1
|
Brain-derived neurotrophic factor (BDNF): a multifaceted marker in chronic kidney disease. Clin Exp Nephrol 2022; 26:1149-1159. [DOI: 10.1007/s10157-022-02268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
|
2
|
Luo H, Wang M, Xu K, Peng Q, Zou B, Yin S, Yu C, Ren L, Li P, Tang L, Peng Y, Huang X. Effect of Fushengong Decoction on PTEN/PI3K/AKT/NF-κB Pathway in Rats With Chronic Renal Failure via Dual-Dimension Network Pharmacology Strategy. Front Pharmacol 2022; 13:807651. [PMID: 35370667 PMCID: PMC8965284 DOI: 10.3389/fphar.2022.807651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Overview: The treatment of chronic renal failure (CRF) with traditional Chinese medicine has attracted much attention, but its mechanism is not clear. Network pharmacology is an effective strategy for exploring the interaction mechanisms between Chinese herbs and diseases, however, it still needs to be validated in cell and/or animal experiments due to its virtual screening characteristics. Herein, the anti-CRF mechanism of the Fushengong decoction (FSGD) was investigated using a dual-dimension network pharmacological strategy combined with in vivo experiment. Methods: The traditional Chinese medicine systems pharmacology (TCMSP) database (https://tcmspw.com) and UHPLC-MS/MS technology were used to identify the effective compounds of FSGD in theory and practice, such as quercetin, formononetin, and pachymic acid. The putative targets of FSGD and CRF were obtained from the Swisstarget prediction platform and the Genecards database, respectively. The common target pathways between FSGD and CRF were got from the dual-dimension network pharmacology analysis, which integrated the cross-common targets from the TCMSP components-Swisstarget-Genecards-Venn platform analysis in theory, and the UHPLC-MS/MS identified effective ingredients-Swisstarget screening, such as TNF and PI3K/AKT. Furthermore, system molecular determinations were used to prove the dual-dimension network pharmacology study through CRF rat models, which were constructed using adenine and treated with FSGD for 4 weeks. Results: A total of 121 and 9 effective compounds were obtained from the TCMSP database and UHPLC-MS/MS, respectively. After dual-dimension network pharmacology analysis, the possible mechanism of PTEN/PI3K/AKT/NF-κB pathway was found for FSGD in CRF. In vivo experiments indicated that FSGD can play a role in protecting renal function and reducing fibrosis by regulating the PTEN/PI3K/AKT/NF-κB pathway. These findings provide a reference for FSGD in CRF. Conclusion: Based on the theoretical and practical dual-dimension network pharmacology analysis for FSGD in CRF, the possible molecular mechanism of PTEN/PI3K/AKT/NF-κB was successfully predicted, and these results were verified by in vivo experiments. In this study, the dual-dimension network pharmacology was used to interpret the key signal pathway for FSGD in CRF, which also proved to be a smart strategy for the study of effective substances and pharmacology in FSGD.
Collapse
Affiliation(s)
- Hongyu Luo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Munan Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qiyao Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Bo Zou
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Shi Yin
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lingyan Ren
- School of Safety Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Ping Li
- Department of Anesthesiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xuekuan Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Wang Y, Meng J, Men L, An B, Jin X, He W, Lu S, Li N. Rosmarinic Acid Protects Mice from Concanavalin A-Induced Hepatic Injury through AMPK Signaling. Biol Pharm Bull 2020; 43:1749-1759. [PMID: 32893253 DOI: 10.1248/bpb.b20-00477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rosmarinic acid (RA) is extensively utilized in herbal medicine in China. The AMP-activated protein kinase (AMPK) signaling can be activated by RA and inhibited by the synthetic, reversible AMP-competitive inhibitor, Compound C (CC). The objective of this study was to investigate the role of AMPK signaling involving the protective effects of RA on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) in mice. BALB/c mice were treated with RA, with or without CC, followed by the pretreatment with Con A. Analysis of serum aminotransferases and cytokines were conducted and liver tissue histology was performed to evaluate hepatic injury. Cytokine levels in serum and hepatic tissue were respectively measured by enzyme-linked immunoassay (ELISA) and used quantitative (q)PCR. Levels of phosphorylated acetyl CoA carboxylase in the liver, representing AMPK activation, were detected by Western blotting. Compared with the Con A group, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in RA group (100 and 150 mg/kg/d) were significantly reduced. RA also reduced hepatocyte swelling, cell death, and infiltration of leukocytes in the liver of Con A-treated mice. Serum levels of cytokines, such as interferon-γ (IFN-γ), interleukin-2 (IL-2) and interleukin-1β (IL-1β), were reduced by RA pretreatment, while the levels of serum interleukin-10 (IL-10), an anti-inflammatory cytokine, was elevated. These protective effects were reversed by treatment with CC. RA treatment reduced the hepatic damage via the activation of AMPK in the mice of Con A-induced. So RA acts as a potential part in the therapy of autoimmune hepatitis.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Hebei University
| | - Jie Meng
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Hebei University
| | - Lu Men
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Hebei University
| | - Boran An
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Hebei University
| | - Xiaoxu Jin
- Department of Gastroenterology and Hepatology, Hebei Medical University No.2 Hospital
| | - Wenjuan He
- Internal Medicine Department, Yi Country Hospital
| | - Sucai Lu
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Hebei University
| | - Na Li
- Department of Physiology, Basic Medicine College of Hebei University
| |
Collapse
|
4
|
Chen D, Zuo K, Liang X, Wang M, Zhang H, Zhou R, Liu X. Functional mechanism of AMPK activation in mitochondrial regeneration of rat peritoneal macrophages mediated by uremic serum. PLoS One 2020; 15:e0235960. [PMID: 32986718 PMCID: PMC7521755 DOI: 10.1371/journal.pone.0235960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Objective To investigate the effects of AMPK activation on mitochondrial inhibition by uremic serum through the AMPK-activated rat peritoneal macrophages stimulated by uremic serum, thereby providing a reference for the clinical treatment of chronic kidney disease. Methods Twenty-two male Sprague-Dawley (SD) rats were included as experimental subjects. Fifteen rats were constructed into chronic kidney disease models (the model group). The remaining seven rats only received renal capsule stripping instead of nephrectomy (the sham-operated group). Ten weeks after model construction, the bodyweight, blood biochemical indicators, and metabolic parameters of rats in groups were measured. Meanwhile, the expression of the M1 phenotype marker protein in peritoneal macrophages was determined. Results Ten weeks after model construction, the bodyweight of rats in the model group was significantly lower than that in the sham-operated group. The values of urea nitrogen and serum creatinine were significantly higher than those in the sham-operated group (P<0.01). The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and the monocyte chemoattractant protein 1 (MCP-1) of rats in the model group were significantly higher than those in the sham-operated group (P <0.01). After the lipopolysaccharide (LPS) stimulation, the expressions of M1 phenotype marker mRNA in the model group was significantly increased. The expression of mitochondrial structural protein mRNA in the peritoneal macrophages of rats in the model group was significantly lower than that in the sham-operated group. The expression of M1 phenotype marker mRNA was significantly decreased in the uremic serum group after AMPK agonist (P<0.01). Conclusion In rats with chronic renal insufficiency, mitochondrial regeneration was dysfunctional in macrophages. By activating AMPK, the inhibitory effect of uremia serum on mitochondrial regeneration of macrophages was improved. Therefore, AMPK was a critical factor that could regulate mitochondrial regeneration of macrophages.
Collapse
Affiliation(s)
- De Chen
- Department of Critical Care Medcine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Kun Zuo
- Department of Critical Care Medcine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Xuan Liang
- Department of Critical Care Medcine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Mei Wang
- Department of Critical Care Medcine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Honghong Zhang
- Department of Critical Care Medcine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Rong Zhou
- Department of Critical Care Medcine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Xiaoli Liu
- Department of Critical Care Medcine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| |
Collapse
|