor that inhibits the accumulation of NFTs and Aβ via inhibition of the ER stress‑mediated pathway. Blocking of this pathway was triggered by the IRE‑1 and TRAF2 pathway, as a result of inhibition of the expression of p‑JNK.
Collapse
Affiliation(s)
- Jun-Shan Mu
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| | - Hang Lin
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| | - Jian-Xin Ye
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| | - Min Lin
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| | - Xiao-Ping Cui
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| |
Collapse
|
17
|
Jiang T, Wang L, Li X, Song J, Wu X, Zhou S. Inositol-requiring enzyme 1-mediated endoplasmic reticulum stress triggers apoptosis and fibrosis formation in liver cirrhosis rat models. Mol Med Rep 2014; 11:2941-6. [PMID: 25434505 DOI: 10.3892/mmr.2014.3020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 09/12/2014] [Indexed: 01/12/2023] Open
Abstract
Long‑term and advanced cirrhosis is usually irreversible and often coincides with variceal hemorrhage or development of hepatocellular carcinoma; therefore, liver cirrhosis is a major cause of morbidity and mortality globally. The aim of the present study was to investigate the specific mechanism behind the formation of fibrosis or cirrhosis using rat models of hepatic fibrosis. The cirrhosis model was established by intraperitoneally administering dimethylnitrosamine to the rats. Hematoxylin and eosin staining was performed on the hepatic tissues of the rats to observe the fibrosis or cirrhosis, and western blot analysis was employed to detect α‑smooth muscle actin and desmin protein expression. Flow cytometric analysis was used to examine early and late apoptosis, and the protein and mRNA expression of endoplasmic reticulum (ER) stress-associated unfolded protein response (UPR) pathway proteins and apoptotic proteins [C/EBP homologous protein (CHOP) and caspase‑12] was detected by western blotting and the reverse-transcription polymerase chain reaction, respectively. The results indicated that the cirrhosis model was established successfully and that fibrosis was significantly increased in the cirrhosis model group compared with that in the normal control group. Flow cytometric analysis showed that early and late apoptosis in the cirrhosis model was significantly higher compared with that in the control group. The expression of the UPR pathway protein inositol-requiring enzyme (IRE) 1, as well as the expression of CHOP, was increased significantly in the cirrhotic rat tissues compared with that in the control group tissues (P<0.05). In conclusion, apoptosis was clearly observed in the hepatic tissue of cirrhotic rats, and the apoptosis was caused by activation of the ER stress-mediated IRE1 and CHOP.
Collapse
Affiliation(s)
- Tianpeng Jiang
- Department of Radiology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Lizhou Wang
- Department of Radiology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Xing Li
- Department of Radiology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Jie Song
- Department of Radiology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Xiaoping Wu
- Department of Radiology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Shi Zhou
- Department of Radiology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
18
|
Scalabrino G, Veber D, Tredici G. Relationships between cobalamin, epidermal growth factor, and normal prions in the myelin maintenance of central nervous system. Int J Biochem Cell Biol 2014; 55:232-41. [PMID: 25239885 DOI: 10.1016/j.biocel.2014.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 01/08/2023]
Abstract
Cobalamin (Cbl), epidermal growth factor (EGF), and prions (PrPs) are key molecules for myelin maintenance in the central and peripheral nervous systems. Cbl and EGF increase normal prion (PrP(C)) synthesis and PrP(C) levels in rat spinal cord (SC) and elsewhere. Cbl deficiency increases PrP(C) levels in rat SC and cerebrospinal fluid (CSF), and decreases PrP(C)-mRNA levels in rat SC. The administration of anti-octapeptide repeat PrP(C) region antibodies (Abs) to Cbl-deficient (Cbl-D) rats prevents SC myelin lesions and a local increase in tumor necrosis factor (TNF)-α levels, whereas anti-TNF-α Abs prevent SC myelin lesions and the increase in SC and CSF PrP(C) levels. As it is known that both Cbl and EGF regulate SC PrP(C) synthesis independently, and that Cbl regulates SC EGF synthesis, EGF may play both Cbl-independent and Cbl-dependent roles. When Cbl-D rats undergo Cbl replacement therapy, SC PrP(C) levels are similar to those observed in Cbl-D rats. In rat frontal cortex (which is marginally affected by Cbl deficiency in histological terms), Cbl deficiency decreases PrP(C) levels and the increase induced by Cbl replacement leads to their normalization. Increased nerve PrP(C) levels are detected in the myelin lesions of the peripheral neuropathy of Cbl-D rats, and CSF PrP(C) levels are also increased in Cbl-D patients (but not in patients with Cbl-unrelated neurological diseases). Various common steps in the downstream signaling pathway of Cbl, EGF, and PrP(C) underlines the close relationship between the three molecules in keeping myelin normal.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milano, Italy.
| | - Daniela Veber
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milano, Italy
| | - Giovanni Tredici
- Department of Translational Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
| |
Collapse
|
19
|
TGF-β1 mediates estrogen receptor-induced epithelial-to-mesenchymal transition in some tumor lines. Tumour Biol 2014; 35:11277-82. [DOI: 10.1007/s13277-014-2166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/27/2014] [Indexed: 02/02/2023] Open
|
20
|
Li X, Zhang L, Ke X, Wang Y. Human gastrin-releasing peptide triggers growth of HepG2 cells through blocking endoplasmic reticulum stress-mediated apoptosis. BIOCHEMISTRY (MOSCOW) 2014; 78:102-10. [PMID: 23379566 DOI: 10.1134/s0006297913010136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gastrin-releasing peptide (GRP) is a kind of neural peptide that plays an important role in the growth of various human cancer cells. However, very little is known about the relationship between GRP and apoptosis in human hepatocellular carcinoma cells. This study investigated the influences of GRP on apoptosis, as well as the mechanism that triggers HepG2 growth. The effects of GRP on cell proliferation were examined by analysis of lactate dehydrogenase. The GRP, caspase 12, and CHOP protein were detected in HepG2 and HL-7702 cells by Western blot, and endoplasmic reticulum (ER) stress-related mRNA transcription was detected by reverse transcription polymerase chain reaction. To explore the specific pathway by which GRP induces the cell growth, we investigated the apoptosis-related pathway. The expression of GRP in HL-7702 cells inhibited tunicamycin triggered ER stress-associated XBP1, ATF4, and TRAF2 mRNA transcription. Three main ER stress-unfolded protein response pathway proteins, including spliced XBP1, cleaved ATF6, IRE1-α, PERK, and eIF2-α, were increased significantly. Furthermore, the cleaved caspase 12 activation was blocked and CHOP expression was inhibited when GRP was expressed either in HepG2 or HL-7702 cells. In conclusion, GRP triggers the growth of HepG2 cells through blocking the ER stress-mediated pathway.
Collapse
Affiliation(s)
- Xinqiu Li
- Department of Thyroid, Mammary Gland, and Blood Vessel Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | | | | | | |
Collapse
|
21
|
Investigation of a novel biomarker, neuropilin-1, and its application for poor prognosis in acute myeloid leukemia patients. Tumour Biol 2014; 35:6919-24. [PMID: 24737589 DOI: 10.1007/s13277-014-1942-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022] Open
Abstract
According to the previous studies, numerous biomarkers impact on the prognosis of acute myeloid leukemia (AML) and the prediction for AML had been improved tremendously in the past decades. However, accurate risk-stratification at diagnosis or prognosis remained difficult. In order to further investigate the prognosis evaluation biomarker, the transcription or expression of neuropilin-1 (NRP-1) in 87 AML patients and 32 non-malignant controls were examined. Real-time quantitative polymerase chain reaction (RT-PCR) and Western blot were used to detect the NRP-1 expression. Clinical data were collected and analyzed for the 87 AML patients. The results indicated that high NRP-1 expression discriminated the complete remission (CR) rate of AML patients (22.12 % vs. 68.04 % for AML, P < 0.01). De novo AML patients tended to express higher NRP-1 proteins than relapsed AML patients. The overall survival (OS) and relapse-free survival (RFS) rate of the high NRP-1 expression patients decreased significantly compared with the low NRP-1 expression patients (P < 0.001). NRP-1 was revealed to be an independent risk factor for OS in AML (P = 0.003). In conclusion, NRP-1 could predict the shorter OS and RFS rate, and also related with the CR response in AML. Therefore, NRP-1 may act as a more aggressive and promising predictor for the poor prognosis of AML.
Collapse
|
22
|
Xu K, Liu XN, Zhang HB, An N, Wang Y, Zhang ZC, Wang YN. Replication-defective HSV-1 effectively targets trigeminal ganglion and inhibits viral pathopoiesis by mediating interferon gamma expression in SH-SY5Y cells. J Mol Neurosci 2013; 53:78-86. [PMID: 24347277 DOI: 10.1007/s12031-013-0199-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/28/2013] [Indexed: 11/26/2022]
Abstract
It has been widely believed that recurrence of herpes simplex keratitis (HSK) is due to the reactivation of herpes simplex virus type 1 (HSV-1) from latent sites in trigeminal ganglion (TG). However, there are also not effective vectors which could target TG for therapy. Replication-defective HSV-1 vector (rdHSV-IFNγ) was established by calcium phosphate co-transfection of complementing cells. We firstly infected rdHSV-IFNγ to SH-SY5Y, and detected IFNγ expression by western blot, evaluated 50 % cellular cytotoxicity (CC(50)) by ELISA. Antiviral activity of rdHSV-IFNγ was examined by immunofluorescence and antiviral concentration of 50 % effectiveness (EC(50)) assay. The rdHSV-IFNγ vector was immunized to Wistar rats to observe targeting function to TG. Kaplan-Meier survival analysis was utilized to assess security of rdHSV-IFNγ. RT-PCR and immunohistochemistry assay were employed to detect rdHSV-IFNγ localization in TG. Western blot was employed to detect IFNγ expression. rdHSV-IFNγ was successfully established, and performed an effective antiviral activity and higher security in SH-SY5Y. There were no significant differences of survival and corneal infection rate of rdHSV-IFNγ immunized rats among groups (P > 0.05). RT-PCR and immunohistochemistry indicated that expression of glycoprotein D (gD) in TG could target TG and decreased following with times post immunization. Furthermore, IFNγ was expressed effectively in TG tissues. Our findings indicated that established rdHSV-IFNγ vector effectively transported therapeutic gene into TG tissues. The administration of replication-defective vector carrying therapeutic genes may become a promising tool in inhibition or reoccurrence of HSK in clinical.
Collapse
Affiliation(s)
- Kun Xu
- Department of Ophthalmology, No. 1 Hospital of Xi'an, Xi'an, 710002, China,
| | | | | | | | | | | | | |
Collapse
|
23
|
Jiang P, Yue Y. Human papillomavirus oncoproteins and apoptosis (Review). Exp Ther Med 2013; 7:3-7. [PMID: 24348754 PMCID: PMC3860870 DOI: 10.3892/etm.2013.1374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to review the literature and identify the association between human papillomavirus (HPV) oncoproteins and apoptosis. HPV-associated apoptosis may be primarily blocked by a number of oncoproteins, including E5, E6 and E7. E5 protein protects cells from tumor necrosis factor-associated apoptosis; the oncoprotein E6 predominantly inhibits apoptosis through the p53 pathway; and oncoprotein E7 is involved in apoptosis activation and inhibition. In addition, HPV oncoproteins are involved in activating or repressing the transcription of E6/E7. In conclusion, HPV oncoproteins, including E5, E6 and E7 protein, may interfere with apoptosis via certain regulatory principles.
Collapse
Affiliation(s)
- Peiyue Jiang
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ying Yue
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
24
|
Scalabrino G, Veber D. Cobalamin and normal prions: a new horizon for cobalamin neurotrophism. Biochimie 2013; 95:1041-6. [PMID: 23328344 DOI: 10.1016/j.biochi.2013.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/04/2013] [Indexed: 01/29/2023]
Abstract
It is known that cobalamin (Cbl) deficiency damages myelin by increasing tumor necrosis factor (TNF)-α and decreasing epidermal growth factor (EGF) levels in rat central nervous system (CNS), and affects the peripheral nervous system (PNS) morphologically and functionally. It is also known that some polyneuropathies not due to Cbl deficiency are connected with increased TNF-α levels, and that various cytokines (including TNF-α) and growth factors regulate the in vitro synthesis of normal prions (PrP(C)s). Given that there is extensive evidence that PrP(C)s play a key role in the maintenance of CNS and PNS myelin, we investigated whether the PrP(C) octapeptide repeat (OR) region is involved in the pathogenesis of rat Cbl-deficient (Cbl-D) polyneuropathy. After intracerebroventricularly administering antibodies (Abs) against the OR region (OR-Abs) to Cbl-D rats to prevent myelin damage and maximum nerve conduction velocity (MNCV) abnormalities, and PrP(C)s to otherwise normal rats to reproduce PNS Cbl-D-like lesions, we measured PrP(C) levels and MNCV of the sciatic and tibial nerves. PrP(C) and TNF-α levels were increased in sciatic and tibial nerves of Cbl-D and saline-treated rats, and the OR-Abs normalized the myelin ultrastructure, TNF-α levels, and MNCV values of the sciatic and tibial nerves of Cbl-D rats. The same peripheral nerves of the otherwise normal PrP(C)-treated rats showed typical Cbl-D myelin lesions, significantly increased TNF-α levels, and significantly decreased MNCV values. These findings demonstrate that Cbl deficiency induces excess PrP(C)s and thereby excess OR regions, which seem to be responsible for the PNS myelin damage, as has recently been found in the case of CNS myelin damage [66]. Furthermore, excess TNF-α is also involved in the pathogenesis of Cbl-D polyneuropathy. In conclusion, we have extended the list of prion diseases by adding one caused by excess PrP(C)s and the polyneuropathies related to excess TNF-α.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Città Studi Department, Laboratory of Neuropathology, University of Milan, via Mangiagalli 31, 20133 Milan, Italy.
| | | |
Collapse
|
25
|
Liu J, Liu Y, Chen L, Wang Y, Li J. Glucagon-Like Peptide-1 Analog Liraglutide Protects against Diabetic Cardiomyopathy by the Inhibition of the Endoplasmic Reticulum Stress Pathway. J Diabetes Res 2013; 2013:630537. [PMID: 23671882 PMCID: PMC3647568 DOI: 10.1155/2013/630537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 12/29/2022] Open
Abstract
Aim. This study aimed to investigate whether the glucagon-like peptide-1 analog liraglutide (LIRA) can protect against diabetic cardiomyopathy and explore the related mechanism. Methods. Rats were divided into 6 groups: a nondiabetic group, diabetic cardiomyopathy rats without LIRA treatment, diabetic cardiomyopathy rats with LIRA treatment (with high-, medium-, and low-dose, resp.), and diabetic cardiomyopathy rats treated with insulin. Cardiac function was examined by echocardiography before and after treatment. The histopathology of the heart was examined with H&E staining. The mRNA levels of XBP1, ATF4, and TRAF2 were analyzed by RT-PCR, and the expression of glucose-regulated protein 78 (Grp78), enhancer-binding protein homologous protein (CHOP), caspase-3, and caspase-12 was detected by western blot. Results. LIRA strongly improved cardiac function from both echocardiographic and histopathologic analyses, but insulin only partly increased cardiac function by improving FS and LVPW values. LIRA treatment can significantly decrease the expression of XBP1, ATF4, and TRAF2 (P < 0.01). LIRA also significantly downregulates the expression of Grp78, caspase-3 (P < 0.01), CHOP, and caspase-12 (P < 0.05). Conclusions. LIRA can protect against diabetic cardiomyopathy by inactivating the ER stress pathway. The improvement in cardiac function by LIRA is independent of glucose control.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of the Endocrinology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Yu Liu
- Department of the Endocrinology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
- *Yu Liu:
| | - Li Chen
- Department of the Pharmacology, Norman Bethune Medical College, Jilin University, Changchun 130021, China
| | - Yuehui Wang
- Department of the Cardiovascular, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Junqi Li
- Department of the Endocrinology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| |
Collapse
|
26
|
Cai Q, Lv L, Shao Q, Li X, Dian A. Human papillomavirus early proteins and apoptosis. Arch Gynecol Obstet 2012; 287:541-8. [PMID: 23263171 DOI: 10.1007/s00404-012-2665-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The human papillomavirus (HPV) associated apoptosis can be primarily attributed to some early proteins, such as E2, E5, E6, E7, and so on. Though these proteins have a low molecular size, they are capable to interact with a series of host cellular regulation proteins to induce or inhibit apoptosis. The oncoproteins E6 can inhibit the apoptosis mainly through p53 pathway. The E5 protein can protect cells from tumor necrosis factor-related apoptosis. The protein E2 protein have regulatory functions in viral transcription and induction of apoptosis. The oncoprotein E7 plays the role in both apoptosis activation and inhibition. In addition, the HPV full-length E2 proteins involve in activating or repressing the transcription of E6/E7, so as to regulating the apoptosis caused by E6 and E7. MATERIALS AND METHODS We search major databases (such as Elsevier) with the following selection criteria: HPV, early protein, apoptosis. CONCLUSIONS In this review, we summary the literature related with E2, E5, E6, and E7 proteins, and describe the regulatory principles and specific mechanism by which HPV early proteins can interfere with apoptosis and trigger gynaecopathias for women.
Collapse
Affiliation(s)
- Qiong Cai
- Department of Obstetrics and Gynecology, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Xu Y, Tian C, Wang SB, Xie WL, Guo Y, Zhang J, Shi Q, Chen C, Dong XP. Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 2012; 8:1604-20. [PMID: 22874564 DOI: 10.4161/auto.21482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrP(Sc) in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrP(Sc) in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrP(Sc) in a prion-infected cell line after treatment with bafilomycin A(1). These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases.
Collapse
Affiliation(s)
- Yin Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Co-expressions of Casein Kinase 2 (CK2) Subunits Restore the Down-Regulation of Tubulin Levels and Disruption of Microtubule Structures Caused by PrP Mutants. J Mol Neurosci 2012; 50:14-22. [DOI: 10.1007/s12031-012-9845-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/14/2012] [Indexed: 01/06/2023]
|
29
|
Wang SB, Shi Q, Xu Y, Xie WL, Zhang J, Tian C, Guo Y, Wang K, Zhang BY, Chen C, Gao C, Dong XP. Protein disulfide isomerase regulates endoplasmic reticulum stress and the apoptotic process during prion infection and PrP mutant-induced cytotoxicity. PLoS One 2012; 7:e38221. [PMID: 22685557 PMCID: PMC3369880 DOI: 10.1371/journal.pone.0038221] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 05/01/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Protein disulfide isomerase (PDI), is sorted to be enzymatic chaperone for reconstructing misfolded protein in endoplasmic reticulum lumen. Recently, PDI has been identified as a link between misfolded protein and neuron apoptosis. However, the potential for PDI to be involved in the pathogenesis of prion disease remains unknown. In this study, we propose that PDI may function as a pleiotropic regulator in the cytotoxicity induced by mutated prion proteins and in the pathogenesis of prion diseases. METHODOLOGY/PRINCIPAL FINDINGS To elucidate potential alterations of PDI in prion diseases, the levels of PDI and relevant apoptotic executors in 263K infected hamsters brain tissues were evaluated with the use of Western blots. Abnormal upregulation of PDI, Grp78 and Grp58 was detected. Dynamic assays of PDI alteration identified that the upregulation of PDI started at the early stage and persistently increased till later stage. Obvious increases of PDI and Grp78 levels were also observed in cultured cells transiently expressing PrP mutants, PrP-KDEL or PrP-PG15, accompanied by significant cytotoxicities. Excessive expression of PDI partially eased ER stress and cell apoptosis caused by accumulation of PrP-KDEL, but had less effect on cytotoxicity induced by PrP-PG15. Knockdown of endogenous PDI significantly amended cytotoxicity of PrP-PG15, but had little influence on that of PrP-KDEL. A series of membrane potential assays found that apoptosis induced by misfolded PrP proteins could be regulated by PDI via mitochondrial dysfunction. Moreover, biotin-switch assays demonstrated active S-nitrosylated modifications of PDI (SNO-PDI) both in the brains of scrapie-infected rodents and in the cells with misfolded PrP proteins. CONCLUSION/SIGNIFICANCE Current data in this study highlight that PDI and its relevant executors may function as a pleiotropic regulator in the processes of different misfolded PrP proteins and at different stages during prion infection. SNO-PDI may feed as an accomplice for PDI apoptosis.
Collapse
Affiliation(s)
- Shao-Bin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yin Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wu-Ling Xie
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yan Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ke Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Scalabrino G, Veber D, Mutti E, Calligaro A, Milani S, Tredici G. Cobalamin (vitamin B12) regulation of PrPC, PrPC-mRNA and copper levels in rat central nervous system. Exp Neurol 2012; 233:380-90. [DOI: 10.1016/j.expneurol.2011.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/06/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
|
31
|
Scalabrino G, Mutti E, Veber D, Rodriguez Menendez V, Novembrino C, Calligaro A, Tredici G. The octapeptide repeat PrPCregion and cobalamin-deficient polyneuropathy of the rat. Muscle Nerve 2011; 44:957-67. [DOI: 10.1002/mus.22225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Torres M, Encina G, Soto C, Hetz C. Abnormal calcium homeostasis and protein folding stress at the ER: A common factor in familial and infectious prion disorders. Commun Integr Biol 2011; 4:258-61. [PMID: 21980554 DOI: 10.4161/cib.4.3.15019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 01/30/2011] [Indexed: 12/12/2022] Open
Abstract
Prion-related disorders (PrDs) are caused by the accumulation of a misfolded and protease-resistant form of the cellular prion, leading to neuronal dysfunction and massive neuronal loss. In humans, PrDs have distinct etiologies including sporadic, infectious and familial forms, which present common clinical features; however, the possible existence of common neuropathogenic events are not known. Several studies suggest that alterations in protein folding and quality control mechanisms at the endoplasmic reticulum (ER) are a common factor involved in PrDs. However, the mechanism underlying ER dysfunction in PrDs remains unknown. We have recently reported that alterations in ER calcium homeostasis are common pathological events observed in both infectious and familial PrD models. Perturbation in calcium homeostasis directly correlated with the occurrence of ER stress and higher susceptibility to protein folding stress. We envision a model where alterations in ER function are central and common events underlying prion pathogenesis, leading to general alterations on protein homeostasis networks.
Collapse
Affiliation(s)
- Mauricio Torres
- Center for Molecular Studies of the Cell; Institute of Biomedical Sciences; University of Chile; Santiago, Chile
| | | | | | | |
Collapse
|
33
|
Shi Q, Dong XP. (Ctm)PrP and ER stress: a neurotoxic mechanism of some special PrP mutants. Prion 2011; 5:123-5. [PMID: 21795854 DOI: 10.4161/pri.5.3.16327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pathogenic agent is hypothesized to be PrP(Sc) in prion diseases. However, little accumulation of PrPSc is repeatedly observed in some kinds of natural and experimental prion diseases, including some special genetic human prion diseases. One of the specific topology forms of PrP, (Ctm)PrP, representing a key neurotoxic intermediate in prion disorders, has been testified in cell-free translation systems and transgenic mice models. Recently, some studies have showed that point-mutations within the hydrophobic transmembrane region increase the amount of (Ctm)PrP in cells, such as human homologue A117V which is associated with GSS and G114V associated with gCJD, while the mutations outsides transmembrane region do not. The retention of the CtmPrP in ER subsequently is able to induce ER stress and apoptosis, which is supported by up-regulation of ER chaperone synthesis, such as Grp78, Grp58, Grp94, Bip and the transcription factor CHOP/GADD153. In conclusion, some kinds of intermediate forms of PrP(Sc) , including (Ctm)PrP, may work as the ultimate cause of neurodegeneration.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | |
Collapse
|
34
|
Matus S, Glimcher LH, Hetz C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol 2011; 23:239-52. [PMID: 21288706 DOI: 10.1016/j.ceb.2011.01.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
Abstract
Several neurodegenerative diseases share common neuropathology, primarily featuring the presence in the brain of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders, highlighting perturbations in the homeostasis of the endoplasmic reticulum (ER). Signs of ER stress have been detected in most experimental models of neurological disorders and more recently in brain samples from human patients with neurodegenerative disease. To cope with ER stress, cells activate an integrated signaling response termed the unfolded protein response (UPR), which aims to reestablish homeostasis in part through regulation of genes involved in protein folding, quality control and degradation pathways. Here we discuss the particular mechanisms currently proposed to be involved in the generation of protein folding stress in different neurodegenerative conditions and speculate about possible therapeutic interventions.
Collapse
Affiliation(s)
- Soledad Matus
- Center for Molecular Studies of Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
35
|
Torres M, Castillo K, Armisén R, Stutzin A, Soto C, Hetz C. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLoS One 2010; 5:e15658. [PMID: 21209925 PMCID: PMC3012133 DOI: 10.1371/journal.pone.0015658] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/18/2010] [Indexed: 11/22/2022] Open
Abstract
Prion-related disorders (PrDs) are fatal neurodegenerative disorders characterized by progressive neuronal impairment as well as the accumulation of an abnormally folded and protease resistant form of the cellular prion protein, termed PrPRES. Altered endoplasmic reticulum (ER) homeostasis is associated with the occurrence of neurodegeneration in sporadic, infectious and familial forms of PrDs. The ER operates as a major intracellular calcium store, playing a crucial role in pathological events related to neuronal dysfunction and death. Here we investigated the possible impact of PrP misfolding on ER calcium homeostasis in infectious and familial models of PrDs. Neuro2A cells chronically infected with scrapie prions showed decreased ER-calcium content that correlated with a stronger upregulation of UPR-inducible chaperones, and a higher sensitivity to ER stress-induced cell death. Overexpression of the calcium pump SERCA stimulated calcium release and increased the neurotoxicity observed after exposure of cells to brain-derived infectious PrPRES. Furthermore, expression of PrP mutants that cause hereditary Creutzfeldt-Jakob disease or fatal familial insomnia led to accumulation of PrPRES and their partial retention at the ER, associated with a drastic decrease of ER calcium content and higher susceptibility to ER stress. Finally, similar results were observed when a transmembrane form of PrP was expressed, which is proposed as a neurotoxic intermediate. Our results suggest that alterations in calcium homeostasis and increased susceptibility to ER stress are common pathological features of both infectious and familial PrD models.
Collapse
Affiliation(s)
- Mauricio Torres
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Karen Castillo
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ricardo Armisén
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andrés Stutzin
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
- * E-mail: (CH); (CS)
| | - Claudio Hetz
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Neurounion Biomedical Foundation, Santiago, Chile
- Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: (CH); (CS)
| |
Collapse
|