1
|
Hosseinzadeh Y, Ghasemzadeh Rahbardar M, Mehri S, Razavi BM, Hosseinzadeh H. Protective effect of aspirin and gentisic acid, a plant-derived phenolic acid, on acrylamide-induced neurotoxicity by inhibiting apoptosis and autophagy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03498-6. [PMID: 39367985 DOI: 10.1007/s00210-024-03498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Acrylamide (ACR) is a toxic agent for humans and animals. Gentisic acid, an aspirin metabolite, has antioxidant activity. Therefore, the present study investigated the probable protective effects of aspirin and gentisic acid on ACR-induced neurotoxicity in PC12 cells and rats. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to assess the effects of aspirin and gentisic acid (1.25, 2.5, 5 µM) on ACR (5 mM) toxicity. Male Wistar rats were randomly divided into 13 groups: (1) Control group, (2) ACR (50 mg/kg, 11 days, i.p.), (3-5) ACR + aspirin (25, 50, 75 mg/kg, 11 days, p.o.), (6-8) ACR + gentisic acid (25, 50, 75 mg/kg, 11 days, p.o.), (9) ACR + vitamin E (200 mg/kg, every other day, i.p.), (10, 11) Aspirin (75, 100 mg/kg, 11 days, p.o.), (12, 13) Gentisic acid (75, 100 mg/kg, 11 days, p.o.). Behavioral tests were assessed on the final day of the study. In the cerebral cortex, malondialdehyde (MDA), glutathione (GSH), cleaved-caspase-3, and microtubule-associated protein 1A/1B-light chain 3 (LC3) protein levels were evaluated. When compared with the ACR group, aspirin (2.5, 5 µM) and gentisic acid (2.5 µM) significantly enhanced cell viability. In comparison to the control group, ACR induced severe motor impairment, elevated MDA, cleaved-caspase-3, LC3 II/I ratio, and decreased GSH levels in the cerebral cortex of rats. ACR-induced changes were significantly reversed by aspirin and gentisic acid (25 mg/kg). Oxidative stress, apoptosis, and autophagy play important roles in the neurotoxicity of ACR. Aspirin and gentisic acid significantly reduced ACR-induced toxicity by inhibiting the mentioned mechanisms.
Collapse
Affiliation(s)
| | | | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Falco L, Tessitore V, Ciccarelli G, Malvezzi M, D'Andrea A, Imbalzano E, Golino P, Russo V. Antioxidant Properties of Oral Antithrombotic Therapies in Atherosclerotic Disease and Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1185. [PMID: 37371915 DOI: 10.3390/antiox12061185] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The thrombosis-related diseases are one of the leading causes of illness and death in the general population, and despite significant improvements in long-term survival due to remarkable advances in pharmacologic therapy, they continue to pose a tremendous burden on healthcare systems. The oxidative stress plays a role of pivotal importance in thrombosis pathophysiology. The anticoagulant and antiplatelet drugs commonly used in the management of thrombosis-related diseases show several pleiotropic effects, beyond the antithrombotic effects. The present review aims to describe the current evidence about the antioxidant effects of the oral antithrombotic therapies in patients with atherosclerotic disease and atrial fibrillation.
Collapse
Affiliation(s)
- Luigi Falco
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Viviana Tessitore
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Giovanni Ciccarelli
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Marco Malvezzi
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | | | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Paolo Golino
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| |
Collapse
|
3
|
Jorda A, Aldasoro M, Aldasoro C, Guerra-Ojeda S, Iradi A, Vila JM, Campos-Campos J, Valles SL. Action of low doses of Aspirin in Inflammation and Oxidative Stress induced by aβ 1-42 on Astrocytes in primary culture. Int J Med Sci 2020; 17:834-843. [PMID: 32218705 PMCID: PMC7085272 DOI: 10.7150/ijms.40959] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Aspirin has been used as anti-inflammatory and anti-aggregate for decades but the precise mechanism(s) of action after the presence of the toxic peptide Aβ1-42 in cultured astrocytes remains poorly resolved. Here we use low-doses of aspirin (10-7 M) in astrocytes in primary culture in presence or absence of Aβ1-42 toxic peptide. We noted an increase of cell viability and proliferation with or without Aβ1-42 peptide presence in aspirin treated cells. In addition, a decrease in apoptosis, determined by Caspase 3 activity and the expression of Cyt c and Smac/Diablo, were detected. Also, aspirin diminished necrosis process (LDH levels), pro-inflammatory mediators (IL-β and TNF-α) and NF-ᴋB protein expression, increasing anti-inflammatory PPAR-γ protein expression, preventing Aβ1-42 toxic effects. Aspirin inhibited COX-2 and iNOS without changes in COX-1 expression, increasing anti-oxidant protein (Cu/Zn-SOD and Mn-SOD) expression in presence or absence of Aβ1-42. Taken together, our results show that aspirin, at low doses increases cell viability by decreasing inflammation and oxidative stress, preventing the deleterious effects of the Aβ1-42 peptide on astrocytes in primary culture. The use of low doses of aspirin may be more suitable for Alzheimer's disease.
Collapse
Affiliation(s)
- Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Faculty of Nursing and Podiatry, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Jose Mª Vila
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Juan Campos-Campos
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Faculty of Nursing and Podiatry, University of Valencia, Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| |
Collapse
|
4
|
Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 2016; 174:1733-1749. [PMID: 26750203 DOI: 10.1111/bph.13425] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022] Open
Abstract
Microglia are the resident immune cells of the CNS and constitute a self-sustaining population of CNS-adapted tissue macrophages. As mononuclear phagocytic cells, they express high levels of superoxide-producing NADPH oxidases (NOX). The sole function of the members of the NOX family is to generate reactive oxygen species (ROS) that are believed to be important in CNS host defence and in the redox signalling circuits that shape the different activation phenotypes of microglia. NOX are also important in pathological conditions, where over-generation of ROS contributes to neuronal loss via direct oxidative tissue damage or disruption of redox signalling circuits. In this review, we assess the evidence for involvement of NOX in CNS physiopathology, with particular emphasis on the most important surface receptors that lead to generation of NOX-derived ROS. We evaluate the potential significance of the subcellular distribution of NOX isoforms for redox signalling or release of ROS to the extracellular medium. Inhibitory mechanisms that have been reported to restrain NOX activity in microglia and macrophages in vivo are also discussed. We provide a critical appraisal of frequently used and recently developed NOX inhibitors. Finally, we review the recent literature on NOX and other sources of ROS that are involved in activation of the inflammasome and discuss the potential influence of microglia-derived oxidants on neurogenesis, neural differentiation and culling of surplus progenitor cells. The degree to which excessive, badly timed or misplaced NOX activation in microglia may affect neuronal homeostasis in physiological or pathological conditions certainly merits further investigation. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- J Haslund-Vinding
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark.,Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - G McBean
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | - V Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - F Vilhardt
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
5
|
Micov A, Tomić M, Pecikoza U, Ugrešić N, Stepanović-Petrović R. Levetiracetam synergises with common analgesics in producing antinociception in a mouse model of painful diabetic neuropathy. Pharmacol Res 2015; 97:131-42. [PMID: 25958352 DOI: 10.1016/j.phrs.2015.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 01/05/2023]
Abstract
Painful diabetic neuropathy is difficult to treat. Single analgesics often have insufficient efficacy and poor tolerability. Combination therapy may therefore be of particular benefit, because it might provide optimal analgesia with fewer adverse effects. This study aimed to examine the type of interaction between levetiracetam, a novel anticonvulsant with analgesic properties, and commonly used analgesics (ibuprofen, aspirin and paracetamol) in a mouse model of painful diabetic neuropathy. Diabetes was induced in C57BL/6 mice with a single high dose of streptozotocin, applied intraperitoneally (150 mg/kg). Thermal (tail-flick test) and mechanical (electronic von Frey test) nociceptive thresholds were measured before and three weeks after diabetes induction. The antinociceptive effects of orally administered levetiracetam, analgesics, and their combinations were examined in diabetic mice that developed thermal/mechanical hypersensitivity. In combination experiments, the drugs were co-administered in fixed-dose fractions of single drug ED50 and the type of interaction was determined by isobolographic analysis. Levetiracetam (10-100 mg/kg), ibuprofen (2-50 mg/kg), aspirin (5-75 mg/kg), paracetamol (5-100 mg/kg), and levetiracetam-analgesic combinations produced significant, dose-dependent antinociceptive effects in diabetic mice in both tests. In the tail-flick test, isobolographic analysis revealed 15-, and 19-fold reduction of doses of both drugs in the combination of levetiracetam with aspirin/ibuprofen, and paracetamol, respectively. In the von Frey test, approximately 7- and 9-fold reduction of doses of both drugs was detected in levetiracetam-ibuprofen and levetiracetam-aspirin/levetiracetam-paracetamol combinations, respectively. These results show synergism between levetiracetam and ibuprofen/aspirin/paracetamol in a model of painful diabetic neuropathy and might provide a useful approach to the treatment of patients suffering from painful diabetic neuropathy.
Collapse
Affiliation(s)
- Ana Micov
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, POB 146, 11221 Belgrade, Serbia.
| | - Maja Tomić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, POB 146, 11221 Belgrade, Serbia.
| | - Uroš Pecikoza
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, POB 146, 11221 Belgrade, Serbia.
| | - Nenad Ugrešić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, POB 146, 11221 Belgrade, Serbia.
| | - Radica Stepanović-Petrović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, POB 146, 11221 Belgrade, Serbia.
| |
Collapse
|
6
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
7
|
Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, Kim B, Chae JI, Yim M, Lee DS. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 2013; 127:221-32. [PMID: 23815397 DOI: 10.1111/jnc.12361] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Over-activation of microglia cells in the brain contributes to neurodegenerative processes promoted by the production of various neurotoxic factors including pro-inflammatory cytokines and nitric oxide. Recently, accumulating evidence has suggested that mitochondrial dynamics are an important constituent of cellular quality control and function. However, the role of mitochondrial dynamics in microglial activation is still largely unknown. In this study, we determined whether mitochondrial dynamics are associated with the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated immortalization of murine microglial cells (BV-2) by a v-raf/v-myc carrying retrovirus (J2). Excessive mitochondrial fission was observed in lentivirus-transfected BV-2 cells stably expressing DsRed2-mito following LPS stimulation. Furthermore, mitochondrial localization of dynamin-related protein 1 (Drp1) (a key regulator of mitochondrial fission) was increased and accompanied by de-phosphorylation of Ser637 in Drp1. Interestingly, inhibition of LPS-induced mitochondrial fission and reactive oxygen species (ROS) generation by Mdivi-1 and Drp1 knock-down attenuated the production of pro-inflammatory mediators via reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. Our results demonstrated for the first time that mitochondrial fission regulates mitochondrial ROS production in activated microglial cells and influences the expression of pro-inflammatory mediators through the activation of NF-κB and MAPK. We therefore suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory mediator expression in activated microglial cells. This could represent a new therapeutic approach for preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Junghyung Park
- College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Science and Biotechnology, Center for Food and Nutritional Genomics Research Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Doherty GH. Nitric oxide in neurodegeneration: potential benefits of non-steroidal anti-inflammatories. Neurosci Bull 2011; 27:366-82. [PMID: 22108814 PMCID: PMC5560384 DOI: 10.1007/s12264-011-1530-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/13/2011] [Indexed: 12/28/2022] Open
Abstract
The cellular messenger nitric oxide (NO) has been linked to neurodegenerative disorders due to the increased expression of the enzymes that catalyze its synthesis in postmortem tissues derived from sufferers of these diseases. Nitrated proteins have also been detected in these samples, revealing that NO is biologically active in regions damaged during neurodegeneration. Modulation of NO levels has been reported not only in the neurons of the central nervous system, but also in the glial cells (microglia and astroglia) activated during the neuroinflammatory response. Neuroinflammation has been found in some neurodegenerative conditions, and inhibition of these neuroinflammatory signals has been shown to delay the progress of such disorders. Thus NO and the pathways triggering its release are emerging as an important research focus in the search for strategies to prevent, halt or cure neurodegenerative diseases.
Collapse
Affiliation(s)
- Gayle Helane Doherty
- School of Biology, St Andrews University, St Andrews, Fife KY169TS, United Kingdom.
| |
Collapse
|