1
|
Roda E, Bottone MG, Insolia V, Barni S, Bernocchi G. Changes in the cerebellar cytoarchitecture of hibernating hedgehog Erinaceus europaeus L. (Mammalia): an immunocytochemical approach. EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1380722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- E. Roda
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
- Laboratory of Clinical & Experimental Toxicology and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, ICS Maugeri Spa Benefit Corporation, IRCCS of Pavia, Pavia, Italy
| | - M. G. Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| | - V. Insolia
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| | - S. Barni
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| | - G. Bernocchi
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Zhai X, Ding Y, Wang Q, Zhang H, Li F. Rutin Acid Ameliorates Neural Apoptosis Induced by Traumatic Brain Injury via Mitochondrial Pathways in Mice. Neuroimmunomodulation 2016; 23:179-187. [PMID: 27644033 DOI: 10.1159/000448716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
Abstract
Rutin reportedly conveys many beneficial effects, including neuroprotection in brain injury. However, the mechanisms underlying these effects are still not well understood. This study investigates the effect of rutin on potential mechanisms for neuroprotective effects, using the weight-drop model of traumatic brain injury (TBI) in male mice treated either with rutin or a vehicle via intraperitoneal injection 30 min after TBI. After euthanasia and 24 h after TBI, all mice were examined by tests, including neurologic scores, blood-brain barrier permeability, brain water content and neuronal cell death in the cerebral cortex. Results indicate that the levels of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD) were restored by rutin treatment. Rutin treatment resulted in the downregulation of caspase-3 expression in a reduced number of positive cells under terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and also the improved survival of neurons. Furthermore, pretreatment levels of MDA were restored, while Bcl-2-associated X protein translocation to mitochondria and cytochrome c release into cytosol were reduced by rutin treatment. Our results demonstrate that rutin improves neurological outcome by protecting neural cells against apoptosis via mechanisms that involve the mitochondria following TBI.
Collapse
Affiliation(s)
- Xiaofu Zhai
- Department of Neurosurgery, Huai'an Second People's Hospital, Xuzhou Medical College, Huai'an, China
| | | | | | | | | |
Collapse
|
3
|
Exposure to sub-chronic unpredictable stress accounts for antidepressant-like effects in hamsters treated with BDNF and CNQX. Brain Res Bull 2015; 118:65-77. [DOI: 10.1016/j.brainresbull.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
4
|
Biggar KK, Wu CW, Tessier SN, Zhang J, Pifferi F, Perret M, Storey KB. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:111-8. [PMID: 26093281 PMCID: PMC4511780 DOI: 10.1016/j.gpb.2015.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/20/2015] [Indexed: 12/18/2022]
Abstract
A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Biochemistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Cheng-Wei Wu
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Shannon N Tessier
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Surgery & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Jing Zhang
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Fabien Pifferi
- UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France
| | - Martine Perret
- UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 91800 Brunoy, France
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
5
|
Involvement of GluR2 up-regulation in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptor in mice. Sci Rep 2015; 5:9490. [PMID: 25830356 PMCID: PMC4381620 DOI: 10.1038/srep09490] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/19/2015] [Indexed: 01/05/2023] Open
Abstract
We investigated whether glutamate receptor subunit 2 (GluR2) is involved in EA pretreatment-induced neuroprotection via cannabinoid CB1 receptors (CB1R) after global cerebral ischemia in mice. Two hours after electric acupuncture (EA) pretreatment, global cerebral ischemia (GCI) was induced by bilateral common carotid artery occlusion (BCCAO) for 20 min. The GluR2 expression was examined in the hippocampus after reperfusion. Cell survival, neuronal apoptosis, the Bax/Bcl-2 ratio and neurological scores were evaluated at 24 h after BCCAO in the presence or absence of the GluR2 inhibitor. Furthermore, the GluR2 was determined in the presence and absence of CB1R inhibitor. Our results showed EA pretreatment enhanced expression of GluR2 in the hippocampus 2 h after reperfusion. Moreover, EA pretreatment improved neurological outcome, promoted cell survival, inhibited neuronal apoptosis, and decreased the Bax/Bcl-2 ratio after reperfusion. GluR2 knockdown by GluR2 siRNA effectively reversed the beneficial effects of EA pretreatment. Furthermore, CB1R siRNA and two CB1R antagonists blocked the elevation of GluR2 expression by EA pretreatment, whereas the two CB1R agonists up-regulated GluR2 expression as EA pretreatment. In conclusion, GluR2 up-regulation is involved in neuroprotection of EA pretreatment against GCI through CB1R, suggesting that GluR2 may be a novel target for stroke intervention.
Collapse
|