1
|
Ma K, Zhang K, Chen D, Wang C, Abdalla M, Zhang H, Tian R, Liu Y, Song L, Zhang X, Liu F, Liu G, Wang D. Real-world evidence: Risdiplam in a patient with spinal muscular atrophy type I with a novel splicing mutation and one SMN2 copy. Hum Mol Genet 2024; 33:1120-1130. [PMID: 38520738 PMCID: PMC11190614 DOI: 10.1093/hmg/ddae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Spinal muscular atrophy (SMA), which results from the deletion or/and mutation in the SMN1 gene, is an autosomal recessive neuromuscular disorder that leads to weakness and muscle atrophy. SMN2 is a paralogous gene of SMN1. SMN2 copy number affects the severity of SMA, but its role in patients treated with disease modifying therapies is unclear. The most appropriate individualized treatment for SMA has not yet been determined. Here, we reported a case of SMA type I with normal breathing and swallowing function. We genetically confirmed that this patient had a compound heterozygous variant: one deleted SMN1 allele and a novel splice mutation c.628-3T>G in the retained allele, with one SMN2 copy. Patient-derived sequencing of 4 SMN1 cDNA clones showed that this intronic single transversion mutation results in an alternative exon (e)5 3' splice site, which leads to an additional 2 nucleotides (AG) at the 5' end of e5, thereby explaining why the patient with only one copy of SMN2 had a mild clinical phenotype. Additionally, a minigene assay of wild type and mutant SMN1 in HEK293T cells also demonstrated that this transversion mutation induced e5 skipping. Considering treatment cost and goals of avoiding pain caused by injections and starting treatment as early as possible, risdiplam was prescribed for this patient. However, the patient showed remarkable clinical improvements after treatment with risdiplam for 7 months despite carrying only one copy of SMN2. This study is the first report on the treatment of risdiplam in a patient with one SMN2 copy in a real-world setting. These findings expand the mutation spectrum of SMA and provide accurate genetic counseling information, as well as clarify the molecular mechanism of careful genotype-phenotype correlation of the patient.
Collapse
Affiliation(s)
- Kai Ma
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
- Department of neurology, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Kaihui Zhang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Defang Chen
- The Office of operation management committee, Central Hospital Affiliated to Shandong First Medical University, Jiefang road NO. 105, Jinan, SD 250022, PR China
| | - Chuan Wang
- Science, Education and Foreign Affairs Section, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Mohnad Abdalla
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Haozheng Zhang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Rujin Tian
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Yang Liu
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
- Ophthalmology department, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Li Song
- Pediatric Hematology and Oncology, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Xinyi Zhang
- Intensive Care Unit, The Second People’s Hospital of Shandong Province, Duanxing west road NO. 4, Jinan, SD 250022, PR China
| | - Fangfang Liu
- Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jiefang road NO. 105, Jinan, SD 250022, PR China
| | - Guohua Liu
- Ophthalmology department, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Dong Wang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| |
Collapse
|
2
|
Zhang Y, He J, Xiang L, Tang X, Wang S, Li A, Wang C, Li L, Zhu B. Molecular Mechanisms of Medicinal Plant Securinega suffruticosa-derived Compound Securinine against Spinal Muscular Atrophy based on Network Pharmacology and Experimental Verification. Curr Pharm Des 2024; 30:1178-1193. [PMID: 38561613 DOI: 10.2174/0113816128288504240321041408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) is a severe motor neuronal disorder with high morbidity and mortality. Securinine has shown the potential to treat SMA; however, its anti-SMA role remains unclear. OBJECTIVE This study aims to reveal the anti-SMA mechanisms of securinine. METHODS Securinine-associated targets were acquired from Herbal Ingredients' Targets (HIT), Similarity Ensemble Approach (SEA), and SuperPred. SMA-associated targets were obtained from GeneCards and Dis- GeNET. Protein-protein Interaction (PPI) network was constructed using GeneMANIA, and hug targets were screened using cytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfifiler. Molecular docking was conducted using Pymol and Auto- Dock. In vitro assays were used to verify the anti-SMA effects of securinine. RESULTS Twenty-six intersection targets of securinine and SMA were obtained. HDAC1, HDAC2, TOP2A, PIK3R1, PRMT5, JAK2, HSP90AB1, TERT, PTGS2, and PAX8 were the core targets in PPI network. GO analysis demonstrated that the intersecting targets were implicated in the regulation of proteins, steroid hormones, histone deacetylases, and DNA transcription. KEGG analysis, pathway-pathway, and hub target-pathway networks revealed that securinine might treat SMA through TNF, JAK-STAT, Ras, and PI3K-Akt pathways. Securinine had a favorable binding affinity with HDAC1, HSP90AB, JAK2, PRMT5, PTGS2, and TERT. Securinine rescued viability suppression, mitochondria damage, and SMN loss in the SMA cell model. Furthermore, securinine increased HDAC1 and PRMT5 expression, decreased PTGS2 expression, suppressed the JAK2-STAT3 pathway, and promoted the PI3K-Akt pathway. CONCLUSION Securinine might alleviate SMA by elevating HDAC1 and PRMT5 expression and reducing PTGS2 via JAK2-STAT3 suppression and PI3K-Akt activation.
Collapse
Affiliation(s)
- Yinhong Zhang
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jing He
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lifeng Xiang
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- NHC Key Laboratory of Periconception Health Birth in Western China, Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Xinhua Tang
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shiyu Wang
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Aoyu Li
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Chaoyan Wang
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Li Li
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Baosheng Zhu
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
3
|
Tuncel G, Sanlıdag B, Dirik E, Baris T, Ergoren MC, Temel SG. Lessons from Real Life Experience: Importance of In-House Sequencing and Smart Ratio-Based Real-Time PCR Outperform Multiplex Ligation-Dependent Probe Amplification in Prenatal Diagnosis for Spinal Muscular Atrophy: Bench to Bedside Diagnosis. Glob Med Genet 2023; 10:240-246. [PMID: 37663644 PMCID: PMC10471427 DOI: 10.1055/s-0043-1774307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a rare, recessively inherited neurodegenerative disorder caused by the presence of pathogenic variants in the SMN gene. As it is the leading inherited cause of infant mortality, identification of SMN gene pathogenic variant carriers is important for diagnostic purposes with effective genetic counseling. Multiple ligation probe analysis (MLPA), a probe-based method, is considered as the gold standard for SMA carrier analysis. However, MLPA might give false-negative results in cases with variations in the probe-binding regions. Here, we present a case born to consanguineous SMA carrier parents. Prenatal diagnosis with MLPA failed to detect the compound heterozygous mutant state of the proband and she was born unfortunately with SMA phenotype. Further analysis with a real-time polymerase chain reaction kit was able to detect the compound heterozygous state of the patient and was confirmed with targeted next-generation sequencing technology.
Collapse
Affiliation(s)
- Gulten Tuncel
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | - Burcin Sanlıdag
- Department of Paediatrics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Eray Dirik
- Department of Paediatrics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Tugba Baris
- Gelişim Tıp Laboratuvarları, Istanbul, Turkey
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Sehime Gulsun Temel
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
- Department of Translational Medicine, Institute of Health Science, Bursa Uludag University, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
4
|
Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16:11772719211035643. [PMID: 34421296 PMCID: PMC8371741 DOI: 10.1177/11772719211035643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) has created an urgent need to identify clinically meaningful biomarkers. Biomarkers present a means to measure and evaluate neurological disease across time. Changes in biomarkers provide insight into disease progression and may reveal biologic, physiologic, or pharmacologic phenomena occurring prior to clinical detection. Efforts to identify biomarkers for SMA, a genetic motor neuron disease characterized by motor neuron degeneration and weakness, have culminated in a number of putative molecular and physiologic markers that evaluate biological media (eg, blood and cerebrospinal fluid [CSF]) or nervous system function. Such biomarkers include SMN2 copy number, SMN mRNA and protein levels, neurofilament proteins (NFs), plasma protein analytes, creatine kinase (CK) and creatinine (Crn), and various electrophysiology and imaging measures. SMN2 copy number inversely correlates with disease severity and is the best predictor of clinical outcome in untreated individuals. SMN mRNA and protein are commonly measured in the blood or CSF of patients receiving SMA therapies, particularly those aimed at increasing SMN protein expression, and provide insight into current disease state. NFs have proven to be robust prognostic, disease progression, and pharmacodynamic markers for SMA infants undergoing treatment, but less so for adolescents and adults. Select plasma proteins are altered in SMA individuals and may track response to therapy. CK and Crn from blood correlate with motor function and disease severity status and are useful for predicting which individuals will respond to therapy. Electrophysiology measures comprise the most reliable means for monitoring motor function throughout disease course and are sensitive enough to detect neuromuscular changes before overt clinical manifestation, making them robust predictive and pharmacodynamic biomarkers. Finally, magnetic resonance imaging and muscle ultrasonography are non-invasive techniques for studying muscle structure and physiology and are useful diagnostic tools, but cannot reliably track disease progression. Importantly, biomarkers can provide information about the underlying mechanisms of disease as well as reveal subclinical disease progression, allowing for more appropriate timing and dosing of therapy for individuals with SMA. Recent therapeutic advancements in SMA have shown promising results, though there is still a great need to identify and understand the impact of biomarkers in modulating disease onset and progression.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and
Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH,
USA
| |
Collapse
|
5
|
Dual Mechanism of a New SMN1 Variant (c.835G>C, p.Gly279Arg) by Interrupting Exon 7 Skipping and YG Oligomerization in Causation of Spinal Muscular Atrophy. J Mol Neurosci 2020; 71:112-121. [PMID: 32812185 DOI: 10.1007/s12031-020-01631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by deletion or subtle variant of survival motor neuron 1 (SMN1) gene. By multiplex ligation-dependent probe amplification, genomic sequencing, and T-A cloning on cDNA level, we identified one novel SMN1 subtle variant c.835G>C (p.Gly279Arg) in a non-homozygous patient with type 1 SMA. Full-length SMN1 (fl-SMN1) transcripts in the peripheral bloods of the patient were significantly decreased compared with those in healthy individuals and the carries (p < 0.05). And two fragments of SMN1 transcripts including fl-SMN1 and △7-SMN1 were observed by RT-PCR, which indicated Exon 7 skipping of SMN1 gene. To further evaluate its splicing effects on Exon 7, we performed ex vivo splicing analysis, which showed that the mutant mini gene with c.835G>C reduced Exon 7 inclusion to 54%. In addition, self-oligomerization between mutant SMN protein with the c.835G>C (p.Gly279Arg) and wild SMN was decreased in self-interaction assays. Our study clearly demonstrates that the c.835G>C (p.Gly279Arg) variant can lead to a decrease in fl-SMN1 transcripts by interrupting correct splicing of SMN1. What is more, the variant also affects SMN self-oligomerization via amino acid substitution from Gly to Arg at amino acid position of 279. This work presents the first evidence that it does exit double-hit events for the novel variant, which is crucial to understanding a severe SMA phenotype (type 1).
Collapse
|
6
|
Souček P, Réblová K, Kramárek M, Radová L, Grymová T, Hujová P, Kováčová T, Lexa M, Grodecká L, Freiberger T. High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing. RNA Biol 2019; 16:1364-1376. [PMID: 31213135 DOI: 10.1080/15476286.2019.1630796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.
Collapse
Affiliation(s)
- Přemysl Souček
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Kamila Réblová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Michal Kramárek
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Lenka Radová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Tereza Grymová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Pavla Hujová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tatiana Kováčová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Matej Lexa
- Faculty of Informatics, Masaryk University , Brno , Czech Republic
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tomáš Freiberger
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.,Faculty of Medicine, Masaryk University , Brno , Czech Republic
| |
Collapse
|