1
|
Agostini S, Mancuso R, Citterio LA, Caputo D, Oreni L, Nuzzi R, Pasanisi MB, Rovaris M, Clerici M. Serum miR-34a-5p, miR-103a-3p, and miR-376a-3p as possible biomarkers of conversion from relapsing-remitting to secondary progressive multiple sclerosis. Neurobiol Dis 2024; 200:106648. [PMID: 39181188 DOI: 10.1016/j.nbd.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Relapsing-remitting (RR) Multiple Sclerosis (MS) is the most common form of the disease; RRMS patients can maintain their clinical phenotype throughout life or can develop a secondary progressive (SP) course over time. We investigated whether circulating miRNAs can predict RR-to-SPMS conversion. A serum miRNAs profile was initially analyzed in a cross-sectional study by qPCR in 16 patients (8 RRMS and 8 SPMS) (Discovery cohort). Three miRNAs, i.e. miR-34a-5p, miR-103a-3p and miR-376a-3p, were significantly up-regulated in SPMS compared to RRMS patients (p < 0.0 5). Serum concentration of the same miRNAs was subsequently analyzed in a retrospective study by ddPCR at baseline in 69 RRMS patients who did (N = 36 cSPMS) or did not (N = 33) convert into SPMS over a 10-year observation period (Study cohort). The results showed that these miRNAs were significantly increased at baseline only in those RRMS patients who converted to SPMS over time. miR-34a-5p and miR-376a-3p alone were significantly increased in cSPMS sera at the end of the 10-years period too. Serum concentration of miR-34a-5p, miR-103a-3p and miR-376a-3p is increased in RRMS patients several years before their conversion to SPMS. These miRNAs might be useful biomarkers to predict the conversion from RRMS to SPMS.
Collapse
Affiliation(s)
| | | | | | | | - Letizia Oreni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | - Marco Rovaris
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Naeimi N, MohseniKouchesfehani H, Mahmoudzadeh-Sagheb H, Movahed S, Moudi B, Asemirad A, Sheibak N, Heidari Z. Downregulation of miR-211 expression in the blood plasma of infertile men compared to the fertile controls. Int J Urol 2024; 31:718-723. [PMID: 38470159 DOI: 10.1111/iju.15445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES Infertility is inability to conceive after 12 months of regular unprotected sex. MiRNA expression changes can serve as potential biomarkers for infertility in males due to impaired spermatogenesis. This research was conducted to measure the expression level of miR-211 in plasma samples as a factor identifying infertility in comparison with the control group. METHODS In this study, blood plasma were taken from the infertile men (n = 103) nonobstructive azoospermia (NOA) or severe oligozoospermia (SO) and the control group (n = 121). The expression of circulating miR-211 in plasma was assessed by qRT-PCR. A relative quantification strategy was adopted using the 2-ΔΔCT method to calculate the target miR-211 expression level in both study groups. RESULTS Plasma miR-211 levels were significantly lower in infertile men compared to the control group (0.544 ± 0.028 and 1.203 ± 0.035, respectively, p < 0.001). Pearson's correlation analysis showed that miR-211 expression level has a positive and significant correlation with sperm parameters, including sperm concentration, sperm total motility, progressive motility, and normal morphology (p < 0.001). CONCLUSIONS Decreased expression of miR-211 in blood plasma seems to be associated with male infertility. This experiment showed that miR-211 can be considered as a biomarker for evaluation, diagnosis, and confirmation of the results of semen analysis in male infertility.
Collapse
Affiliation(s)
- Nasim Naeimi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Hamidreza Mahmoudzadeh-Sagheb
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeed Movahed
- Department of Urology, School of Medicine Ali Ibne Abitaleb Hospital Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azam Asemirad
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nadia Sheibak
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
3
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. Protein phosphatase 2A modulation and connection with miRNAs and natural products. ENVIRONMENTAL TOXICOLOGY 2024; 39:3612-3627. [PMID: 38491812 DOI: 10.1002/tox.24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated. This review focuses on the PP2A-modulating effects of natural products and miRNAs' interactions with potential PP2A targets in cancer and non-cancer cells. PP2A-modulating natural products and miRNAs were retrieved through a literature search. Utilizing the miRDB database, potential PP2A targets of these PP2A-modulating miRNAs for the whole set (17 members) of the PP2A family were retrieved. Finally, PP2A-modulating natural products and miRNAs were linked via a literature search. This review provides systemic directions for assessing natural products and miRNAs relating to the PP2A-modulating functions in cancer and disease treatments.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Casanova I, Domínguez-Mozo MI, De Torres L, Aladro-Benito Y, García-Martínez Á, Gómez P, Abellán S, De Antonio E, Álvarez-Lafuente R. MicroRNAs Associated with Disability Progression and Clinical Activity in Multiple Sclerosis Patients Treated with Glatiramer Acetate. Biomedicines 2023; 11:2760. [PMID: 37893133 PMCID: PMC10604830 DOI: 10.3390/biomedicines11102760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
MicroRNAs (miRNAs) are promising biomarkers in multiple sclerosis (MS). This study aims to investigate the association between a preselected list of miRNAs in serum with therapeutic response to Glatiramer Acetate (GA) and with the clinical evolution of a cohort of relapsing-remitting MS (RRMS) patients. We conducted a longitudinal study for 5 years, with cut-off points at 2 and 5 years, including 26 RRMS patients treated with GA for at least 6 months. A total of 6 miRNAs from a previous study (miR-9.5p, miR-126.3p, mir-138.5p, miR-146a.5p, miR-200c.3p, and miR-223.3p) were selected for this analysis. Clinical relapse, MRI activity, confirmed disability progression (CDP), alone or in combination (No Evidence of Disease Activity-3) (NEDA-3), and Expanded Disability Status Scale (EDSS), were studied. After multivariate regression analysis, miR-9.5p was associated with EDSS progression at 2 years (β = 0.23; 95% CI: 0.04-0.46; p = 0.047). Besides this, mean miR-138.5p values were lower in those patients with NEDA-3 at 2 years (p = 0.033), and miR-146a.5p and miR-126.3p were higher in patients with CDP progression at 2 years (p = 0.044 and p = 0.05 respectively. These results reinforce the use of microRNAs as potential biomarkers in multiple sclerosis. We will need more studies to corroborate these data and to better understand the role of microRNAs in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Ignacio Casanova
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
- School of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - María I. Domínguez-Mozo
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (Á.G.-M.); (R.Á.-L.)
| | - Laura De Torres
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
| | | | - Ángel García-Martínez
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (Á.G.-M.); (R.Á.-L.)
| | - Patricia Gómez
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
- School of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Sara Abellán
- Department of Neurology, Torrejon University Hospital, 28850 Madrid, Spain; (I.C.); (L.D.T.); (P.G.); (S.A.)
| | - Esther De Antonio
- Department of Radiology, Torrejon University Hospital, 28850 Madrid, Spain;
| | - Roberto Álvarez-Lafuente
- Research Group in Environmental Factors of Neurodegenerative Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (Á.G.-M.); (R.Á.-L.)
| |
Collapse
|
5
|
New Insights into Risk Genes and Their Candidates in Multiple Sclerosis. Neurol Int 2022; 15:24-39. [PMID: 36648967 PMCID: PMC9844300 DOI: 10.3390/neurolint15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Oligodendrocytes are central nervous system glial cells that wrap neuronal axons with their differentiated myelin membranes as biological insulators. There has recently been an emerging concept that multiple sclerosis could be triggered and promoted by various risk genes that appear likely to contribute to the degeneration of oligodendrocytes. Despite the known involvement of vitamin D, immunity, and inflammatory cytokines in disease progression, the common causes and key genetic mechanisms remain unknown. Herein, we focus on recently identified risk factors and risk genes in the background of multiple sclerosis and discuss their relationships.
Collapse
|
6
|
MicroRNAs as a possible biomarker in the treatment of multiple sclerosis. IBRO Neurosci Rep 2022; 13:492-499. [DOI: 10.1016/j.ibneur.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/11/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
|
7
|
Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders. MATERIALS 2022; 15:ma15030804. [PMID: 35160749 PMCID: PMC8837051 DOI: 10.3390/ma15030804] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
The strategies involved in the development of therapeutics for neurodegenerative disorders are very complex and challenging due to the existence of the blood-brain barrier (BBB), a closely spaced network of blood vessels and endothelial cells that functions to prevent the entry of unwanted substances in the brain. The emergence and advancement of nanotechnology shows favourable prospects to overcome this phenomenon. Engineered nanoparticles conjugated with drug moieties and imaging agents that have dimensions between 1 and 100 nm could potentially be used to ensure enhanced efficacy, cellular uptake, specific transport, and delivery of specific molecules to the brain, owing to their modified physico-chemical features. The conjugates of nanoparticles and medicinal plants, or their components known as nano phytomedicine, have been gaining significance lately in the development of novel neuro-therapeutics owing to their natural abundance, promising targeted delivery to the brain, and lesser potential to show adverse effects. In the present review, the promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed. Nanotechnology-based efforts performed in bioinformatics for early diagnosis as well as futuristic precision medicine in ND have also been discussed in the context of computational approach.
Collapse
|
8
|
Zhang Y, Wang H, Xia Y. The expression of miR-211-5p in atherosclerosis and its influence on diagnosis and prognosis. BMC Cardiovasc Disord 2021; 21:371. [PMID: 34340677 PMCID: PMC8330028 DOI: 10.1186/s12872-021-02187-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the diagnostic and prognostic significance of miR-211-5p in atherosclerosis (AS) by detecting the expression level in serum of patients with AS. METHODS A total of 85 healthy controls and 90 asymptomatic AS patients participated in this study. The expression level of miR-211-5p in all subjects were measured by qRT-PCR. Spearman correlation coefficient was used to evaluate the correlation of miR-211-5p with CRP and CIMT. The ROC curve was established to assess the diagnostic value of miR-211-5p in AS. The Kaplan-Meier survival curve and multivariate COX regression analysis were used to evaluate the prognostic significance of miR-211-5p in AS. RESULTS The expression levels of miR-211-5p in AS patients were significantly lower than in healthy controls (P < 0.001), and miR-211-5p showed a significant negative correlation with CRP (r = - 0.639, P < 0.001) and CIMT (r = - 0.730, P < 0.001). The AUC of the ROC curve was 0.900, the specificity and the sensitivity were 84.7% and 78.9%, respectively, which indicating that miR-211-5p had diagnostic value for AS. Survival analysis showed that patients with low miR-211-5p expression were more likely to have cardiovascular end-point events (Log rank P = 0.013). CONCLUSION Serum miR-211-5p could be used as a new biomarker for the diagnosis of AS, and the low expression of miR-211-5p is associated with the poor prognosis of AS.
Collapse
Affiliation(s)
- Yanxia Zhang
- Department of Health Comprehensive Geriatrics, Yidu Central Hospital of Weifang, No. 4138, Linglongshan Road, Weifang, 262500, Shandong, China.
| | - Huiyun Wang
- Department of Health Comprehensive Geriatrics, Yidu Central Hospital of Weifang, No. 4138, Linglongshan Road, Weifang, 262500, Shandong, China
| | - Yu Xia
- Department of Health Comprehensive Geriatrics, Yidu Central Hospital of Weifang, No. 4138, Linglongshan Road, Weifang, 262500, Shandong, China
| |
Collapse
|
9
|
Walsh AD, Nguyen LT, Binder MD. miRNAs in Microglia: Important Players in Multiple Sclerosis Pathology. ASN Neuro 2021; 13:1759091420981182. [PMID: 33517686 PMCID: PMC7863159 DOI: 10.1177/1759091420981182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system and important regulators of brain homeostasis. Central to this role is a dynamic phenotypic plasticity that enables microglia to respond to environmental and pathological stimuli. Importantly, different microglial phenotypes can be both beneficial and detrimental to central nervous system health. Chronically activated inflammatory microglia are a hallmark of neurodegeneration, including the autoimmune disease multiple sclerosis (MS). By contrast, microglial phagocytosis of myelin debris is essential for resolving inflammation and promoting remyelination. As such, microglia are being explored as a potential therapeutic target for MS. MicroRNAs (miRNAs) are short non-coding ribonucleic acids that regulate gene expression and act as master regulators of cellular phenotype and function. Dysregulation of certain miRNAs can aberrantly activate and promote specific polarisation states in microglia to modulate their activity in inflammation and neurodegeneration. In addition, miRNA dysregulation is implicated in MS pathogenesis, with circulating biomarkers and lesion specific miRNAs identified as regulators of inflammation and myelination. However, the role of miRNAs in microglia that specifically contribute to MS progression are still largely unknown. miRNAs are being explored as therapeutic agents, providing an opportunity to modulate microglial function in neurodegenerative diseases such as MS. This review will focus firstly on elucidating the complex role of microglia in MS pathogenesis. Secondly, we explore the essential roles of miRNAs in microglial function. Finally, we focus on miRNAs that are implicated in microglial processes that contribute directly to MS pathology, prioritising targets that could inform novel therapeutic approaches to MS.
Collapse
Affiliation(s)
- Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Linda T Nguyen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
10
|
Abstract
Despite numerous studies on multiple sclerosis (MS) and understanding many aspects of this disease, researchers still struggle to find proper biomarkers that facilitate diagnosis; prognosis and monitoring of treatment efficacy in MS. MicroRNAs (miRNAs) are considered as endogenous, comparatively stable and small non-coding RNAs involved in various biological and pathological signaling pathways. Interestingly, miRNAs have been emerged as a potential biomarker for monitoring novel therapies in MS patients. In this review, we described the miRNAs alteration in the MS patients as well as their altered expression in patients under common MS therapies.
Collapse
Affiliation(s)
- Sahar Rostami Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
11
|
Li Q, Li M, Zheng K, Li H, Yang H, Ma S, Zhong M. Detection of microRNA expression levels based on microarray analysis for classification of idiopathic pulmonary fibrosis. Exp Ther Med 2020; 20:3096-3103. [PMID: 32855677 PMCID: PMC7444334 DOI: 10.3892/etm.2020.9068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
The etiology and pathophysiological mechanisms of idiopathic pulmonary fibrosis (IPF) are yet to be fully elucidated; however, mining of disease-related microRNAs (miRNAs/miRs) has improved the understanding of the progression of IPF. The aim of the current study was to screen miRNAs associated with IPF using three mathematical algorithms: One-way ANOVA, least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE). Using ANOVA, three miRNAs and two miRNAs were selected with opposite expression patterns in moderate and severe IPF, respectively. In total, two algorithms, LASSO and SVM-RFE, were used to perform feature selection of miRNAs. miRNAs from patients were also extracted from formalin-fixed paraffin-embedded tissues and detected using reverse transcription-quantitative PCR (RT-qPCR). The intersection of the three algorithms (ANOVA, LASSO and SVM-RFE) was taken as the final result of the miRNA candidates. Three miRNA candidates, including miR-124, hsa-miR-524-5p and hsa-miR-194 were therefore used as biomarkers. The receiver operating characteristic model demonstrated favorable discrimination between IPF and control groups, with an area under the curve of 78.5%. Moreover, RT-qPCR results indicated that miR-124, hsa-miR-524-5p, hsa-miR-194 and hsa-miR-133a were differentially expressed between patients with IPF and age-matched men without fibrotic lung disease. The target genes of these miRNAs were further predicted and Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed. Collectively, the present results suggested that the identified miRNAs associated with IPF may be useful biomarkers for the diagnosis of this disease.
Collapse
Affiliation(s)
- Qilong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Kexin Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Hong Li
- Department of Pharmacy, Fushun Central Hospital, Fushun, Liaoning 113006, P.R. China
| | - Hong Yang
- Department of Pathology, Shenyang Thoracic Hospital, Shenyang, Liaoning 110044, P.R. China
| | - Shiliang Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Ming Zhong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| |
Collapse
|
12
|
Ehtesham N, Mosallaei M, Karimzadeh MR, Moradikazerouni H, Sharifi M. microRNAs: key modulators of disease-modifying therapies in multiple sclerosis. Int Rev Immunol 2020; 39:264-279. [PMID: 32552273 DOI: 10.1080/08830185.2020.1779712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a high level of heterogeneity in symptom manifestations and response to disease-modifying therapies (DMTs) in multiple sclerosis (MS), an immune-based neurodegenerative disease with ever-increasing prevalence in recent decades. Because of unknown aspects of the etiopathology of MS and mechanism of action of DMTs, the reason for this variability is undetermined, and much remains to be understood. Traditionally, physicians consider switching to other DMTs based on the exacerbation of symptoms and/or change in the results of magnetic resonance imaging and biochemical factors. Therefore, identifying biological treatment response markers that help us recognizing non-responders rapidly and subsequently choosing another DMTs is necessary. microRNAs (miRNAs) are micromanagers of gene expression which have been profiled in different samples of MS patients, highlighting their role in pathogenetic of MS. Recent studies have investigated expression profiling of miRNAs after treatment with DMTs to clarify possible DMTs-mediated mechanism and obtaining response to therapy biomarkers. In this review, we will discuss the modulation of miRNAs by DMTs in cells and pathways involved in MS.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Mazdeh M, Kordestani H, Komaki A, Eftekharian MM, Arsang-Jang S, Branicki W, Taheri M, Ghafouri-Fard S. Assessment of expression profile of microRNAs in multiple sclerosis patients treated with fingolimod. J Mol Neurosci 2020; 70:1274-1281. [PMID: 32215780 DOI: 10.1007/s12031-020-01537-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Fingolimod is an immunotherapeutic drug approved in certain countries as first-line therapy for relapsing-remitting multiple sclerosis (RRMS). The drug has been shown to alter the expression of several coding and non-coding genes. In the current study, we assessed the expression of miR-506-3p, miR-217, miR-381-3p, miR-1827, miR-449a and miR-655-3p in peripheral blood of patients with RRMS undergoing treatment with fingolimod compared with healthy controls. We also compared the expression of these miRNAs between fingolimod responders and non-responders to determine their relevance with regard to response to fingolimod. Expression of miR-381-3p was significantly higher in responders than in controls (RE difference = 3.903, P = 0.005), while expression of miR-655-3p was significantly lower in both responders and non-responders compared with controls (RE difference = -1.03, P = 0.014; RE difference = -1.41, P < 0.0001, respectively). No difference was found in the expression of other miRNAs between study subgroups. In addition, there was no significant difference in the expression of any miRNA between responders and non-responders. Although there were significant pairwise correlations between expression levels of all of the assessed miRNAs in controls, MS patients exhibited differences in correlation patterns. Expression of miR-381-3p was correlated with age in responders. However, expression of other miRNAs did not correlate with age in any study subgroup. The current study indicates a possible role for miR-655-3p and miR-381-3p in the pathogenesis of MS or possible effects of fingolimod on the expression of these miRNAs. Future studies are needed to verify these results in larger patient populations.
Collapse
Affiliation(s)
- Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamideh Kordestani
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Cellular and Molecular Research Center, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Nuzziello N, Ciaccia L, Liguori M. Precision Medicine in Neurodegenerative Diseases: Some Promising Tips Coming from the microRNAs' World. Cells 2019; 9:E75. [PMID: 31892254 PMCID: PMC7017296 DOI: 10.3390/cells9010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
: Novel insights in the development of a precision medicine approach for treating the neurodegenerative diseases (NDDs) are provided by emerging advances in the field of pharmacoepigenomics. In this context, microRNAs (miRNAs) have been extensively studied because of their implication in several disorders related to the central nervous system, as well as for their potential role as biomarkers of diagnosis, prognosis, and response to treatment. Recent studies in the field of neurodegeneration reported evidence that drug response and efficacy can be modulated by miRNA-mediated mechanisms. In fact, miRNAs seem to regulate the expression of pharmacology target genes, while approved (conventional and non-conventional) therapies can restore altered miRNAs observed in NDDs. The knowledge of miRNA pharmacoepigenomics may offers new clues to develop more effective treatments by providing novel insights into interindividual variability in drug disposition and response. Recently, the therapeutic potential of miRNAs is gaining increasing attention, and miRNA-based drugs (for cancer) have been under observation in clinical trials. However, the effective use of miRNAs as therapeutic target still needs to be investigated. Here, we report a brief review of representative studies in which miRNAs related to therapeutic effects have been investigated in NDDs, providing exciting potential prospects of miRNAs in pharmacoepigenomics and translational medicine.
Collapse
Affiliation(s)
- Nicoletta Nuzziello
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy
| | - Loredana Ciaccia
- Department of Biomedical Science and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Maria Liguori
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy
| |
Collapse
|
15
|
Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells. Int J Mol Sci 2019; 20:ijms20215500. [PMID: 31694154 PMCID: PMC6862663 DOI: 10.3390/ijms20215500] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Recent data highlight the important roles of the gut microbiome, gut permeability, and alterations in mitochondria functioning in the pathophysiology of multiple sclerosis (MS). This article reviews such data, indicating two important aspects of alterations in the gut in the modulation of mitochondria: (1) Gut permeability increases toll-like receptor (TLR) activators, viz circulating lipopolysaccharide (LPS), and exosomal high-mobility group box (HMGB)1. LPS and HMGB1 increase inducible nitric oxide synthase and superoxide, leading to peroxynitrite-driven acidic sphingomyelinase and ceramide. Ceramide is a major driver of MS pathophysiology via its impacts on glia mitochondria functioning; (2) Gut dysbiosis lowers production of the short-chain fatty acid, butyrate. Butyrate is a significant positive regulator of mitochondrial function, as well as suppressing the levels and effects of ceramide. Ceramide acts to suppress the circadian optimizers of mitochondria functioning, viz daytime orexin and night-time melatonin. Orexin, melatonin, and butyrate increase mitochondria oxidative phosphorylation partly via the disinhibition of the pyruvate dehydrogenase complex, leading to an increase in acetyl-coenzyme A (CoA). Acetyl-CoA is a necessary co-substrate for activation of the mitochondria melatonergic pathway, allowing melatonin to optimize mitochondrial function. Data would indicate that gut-driven alterations in ceramide and mitochondrial function, particularly in glia and immune cells, underpin MS pathophysiology. Aryl hydrocarbon receptor (AhR) activators, such as stress-induced kynurenine and air pollutants, may interact with the mitochondrial melatonergic pathway via AhR-induced cytochrome P450 (CYP)1b1, which backward converts melatonin to N-acetylserotonin (NAS). The loss of mitochnodria melatonin coupled with increased NAS has implications for altered mitochondrial function in many cell types that are relevant to MS pathophysiology. NAS is increased in secondary progressive MS, indicating a role for changes in the mitochondria melatonergic pathway in the progression of MS symptomatology. This provides a framework for the integration of diverse bodies of data on MS pathophysiology, with a number of readily applicable treatment interventions, including the utilization of sodium butyrate.
Collapse
|
16
|
Dasgupta S, Ray SK. Ceramide and Sphingosine Regulation of Myelinogenesis: Targeting Serine Palmitoyltransferase Using microRNA in Multiple Sclerosis. Int J Mol Sci 2019; 20:E5031. [PMID: 31614447 PMCID: PMC6834223 DOI: 10.3390/ijms20205031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ceramide and sphingosine display a unique profile during brain development, indicating their critical role in myelinogenesis. Employing advanced technology such as gas chromatography-mass spectrometry, high performance liquid chromatography, and immunocytochemistry, along with cell culture and molecular biology, we have found an accumulation of sphingosine in brain tissues of patients with multiple sclerosis (MS) and in the spinal cord of rats induced with experimental autoimmune encephalomyelitis. The elevated sphingosine leads to oligodendrocyte death and fosters demyelination. Ceramide elevation by serine palmitoyltransferse (SPT) activation was the primary source of the sphingosine elevation as myriocin, an inhibitor of SPT, prevented sphingosine elevation and protected oligodendrocytes. Supporting this view, fingolimod, a drug used for MS therapy, reduced ceramide generation, thus offering partial protection to oligodendrocytes. Sphingolipid synthesis and degradation in normal development is regulated by a series of microRNAs (miRNAs), and hence, accumulation of sphingosine in MS may be prevented by employing miRNA technology. This review will discuss the current knowledge of ceramide and sphingosine metabolism (synthesis and breakdown), and how their biosynthesis can be regulated by miRNA, which can be used as a therapeutic approach for MS.
Collapse
Affiliation(s)
- Somsankar Dasgupta
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
17
|
Wiczling P, Daghir-Wojtkowiak E, Kaliszan R, Markuszewski MJ, Limon J, Koczkowska M, Stukan M, Kuźniacka A, Ratajska M. Bayesian multilevel model of micro RNA levels in ovarian-cancer and healthy subjects. PLoS One 2019; 14:e0221764. [PMID: 31465488 PMCID: PMC6715278 DOI: 10.1371/journal.pone.0221764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
In transcriptomics, micro RNAs (miRNAs) has gained much interest especially as potential disease indicators. However, apart from holding a great promise related to their clinical application, a lot of inconsistent results have been published. Our aim was to compare the miRNA expression levels in ovarian cancer and healthy subjects using the Bayesian multilevel model and to assess their potential usefulness in diagnosis. We have analyzed a case-control observational data on expression profiling of 49 preselected miRNA-based ovarian cancer indicators in 119 controls and 59 patients. A Bayesian multilevel model was used to characterize the effect of disease on miRNA levels controlling for differences in age and body weight. The difference between the miRNA level and health status of the patient on the scale of the data variability were discussed in the context of their potential usefulness in diagnosis. Additionally, the cross-validated area under the ROC curve (AUC) was used to assess the expected out-of-sample discrimination index of a different sets of miRNAs. The proposed model allowed us to describe the set of miRNA levels in patients and controls. Three highly correlated miRNAs: miR-101-3p, miR-142-5p, miR-148a-3p rank the highest with almost identical effect sizes that ranges from 0.45 to 1.0. For those miRNAs the credible interval for AUC ranged from 0.63 to 0.67 indicating their limited discrimination potential. A little benefit in adding information from other miRNAs was observed. There were several miRNAs in the dataset (miR-604, hsa-miR-221-5p) for which inferences were uncertain. For those miRNAs more experimental effort is needed to fully assess their effect in the context of new hits discovery and usefulness as disease indicators. The proposed multilevel Bayesian model can be used to characterize the panel of miRNA profile and to assess the difference in expression levels between healthy and cancer individuals.
Collapse
Affiliation(s)
- Paweł Wiczling
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gen. J. Hallera, Gdańsk, Poland
| | - Emilia Daghir-Wojtkowiak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gen. J. Hallera, Gdańsk, Poland
| | - Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gen. J. Hallera, Gdańsk, Poland
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gen. J. Hallera, Gdańsk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdańsk, Dębinki, Gdańsk, Poland
| | - Magdalena Koczkowska
- Department of Biology and Genetics, Medical University of Gdańsk, Dębinki, Gdańsk, Poland
| | - Maciej Stukan
- Department of Gynecological Oncology, Gdynia Oncology Centre, Powstania Styczniowego, Gdynia, Poland
| | - Alina Kuźniacka
- Department of Biology and Genetics, Medical University of Gdańsk, Dębinki, Gdańsk, Poland
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdańsk, Dębinki, Gdańsk, Poland
| |
Collapse
|
18
|
Marangon D, Raffaele S, Fumagalli M, Lecca D. MicroRNAs change the games in central nervous system pharmacology. Biochem Pharmacol 2019; 168:162-172. [PMID: 31251938 DOI: 10.1016/j.bcp.2019.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) represent a class of important post-transcriptional regulators of gene expression, enabling cells to follow their intrinsic developmental program. By directly binding to their targets, miRNAs can both promote transcriptional patterns in crucial steps of cell growth, and act as powerful buffering system that titrate protein content in case of aberrant gene expression. The literature of the last decade showed that the presence of tissue-enriched miRNAs in body fluids could be reminiscent of disease state. This is particularly relevant in neurodegenerative disorders, in which peripheral biomarkers could be helpful means to detect disease onset. However, dysregulation of miRNAs is not merely a consequence of disease, but directly contributes to pathological outcomes. On this basis, increasing interest is growing in the development of pharmacological agents targeting specific miRNAs. Actually, this apparently futuristic approach is already part of the current therapies. In fact, several drugs approved for CNS disorders, such as L-Dopa or valproic acid, were also demonstrated to restore some miRNAs. Moreover, ongoing clinical trials demonstrated that miRNA-based drugs are effective against tumors, suggesting that miRNAs also represent a promising class of therapeutic molecules. However, several issues still need to be addressed, particularly in case of CNS diseases, in which stability and delivery are crucial aspects of the therapy. In this commentary, we highlighted potential advantages and limitations of miRNAs as next generation targets in CNS pharmacology, focusing on multiple sclerosis, a chronic demyelinating disease lacking specific therapeutic targets and bona-fide biomarkers.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratorio di Farmacologia Molecolare e Cellulare della Trasmissione Purinergica, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy
| | - Stefano Raffaele
- Laboratorio di Farmacologia Molecolare e Cellulare della Trasmissione Purinergica, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy
| | - Marta Fumagalli
- Laboratorio di Farmacologia Molecolare e Cellulare della Trasmissione Purinergica, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy
| | - Davide Lecca
- Laboratorio di Farmacologia Molecolare e Cellulare della Trasmissione Purinergica, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy.
| |
Collapse
|