1
|
Ersoy B, Herzog ML, Pan W, Schilling S, Endres M, Göttert R, Kronenberg GD, Gertz K. The atypical antidepressant tianeptine confers neuroprotection against oxygen-glucose deprivation. Eur Arch Psychiatry Clin Neurosci 2024; 274:777-791. [PMID: 37653354 PMCID: PMC11127858 DOI: 10.1007/s00406-023-01685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Proregenerative and neuroprotective effects of antidepressants are an important topic of inquiry in neuropsychiatric research. Oxygen-glucose deprivation (OGD) mimics key aspects of ischemic injury in vitro. Here, we studied the effects of 24-h pretreatment with serotonin (5-HT), citalopram (CIT), fluoxetine (FLU), and tianeptine (TIA) on primary mouse cortical neurons subjected to transient OGD. 5-HT (50 μM) significantly enhanced neuron viability as measured by MTT assay and reduced cell death and LDH release. CIT (10 μM) and FLU (1 μM) did not increase the effects of 5-HT and neither antidepressant conferred neuroprotection in the absence of supplemental 5-HT in serum-free cell culture medium. By contrast, pre-treatment with TIA (10 μM) resulted in robust neuroprotection, even in the absence of 5-HT. Furthermore, TIA inhibited mRNA transcription of candidate genes related to cell death and hypoxia and attenuated lipid peroxidation, a hallmark of neuronal injury. Finally, deep RNA sequencing of primary neurons subjected to OGD demonstrated that OGD induces many pathways relating to cell survival, the inflammation-immune response, synaptic dysregulation and apoptosis, and that TIA pretreatment counteracted these effects of OGD. In conclusion, this study highlights the comparative strength of the 5-HT independent neuroprotective effects of TIA and identifies the molecular pathways involved.
Collapse
Affiliation(s)
- Burcu Ersoy
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Louise Herzog
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
| | - Wen Pan
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
| | - Simone Schilling
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
- Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE (German Center for Neurodegenerative Diseases), Partner site, Berlin, Germany
- DZPG (German Center for Mental Health), Partner site, Berlin, Germany
| | - Ria Göttert
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
| | - Golo D Kronenberg
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland
| | - Karen Gertz
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany.
- Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Kennedy L, Glesaaen ER, Palibrk V, Pannone M, Wang W, Al-Jabri A, Suganthan R, Meyer N, Austbø ML, Lin X, Bergersen LH, Bjørås M, Rinholm JE. Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. eLife 2022; 11:76451. [PMID: 35942676 PMCID: PMC9363115 DOI: 10.7554/elife.76451] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Neonatal cerebral hypoxia-ischemia (HI) is the leading cause of death and disability in newborns with the only current treatment being hypothermia. An increased understanding of the pathways that facilitate tissue repair after HI may aid the development of better treatments. Here, we study the role of lactate receptor HCAR1 in tissue repair after neonatal HI in mice. We show that HCAR1 knockout mice have reduced tissue regeneration compared with wildtype mice. Furthermore, proliferation of neural progenitor cells and glial cells, as well as microglial activation was impaired. Transcriptome analysis showed a strong transcriptional response to HI in the subventricular zone of wildtype mice involving about 7300 genes. In contrast, the HCAR1 knockout mice showed a modest response, involving about 750 genes. Notably, fundamental processes in tissue repair such as cell cycle and innate immunity were dysregulated in HCAR1 knockout. Our data suggest that HCAR1 is a key transcriptional regulator of pathways that promote tissue regeneration after HI.
Collapse
Affiliation(s)
- Lauritz Kennedy
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emilie R Glesaaen
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vuk Palibrk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marco Pannone
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ali Al-Jabri
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Niklas Meyer
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marie Landa Austbø
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Linda H Bergersen
- The Brain and Muscle Energy Group, Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johanne E Rinholm
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Zappulo A, van den Bruck D, Ciolli Mattioli C, Franke V, Imami K, McShane E, Moreno-Estelles M, Calviello L, Filipchyk A, Peguero-Sanchez E, Müller T, Woehler A, Birchmeier C, Merino E, Rajewsky N, Ohler U, Mazzoni EO, Selbach M, Akalin A, Chekulaeva M. RNA localization is a key determinant of neurite-enriched proteome. Nat Commun 2017; 8:583. [PMID: 28928394 PMCID: PMC5605627 DOI: 10.1038/s41467-017-00690-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/19/2017] [Indexed: 11/09/2022] Open
Abstract
Protein subcellular localization is fundamental to the establishment of the body axis, cell migration, synaptic plasticity, and a vast range of other biological processes. Protein localization occurs through three mechanisms: protein transport, mRNA localization, and local translation. However, the relative contribution of each process to neuronal polarity remains unknown. Using neurons differentiated from mouse embryonic stem cells, we analyze protein and RNA expression and translation rates in isolated cell bodies and neurites genome-wide. We quantify 7323 proteins and the entire transcriptome, and identify hundreds of neurite-localized proteins and locally translated mRNAs. Our results demonstrate that mRNA localization is the primary mechanism for protein localization in neurites that may account for half of the neurite-localized proteome. Moreover, we identify multiple neurite-targeted non-coding RNAs and RNA-binding proteins with potential regulatory roles. These results provide further insight into the mechanisms underlying the establishment of neuronal polarity. Subcellular localization of RNAs and proteins is important for polarized cells such as neurons. Here the authors differentiate mouse embryonic stem cells into neurons, and analyze the local transcriptome, proteome, and translated transcriptome in their cell bodies and neurites, providing a unique resource for future studies on neuronal polarity.
Collapse
Affiliation(s)
- Alessandra Zappulo
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - David van den Bruck
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Camilla Ciolli Mattioli
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Vedran Franke
- BIMSB Bioinformatics Platform, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Erik McShane
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | | | - Lorenzo Calviello
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Andrei Filipchyk
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Esteban Peguero-Sanchez
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.,Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP, 62210, Mexico
| | - Thomas Müller
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Andrew Woehler
- BIMSB Light Microscopy Platform, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP, 62210, Mexico
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Altuna Akalin
- BIMSB Bioinformatics Platform, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Marina Chekulaeva
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
| |
Collapse
|
4
|
Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G. White matter injury in ischemic stroke. Prog Neurobiol 2016; 141:45-60. [PMID: 27090751 PMCID: PMC5677601 DOI: 10.1016/j.pneurobio.2016.04.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Dandan Hong
- Department of Bioengineering, University of Pittsburgh School of Engineering, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China.
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
5
|
Xing C, Lo EH. Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog Neurobiol 2016; 152:181-199. [PMID: 27079786 DOI: 10.1016/j.pneurobio.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Self-preservation is required for life. At the cellular level, this fundamental principle is expressed in the form of molecular mechanisms for preconditioning and tolerance. When the cell is threatened, internal cascades of survival signaling become triggered to protect against cell death and defend against future insults. Recently, however, emerging findings suggest that this principle of self-preservation may involve not only intracellular signals; the release of extracellular signals may provide a way to recruit adjacent cells into an amplified protective program. In the central nervous system where multiple cell types co-exist, this mechanism would allow threatened neurons to "ask for help" from glial and vascular compartments. In this review, we describe this new concept of help-me signaling, wherein damaged or diseased neurons release signals that may shift glial and vascular cells into potentially beneficial phenotypes, and help remodel the neurovascular unit. Understanding and dissecting these non-cell autonomous mechanisms of self-preservation in the CNS may lead to novel opportunities for neuroprotection and neurorecovery.
Collapse
Affiliation(s)
- Changhong Xing
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
6
|
Crosstalk between miRNAs and their regulated genes network in stroke. Sci Rep 2016; 6:20429. [PMID: 26830013 PMCID: PMC4735861 DOI: 10.1038/srep20429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/04/2016] [Indexed: 12/22/2022] Open
Abstract
In recent years, more and more studies focus on the roles of genes or miRNAs in stroke. However, the molecular mechanism connecting miRNAs and their targetgenes remains unclear. The aim of this study was to determine the differential regulation and correlations between miRNAs and their targetgenes in human stroke. Stroke-related miRNAs were obtained from the Human MicroRNA Disease Database (HMDD) and their targetgenes were generated from three independent sources. Kappa score was used to create the network and the functional modules. A total of 11 stroke-related miRNAs were identified from the HMDD and 441 overlapping targetgenes were extracted from the three databases. By network construction and GO analysis, 13 functional modules, 186 biological processes, and 21 pathways were found in the network, of which functional module 8 was the largest module, cellular-related process and phosphate-related process were the most important biological processes, and MAPK signaling pathway was the most significant pathway. In our study, all miRNAs regulate the stroke modular network by their targetgenes. After the validation of miRNAs, we found that miR-605 and miR-181d were highly expressed in the blood of stroke patients which never reported before may supply novel target for treatment.
Collapse
|
7
|
Pace M, Baracchi F, Gao B, Bassetti C. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke. Sleep 2015; 38:1707-18. [PMID: 26085290 DOI: 10.5665/sleep.5148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. DESIGN Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. SETTINGS Basic sleep research laboratory. MEASUREMENTS AND RESULTS Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. CONCLUSION Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms.
Collapse
Affiliation(s)
- Marta Pace
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Baracchi
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland
| | - Bo Gao
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland
| | - Claudio Bassetti
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Neumann JT, Thompson JW, Raval AP, Cohan CH, Koronowski KB, Perez-Pinzon MA. Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection. J Cereb Blood Flow Metab 2015; 35:121-30. [PMID: 25370861 PMCID: PMC4294405 DOI: 10.1038/jcbfm.2014.185] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 01/06/2023]
Abstract
Ischemic preconditioning (IPC) via protein kinase C epsilon (PKCɛ) activation induces neuroprotection against lethal ischemia. Brain-derived neurotrophic factor (BDNF) is a pro-survival signaling molecule that modulates synaptic plasticity and neurogenesis. Interestingly, BDNF mRNA expression increases after IPC. In this study, we investigated whether IPC or pharmacological preconditioning (PKCɛ activation) promoted BDNF-induced neuroprotection, if neuroprotection by IPC or PKCɛ activation altered neuronal excitability, and whether these changes were BDNF-mediated. We used both in vitro (hippocampal organotypic cultures and cortical neuronal-glial cocultures) and in vivo (acute hippocampal slices 48 hours after preconditioning) models of IPC or PKCɛ activation. BDNF protein expression increased 24 to 48 hours after preconditioning, where inhibition of the BDNF Trk receptors abolished neuroprotection against oxygen and glucose deprivation (OGD) in vitro. In addition, there was a significant decrease in neuronal firing frequency and increase in threshold potential 48 hours after preconditioning in vivo, where this threshold modulation was dependent on BDNF activation of Trk receptors in excitatory cortical neurons. In addition, 48 hours after PKCɛ activation in vivo, the onset of anoxic depolarization during OGD was significantly delayed in hippocampal slices. Overall, these results suggest that after IPC or PKCɛ activation, there are BDNF-dependent electrophysiologic modifications that lead to neuroprotection.
Collapse
Affiliation(s)
- Jake T Neumann
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - John W Thompson
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Ami P Raval
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Charles H Cohan
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [4] Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Kevin B Koronowski
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [4] Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
9
|
Fernandes J, Vieira M, Carreto L, Santos MAS, Duarte CB, Carvalho AL, Santos AE. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS One 2014; 9:e99958. [PMID: 24960035 PMCID: PMC4069008 DOI: 10.1371/journal.pone.0099958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022] Open
Abstract
Transient global cerebral ischemia induces profound changes in the transcriptome of brain cells, which is partially associated with the induction or repression of genes that influence the ischemic response. However, the mechanisms responsible for the selective vulnerability of hippocampal neurons to global ischemia remain to be clarified. To identify molecular changes elicited by ischemic insults, we subjected hippocampal primary cultures to oxygen-glucose deprivation (OGD), an in vitro model for global ischemia that resulted in delayed neuronal death with an excitotoxic component. To investigate changes in the transcriptome of hippocampal neurons submitted to OGD, total RNA was extracted at early (7 h) and delayed (24 h) time points after OGD and used in a whole-genome RNA microarray. We observed that at 7 h after OGD there was a general repression of genes, whereas at 24 h there was a general induction of gene expression. Genes related with functions such as transcription and RNA biosynthesis were highly regulated at both periods of incubation after OGD, confirming that the response to ischemia is a dynamic and coordinated process. Our analysis showed that genes for synaptic proteins, such as those encoding for PICK1, GRIP1, TARPγ3, calsyntenin-2/3, SAPAP2 and SNAP-25, were down-regulated after OGD. Additionally, OGD decreased the mRNA and protein expression levels of the GluA1 AMPA receptor subunit as well as the GluN2A and GluN2B subunits of NMDA receptors, but increased the mRNA expression of the GluN3A subunit, thus altering the composition of ionotropic glutamate receptors in hippocampal neurons. Together, our results present the expression profile elicited by in vitro ischemia in hippocampal neurons, and indicate that OGD activates a transcriptional program leading to down-regulation in the expression of genes coding for synaptic proteins, suggesting that the synaptic proteome may change after ischemia.
Collapse
Affiliation(s)
- Joana Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Marta Vieira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Laura Carreto
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Manuel A. S. Santos
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- * E-mail:
| | - Armanda E. Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
|
11
|
Thompson JW, Dave KR, Young JI, Perez-Pinzon MA. Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics 2013; 10:789-97. [PMID: 23868468 PMCID: PMC3805868 DOI: 10.1007/s13311-013-0202-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ischemic preconditioning is an innate neuroprotective mechanism in which a sub-injurious ischemic exposure increases the brain's ability to withstand a subsequent, normally injurious ischemic insult. Part of ischemic preconditioning neuroprotection stems from an epigenetic reprogramming of the brain to a phenotype of ischemic tolerance, which results in a gene expression profile different from that observed in the non-injured and ischemia-injured brains. Such neuroprotective reprograming, activated by ischemic preconditioning, requires specific changes in DNA accessibility coordinated with activation of transcriptional activator and repressor proteins, which allows for expression of specific neuroprotective proteins despite a general repression of gene expression. In this review we examine the effects of injurious ischemia and ischemic preconditioning on the regulation of DNA methylation, histone post-translational modifications, and non-coding RNA expression. There is increasing interest in the role of epigenetics in disease pathobiology, and whether and how pharmacological manipulation of epigenetic processes may allow for ischemic neuroprotection. Therefore, a better understanding of the epigenomic determinants underlying the modulation of gene expression that lead to ischemic tolerance or cell death offers the promise of novel neuroprotective therapies that target global reprograming of genomic activity versus individual cellular signaling pathways.
Collapse
Affiliation(s)
- John W Thompson
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA,
| | | | | | | |
Collapse
|
12
|
Della-Morte D, Guadagni F, Palmirotta R, Ferroni P, Testa G, Cacciatore F, Abete P, Rengo F, Perez-Pinzon MA, Sacco RL, Rundek T. Genetics and genomics of ischemic tolerance: focus on cardiac and cerebral ischemic preconditioning. Pharmacogenomics 2013; 13:1741-57. [PMID: 23171338 DOI: 10.2217/pgs.12.157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A subthreshold ischemic insult applied to an organ such as the heart and/or brain may help to reduce damage caused by subsequent ischemic episodes. This phenomenon is known as ischemic tolerance mediated by ischemic preconditioning (IPC) and represents the most powerful endogenous mechanism against ischemic injury. Various molecular pathways have been implicated in IPC, and several compounds have been proposed as activators or mediators of IPC. Recently, it has been established that the protective phenotype in response to ischemia depends on a coordinated response at the genomic, molecular, cellular and tissue levels by introducing the concept of 'genomic reprogramming' following IPC. In this article, we sought to review the genetic expression profiles found in cardiac and cerebral IPC studies, describe the differences between young and aged organs in IPC-mediated protection, and discuss the potential therapeutic application of IPC and pharmacological preconditioning based on the genomic response.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In this review we identify and discuss some of the genomics studies of preconditioning and the ischemic tolerance phenomenon. Such studies have been attempted in multiple species, using different array technologies and with different preconditioning and tolerance models. In addition, studies are starting to reveal epigenetic mechanisms and modifiers of tolerance and preconditioning. Together these studies are starting to reveal some of the immense complexity of the ischemic tolerance phenomenon, yet further studies await to be performed.
Collapse
Affiliation(s)
- Robert Meller
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310-1495 ; Department of Neurobiology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310-1495 ; Department of Pharmacology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310-1495
| | | |
Collapse
|