1
|
Geleta U, Prajapati P, Bachstetter A, Nelson PT, Wang WX. Sex-Biased Expression and Response of microRNAs in Neurological Diseases and Neurotrauma. Int J Mol Sci 2024; 25:2648. [PMID: 38473893 PMCID: PMC10931569 DOI: 10.3390/ijms25052648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.
Collapse
Affiliation(s)
- Urim Geleta
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Adam Bachstetter
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Garg P, Jamal F, Srivastava P. Deciphering the role of precursor miR-12136 and miR-8485 in the progression of intellectual disability (ID). IBRO Neurosci Rep 2022; 13:393-401. [PMID: 36345471 PMCID: PMC9636553 DOI: 10.1016/j.ibneur.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
The short, non-coding RNAs known as miRNA modulate the expression of human protein-coding genes. About 90 % of genes in humans are controlled by the expression of miRNA. The dysfunction of these miRNA target genes leads to many human diseases, including neurodevelopmental disorders as well. Intellectual disability (ID) is a neurodevelopmental disorder that is characterized by adaptive behavior and intellectual functioning which includes logical reasoning, ability in learning, practical intelligence, and verbal skills. Identification of miRNA involved in ID and their associated target genes can help in the identification of diagnostic biomarkers related to ID at a very early age. The present study is an attempt to identify miRNA and their associated target genes that play an important role in the development of intellectual disability patients through the meta-analysis of available transcriptome data. A total of 6 transcriptomic studies were retrieved from NCBI and were subjected to quality check and trimming before alignment. The normalization and identification of differentially expressed miRNA were carried out using the EdgeR package of R studio. Further, the gene targets of downregulated miRNA were identified using miRDB. The system biology approaches were also applied to the study to identify the hub target genes and the diseases associated with main miRNAs.
Collapse
Affiliation(s)
- Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Farrukh Jamal
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, U.P., India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| |
Collapse
|
3
|
Rani A, Barter J, Kumar A, Stortz JA, Hollen M, Nacionales D, Moldawer LL, Efron PA, Foster TC. Influence of age and sex on microRNA response and recovery in the hippocampus following sepsis. Aging (Albany NY) 2022; 14:728-746. [PMID: 35094981 PMCID: PMC8833110 DOI: 10.18632/aging.203868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Sepsis, defined as a dysregulated host immune response to infection, is a common and dangerous clinical syndrome. The excessive host inflammatory response can induce immediate and persistent cognitive decline, which can be worse in older individuals. Sex-specific differences in the outcome of infectious diseases and sepsis appear to favor females. We employed a murine model to examine the influence of age and sex on the brain's microRNA (miR) response following sepsis. Young and old mice of both sexes underwent cecal ligation and puncture (CLP) with daily restraint stress. Expression of hippocampal miR was examined in age- and sex-matched controls at 1 and 4 days post-CLP. Few miR were modified in a similar manner across age or sex and these few miR were generally associated with neuroprotection against inflammation. Similar to previous work examining transcription, young females exhibited a better recovery of the miR profile from day 1 to day 4, relative to young males and old females. For young males and all female groups, the initial response mainly involved a decrease in miR expression. In contrast, old males exhibited only upregulated miR on day 1 and day 4 and many of the miR upregulated on day 1 and day 4 were linked to neurodegeneration, increased neuroinflammation, and cognitive impairment. The results emphasize age and sex differences in epigenetic mechanisms that likely contribute to susceptibility or resilience to cognitive impairment due to sepsis.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Stortz
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - McKenzie Hollen
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Dina Nacionales
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.,Genetics and Genomics Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Piergiorge RM, de Vasconcelos ATR, Gonçalves Pimentel MM, Santos-Rebouças CB. Strict network analysis of evolutionary conserved and brain-expressed genes reveals new putative candidates implicated in Intellectual Disability and in Global Development Delay. World J Biol Psychiatry 2021; 22:435-445. [PMID: 32914658 DOI: 10.1080/15622975.2020.1821916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Intellectual Disability (ID) and Global Development Delay (GDD) are frequent reasons for referral to genetic services and although they present overlapping phenotypes concerning cognitive, motor, language, or social skills, they are not exactly synonymous. Aiming to better understand independent or shared mechanisms related to these conditions and to identify new candidate genes, we performed a highly stringent protein-protein interaction network based on genes previously related to ID/GDD in the Human Phenotype Ontology portal. METHODS ID/GDD genes were searched for reliable interactions through STRING and clustering analysis was applied to detect biological complexes through the MCL algorithm. Six coding hub genes (TP53, CDC42, RAC1, GNB1, APP, and EP300) were recognised by the Cytoscape NetworkAnalyzer plugin, interacting with 1625 proteins not yet associated with ID or GDD. Genes encoding these proteins were explored by gene ontology, associated diseases, evolutionary conservation, and brain expression. RESULTS One hundred and seventy-two new putative genes playing a role in enriched processes/pathways previously related to ID and GDD were revealed, some of which were already postulated to be linked to ID/GDD in additional databases. CONCLUSIONS Our findings expanded the aetiological genetic landscape of ID/GDD and showed evidence that both conditions are closely related at the molecular and functional levels.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
An Insight into the microRNAs Associated with Arteriovenous and Cavernous Malformations of the Brain. Cells 2021; 10:cells10061373. [PMID: 34199498 PMCID: PMC8227573 DOI: 10.3390/cells10061373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Brain arteriovenous malformations (BAVMs) and cerebral cavernous malformations (CCMs) are rare developmental anomalies of the intracranial vasculature, with an irregular tendency to rupture, and as of yet incompletely deciphered pathophysiology. Because of their variety in location, morphology, and size, as well as unpredictable natural history, they represent a management challenge. MicroRNAs (miRNAs) are strands of non-coding RNA of around 20 nucleotides that are able to modulate the expression of target genes by binding completely or partially to their respective complementary sequences. Recent breakthroughs have been made on elucidating their contribution to BAVM and CCM occurrence, growth, and evolution; however, there are still countless gaps in our understanding of the mechanisms involved. Methods: We have searched the Medline (PubMed; PubMed Central) database for pertinent articles on miRNAs and their putative implications in BAVMs and CCMs. To this purpose, we employed various permutations of the terms and idioms: ‘arteriovenous malformation’, ‘AVM’, and ‘BAVM’, or ‘cavernous malformation’, ‘cavernoma’, and ‘cavernous angioma’ on the one hand; and ‘microRNA’, ‘miRNA’, and ‘miR’ on the other. Using cross-reference search; we then investigated additional articles concerning the individual miRNAs identified in other cerebral diseases. Results: Seven miRNAs were discovered to play a role in BAVMs, three of which were downregulated (miR-18a, miR-137, and miR-195*) and four upregulated (miR-7-5p, miR-199a-5p, miR-200b-3p, and let-7b-3p). Similarly, eight miRNAs were identified in CCM in humans and experimental animal models, two being upregulated (miR-27a and mmu-miR-3472a), and six downregulated (miR-125a, miR-361-5p, miR-370-3p, miR-181a-2-3p, miR-95-3p, and let-7b-3p). Conclusions: The following literature review endeavored to address the recent discoveries related to the various implications of miRNAs in the formation and growth of BAVMs and CCMs. Additionally, by presenting other cerebral pathologies correlated with these miRNAs, it aimed to emphasize the potential directions of upcoming research and biological therapies.
Collapse
|
6
|
Chen X, Shi Y, Xue P, Ma X, Li J, Zhang J. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3. Arthritis Res Ther 2020; 22:256. [PMID: 33109253 PMCID: PMC7590698 DOI: 10.1186/s13075-020-02325-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that microRNAs (miRs) are associated with the progression of osteoarthritis (OA). In this study, the role of exosomal miR-136-5p derived from mesenchymal stem cells (MSCs) in OA progression is investigated and the potential therapeutic mechanism explored. METHODS Bone marrow mesenchymal stem cells (BMMSCs) and their exosomes were isolated from patients and identified. The endocytosis of chondrocytes and the effects of exosome miR-136-5p on cartilage degradation were observed and examined by immunofluorescence and cartilage staining. Then, the targeting relationship between miR-136-5p and E74-like factor 3 (ELF3) was analyzed by dual-luciferase report assay. Based on gain- or loss-of-function experiments, the effects of exosomes and exosomal miR-136-5p on chondrocyte migration were examined by EdU and Transwell assay. Finally, a mouse model of post-traumatic OA was developed to evaluate effects of miR-136-5p on chondrocyte degeneration in vivo. RESULTS In the clinical samples of traumatic OA cartilage tissues, we detected increased ELF3 expression, and reduced miR-136-5p expression was determined. The BMMSC-derived exosomes showed an enriched level of miR-136-5p, which could be internalized by chondrocytes. The migration of chondrocyte was promoted by miR-136-5p, while collagen II, aggrecan, and SOX9 expression was increased and MMP-13 expression was reduced. miR-136-5p was verified to target ELF3 and could downregulate its expression. Moreover, the expression of ELF3 was reduced in chondrocytes after internalization of exosomes. In the mouse model of post-traumatic OA, exosomal miR-136-5p was found to reduce the degeneration of cartilage extracellular matrix. CONCLUSION These data provide evidence that BMMSC-derived exosomal miR-136-5p could promote chondrocyte migration in vitro and inhibit cartilage degeneration in vivo, thereby inhibiting OA pathology, which highlighted the transfer of exosomal miR-136-5p as a promising therapeutic strategy for patients with OA.
Collapse
Affiliation(s)
- Xue Chen
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| | - Yuanyuan Shi
- Department of Nursing, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Pan Xue
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| | - Xinli Ma
- Intensive Care Unit, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Junfeng Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| | - Jun Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041 Jilin Province People’s Republic of China
| |
Collapse
|
7
|
Di Palo A, Siniscalchi C, Salerno M, Russo A, Gravholt CH, Potenza N. What microRNAs could tell us about the human X chromosome. Cell Mol Life Sci 2020; 77:4069-4080. [PMID: 32356180 PMCID: PMC7854456 DOI: 10.1007/s00018-020-03526-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNA) are small-non coding RNAs endowed with great regulatory power, thus playing key roles not only in almost all physiological pathways, but also in the pathogenesis of several diseases. Surprisingly, genomic distribution analysis revealed the highest density of miRNA sequences on the X chromosome; this evolutionary conserved mammalian feature equips females with a larger miRNA machinery than males. However, miRNAs contribution to some X-related conditions, properties or functions is still poorly explored. With the aim to support and focus research in the field, this review analyzes the literature and databases about X-linked miRNAs, trying to understand how miRNAs could contribute to emerging gender-biased functions and pathological mechanisms, such as immunity and cancer. A fine map of miRNA sequences on the X chromosome is reported, and their known functions are discussed; in addition, bioinformatics functional analyses of the whole X-linked miRNA targetome (predicted and validated) were performed. The emerging scenario points to different gaps in the knowledge that should be filled with future experimental investigations, also in terms of possible implications and pathological perspectives for X chromosome aneuploidy syndromes, such as Turner and Klinefelter syndromes.
Collapse
Affiliation(s)
- Armando Di Palo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Chiara Siniscalchi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Mariacarolina Salerno
- Pediatric Endocrine Unit, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Claus Højbjerg Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
8
|
Bajic VP, Essack M, Zivkovic L, Stewart A, Zafirovic S, Bajic VB, Gojobori T, Isenovic E, Spremo-Potparevic B. The X Files: "The Mystery of X Chromosome Instability in Alzheimer's Disease". Front Genet 2020; 10:1368. [PMID: 32047510 PMCID: PMC6997486 DOI: 10.3389/fgene.2019.01368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of individuals worldwide and can occur relatively early or later in life. It is well known that genetic components, such as the amyloid precursor protein gene on chromosome 21, are fundamental in early-onset AD (EOAD). To date, however, only the apolipoprotein E4 (ApoE4) gene has been proved to be a genetic risk factor for late-onset AD (LOAD). In recent years, despite the hypothesis that many additional unidentified genes are likely to play a role in AD development, it is surprising that additional gene polymorphisms associated with LOAD have failed to come to light. In this review, we examine the role of X chromosome epigenetics and, based upon GWAS studies, the PCDHX11 gene. Furthermore, we explore other genetic risk factors of AD that involve X-chromosome epigenetics.
Collapse
Affiliation(s)
- Vladan P Bajic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lada Zivkovic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Alan Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Sonja Zafirovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma Isenovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|