1
|
Kum Özşengezer S, Altun ZS, Sanlav G, Baran B, Kızmazoğlu D, Aktaş S, Keskinoğlu P, Olgun N. Investigation of YAP-1, OTX-2, and nestin protein expressions in neuroblastoma: a preliminary study. Ann Clin Transl Neurol 2024; 11:2153-2165. [PMID: 38925618 PMCID: PMC11330229 DOI: 10.1002/acn3.52136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Neuroblastoma is the most common extracranial solid tumor in childhood. YAP (Yes-associated protein) is a highly expressed protein in NB. Nestin is an important marker of neuronal differentiation in NB. Orthodenticle homeobox (OTX) is a transcription factor and is overexpressed in blastoma-derived tumors. The aim of this study was to examine the potential roles of YAP-1, Nestin, and OTX-2 proteins in prognosis and risk stratification in neuroblastoma METHODS: Tumor sections of 56 patients with different NB risk groups were analyzed. YAP-1, Nestin, and OTX-2 protein expression levels were evaluated by immunohistochemical staining in NB patient tissue samples. RESULTS YAP-1, Nestin, and OTX-2 protein expression levels were evaluated together with the clinical findings of NB patients. YAP-1 was expressed in 18% of all tissues, while Nestin was expressed in 20.4%. OTX-2 protein expression was found in 41.1% of the NB patients. YAP-1 was expressed in 26.9% of high-risk and 11.5% of low-risk patients. Nestin was expressed in 24.4% high-risk and 33.3% low-risk patients. OTX-2 was expressed in 68.2% high-risk and 60% low-risk patients.YAP-1 was shown to provide survival advantages among risk groups. INTERPRETATION The findings of this study support that YAP-1 may be a potential prognostic biomarker for staging and risk-group assignment of NB patients. YAP-1 expression in neuroblastoma is associated with significantly poorer survival probabilities and should be considered as a potential therapeutic target. OTX-2 is a promising predictive biomarker candidate, but its mechanisms need further investigation in neuroblastoma, as nestin expression is not significantly linked to patient survival.
Collapse
Affiliation(s)
- Selen Kum Özşengezer
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Zekiye Sultan Altun
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Gamze Sanlav
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Burçin Baran
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Deniz Kızmazoğlu
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| | - Safiye Aktaş
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Pembe Keskinoğlu
- Department of Basic Medical Sciences, Department of Biostatistics and Medical InformaticsFaculty of Medicine, Dokuz Eylül UniversityIzmirTurkey
| | - Nur Olgun
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
2
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Fu Y, Yuan SS, Zhang LJ, Ji ZL, Quan XJ. Atonal bHLH transcription factor 1 is an important factor for maintaining the balance of cell proliferation and differentiation in tumorigenesis. Oncol Lett 2020; 20:2595-2605. [PMID: 32782577 PMCID: PMC7400680 DOI: 10.3892/ol.2020.11833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Establishing the link between cellular processes and oncogenesis may aid the elucidation of targeted and effective therapies against tumor cell proliferation and metastasis. Previous studies have investigated the mechanisms involved in maintaining the balance between cell proliferation, differentiation and migration. There is increased interest in determining the conditions that allow cancer stem cells to differentiate as well as the identification of molecules that may serve as novel drug targets. Furthermore, the study of various genes, including transcription factors, which serve a crucial role in cellular processes, may present a promising direction for future therapy. The present review described the role of the transcription factor atonal bHLH transcription factor 1 (ATOH1) in signaling pathways in tumorigenesis, particularly in cerebellar tumor medulloblastoma and colorectal cancer, where ATOH1 serves as an oncogene or tumor suppressor, respectively. Additionally, the present review summarized the associated therapeutic interventions for these two types of tumors and discussed novel clinical targets and approaches.
Collapse
Affiliation(s)
- Ying Fu
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Sha-Sha Yuan
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Li-Jie Zhang
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Zhi-Li Ji
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Xiao-Jiang Quan
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China.,Laboratory of Brain Development, Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
4
|
Gu S, Chen K, Yin M, Wu Z, Wu Y. Proteomic profiling of isogenic primary and metastatic medulloblastoma cell lines reveals differential expression of key metastatic factors. J Proteomics 2017; 160:55-63. [PMID: 28363815 DOI: 10.1016/j.jprot.2017.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/12/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Around 30% of medulloblastoma patients are diagnosed with metastasis, which often results in a poor prognosis. Unfortunately, molecular mechanisms of medulloblastoma metastasis remain largely unknown. In this study, we employed the recently developed deep proteome analysis approach to quantitatively profile the expression of >10,000 proteins from CHLA-01-MED and CHLA-01R-MED isogenic cell lines derived from the primary and metastatic tumor of the same patient diagnosed with a group IV medulloblastoma. Using statistical analysis, we identified ~1400 significantly altered proteins between the primary and metastatic cell lines including known factors such as placental growth factor (PLGF), LIM homeobox 1 (LHX1) and prominim 1 (PROM1), as well as the negative regulator secreted protein acidic and cysteine rich (SPARC). Additional transwell experiments and immunohistochemical analysis of clinical medulloblastoma samples implicated yes-associated protein 1 (YAP1) as a potential key factor contributing to metastasis. Taken together, our data broadly defines the metastasis-relevant regulated proteome and provides a precious resource for further investigating potential mechanisms of medulloblastoma metastasis. SIGNIFICANCE This study represented the first deep proteome analysis of metastatic medulloblastomas and provided a valuable candidate list of altered proteins in metastatic medulloblastomas. The primary data suggested YAP1 as a potential driver for the metastasis of medulloblastoma. These results open up numerous avenues for further investigating the underlying mechanisms of medulloblastoma metastasis and improving the prognosis of medulloblastoma patients.
Collapse
Affiliation(s)
- Shuo Gu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Minzhi Yin
- Department of Pathology Center, School of Medicine, Shanghai Children's Medical, Shanghai Jiaotong University, Shanghai, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China.
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China.
| |
Collapse
|
5
|
Vriend J, Marzban H. The ubiquitin-proteasome system and chromosome 17 in cerebellar granule cells and medulloblastoma subgroups. Cell Mol Life Sci 2017; 74:449-467. [PMID: 27592301 PMCID: PMC11107675 DOI: 10.1007/s00018-016-2354-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Chromosome 17 abnormalities are often observed in medulloblastomas (MBs), particularly those classified in the consensus Groups 3 and 4. Herein we review MB signature genes associated with chromosome 17 and the relationship of these signature genes to the ubiquitin-proteasome system. While clinical investigators have not focused on the ubiquitin-proteasome system in relation to MB, a substantial amount of data on the topic has been hidden in the form of supplemental datasets of gene expression. A supplemental dataset associated with the Thompson classification of MBs shows that a subgroup of MB with 17p deletions is characterized by reduced expression of genes for several core particle subunits of the beta ring of the proteasome (β1, β4, β5, β7). One of these genes (PSMB6, the gene for the β1 subunit) is located on chromosome 17, near the telomeric end of 17p. By comparison, in the WNT group of MBs only one core proteasome subunit, β6, associated with loss of a gene (PSMB1) on chromosome 6, was down-regulated in this dataset. The MB subgroups with the worst prognosis have a significant association with chromosome 17 abnormalities and irregularities of APC/C cyclosome genes. We conclude that the expression of proteasome subunit genes and genes for ubiquitin ligases can contribute to prognostic classification of MBs. The therapeutic value of targeting proteasome subunits and ubiquitin ligases in the various subgroups of MB remains to be determined separately for each classification of MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Li H, Miao Q, Xu CW, Huang JH, Zhou YF, Wu MJ. OTX1 Contributes to Hepatocellular Carcinoma Progression by Regulation of ERK/MAPK Pathway. J Korean Med Sci 2016; 31:1215-23. [PMID: 27478331 PMCID: PMC4951550 DOI: 10.3346/jkms.2016.31.8.1215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/12/2016] [Indexed: 11/26/2022] Open
Abstract
Orthodenticlehomeobox 1 (OTX1) overexpression had previously been associated with the progression of several tumors. The present study aimed to determine the expression and role of OTX1 in human hepatocellular carcinoma (HCC). The expression level of OTX1 was examined by quantitative real-time PCR (qRT-PCR) in 10 samples of HCC and paired adjacent non-cancerous tissues, and by immunohistochemistry (IHC) analysis in 128 HCC samples and matched controls. The relationship between OTX1 expression and the clinicopathological features werealso analyzed. Furthermore, the effects of OTX1 knockdown on cell proliferation and migration were determined in HCC cell lines. Axenograft mouse model was also established to investigate the role of OTX1 in HCC tumor growth. TheqRT-PCR and IHC analyses revealed that OTX1 was significantly elevated in HCC tissues compared with the paired non-cancerous controls. Expression of OTX1 was positively correlated with nodal metastasis status (P = 0.009) and TNM staging (P = 0.001) in HCC tissues. In addition, knockdown of OTX1 by shRNA significantly inhibited the proliferation and migration, and induced cell cycle arrest in S phase in vitro. Tumor growth was markedly inhibited by OTX1 silencing in the xenograft. Moreover, OTX1 silencing was causable for the decreased phosphorylation level of ERK/MAPK signaling. In conclusion, OTX1 contributes to HCC progression possibly by regulation of ERK/MAPK pathway. OTX1 may be a novel target for molecular therapy towards HCC.
Collapse
Affiliation(s)
- Hua Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Qian Miao
- Department of Oncology, Quzhou People's Hospital in Zhejiang Province, Quzhou Zhejiang, China
| | - Chun-wei Xu
- Department of Pathology, Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Jian-hui Huang
- Department of Oncology, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Yue-fen Zhou
- Department of Oncology, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Mei-juan Wu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Zhejiang, China
| |
Collapse
|