1
|
Liu M, Fang K, Wang XR, Wang K, Zhang LH, He MY, Xu YY, Wu Y, Ge JF. Serum exosomal hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p as candidate biomarkers for recurrent depressive disorder diagnosis and ECT treatment response: A preliminary investigation. Brain Res Bull 2025; 225:111345. [PMID: 40220964 DOI: 10.1016/j.brainresbull.2025.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE This study investigated the differential expression of serum exosomal miRNAs in female patients with recurrent depressive disorder (RDD) before and after non-convulsive electroconvulsive therapy (ECT), aiming to explore potential diagnostic and therapeutic biomarkers. METHOD Serum samples were collected from three groups: healthy female volunteers aged 30-50, female patients with RDD prior to ECT, and female patients post-ECT who had achieved remission. Exosomes were isolated from serum, identified through transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis of exosomal markers. Total RNA was extracted from exosomes, and miRNA sequencing was conducted to identify differentially expressed miRNAs. Gene target prediction, Gene Ontology, and KEGG pathway enrichment analyses were also performed. RESULTS miRNA sequencing revealed significant differences in exosomal miRNA profiles among the three groups. Compared to controls, 69 miRNAs were upregulated and 98 downregulated in the model group, while the recovery group showed 41 upregulated and 51 downregulated miRNAs compared to the model group. Furthermore, the recovery group exhibited 35 upregulated and 59 downregulated miRNAs compared to controls. Analysis identified hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p as potential biomarkers for RDD diagnosis and ECT treatment response, with functional roles likely related to inflammation, neurotransmission, and synaptic plasticity. CONCLUSION Serum exosomal miRNAs, particularly hsa-miR-142-5p, hsa-miR-1908-5p, and hsa-miR-450b-5p, emerged as promising candidates for further investigation as biomarkers for RDD diagnosis and treatment monitoring. Larger, multi-center studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Meng Liu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Ke Fang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Xiao-Rui Wang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Kun Wang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Li-Hong Zhang
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Man-Yun He
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Yan-Yan Xu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Yuan Wu
- Affiliated Hospital of Anhui West Health Vocational College (The Second People's Hospital of Lu'an), Lu'an, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Yang Y, Duan Y, Yue J, Yin Y, Ma Y, Wan X, Shao J. Exosomes: an innovative therapeutic target for cerebral ischemia-reperfusion injury. Front Pharmacol 2025; 16:1552500. [PMID: 40206077 PMCID: PMC11979243 DOI: 10.3389/fphar.2025.1552500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Ischemic stroke is caused by artery stenosis or occlusion, which reduces blood flow and may cause brain damage. Treatment includes restoring blood supply; however, ischemia-reperfusion can still aggravate tissue injury. Reperfusion injury can increase levels of reactive oxygen species, exacerbate mitochondrial dysfunction, create excessive autophagy and ferroptosis, and cause inflammation during microglial infiltration. Cerebral ischemia-reperfusion injury (CIRI) is a key challenge in the treatment of ischemic stroke. Currently, thrombolysis (e.g., rt-PA therapy) and mechanical thrombectomy are the primary treatments, but their application is restricted by narrow therapeutic windows (<4.5 h) and risks of hemorrhagic complications. Exosomes reduce CIRI by regulating oxidative stress, mitochondrial autophagy, inflammatory responses, and glial cell polarization. In addition, their noncellular characteristics provide a safer alternative to stem cell therapy. This article reviews the research progress of exosomes in CIRI in recent years.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yushan Duan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jinxi Yue
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yue Yin
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaohong Wan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jianlin Shao
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Zhou W, Jiang X, Gao J. Extracellular vesicles for delivering therapeutic agents in ischemia/reperfusion injury. Asian J Pharm Sci 2024; 19:100965. [PMID: 39640057 PMCID: PMC11617990 DOI: 10.1016/j.ajps.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemia/reperfusion (I/R) injury is marked by the restriction and subsequent restoration of blood supply to an organ. This process can exacerbate the initial tissue damage, leading to further disorders, disability, and even death. Extracellular vesicles (EVs) are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells. The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy. The therapeutic potential of EVs derived from stem cells, endothelial cells, and plasma in I/R injury has been actively investigated. Therefore, this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs. We noted that EVs serve as nontoxic, flexible, and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression. The therapeutic efficacy of EVs can be enhanced through various engineering strategies. Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies. Finally, we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance. This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.
Collapse
Affiliation(s)
- Weihang Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Wang Y, Yang H, Zhao L, Yin X, Ai S, Hu M, Pan X, Zheng Y, Shi S, Li G, Pan Y, Yang T, Zhang J. Human Plasma‐Derived Extracellular Vesicles Protect Against Cerebral Ischemia‐Reperfusion Injury via HSP27 Phosphorylation. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 01/03/2025]
Abstract
AbstractIschemic stroke (IS) has become a serious public health problem, with patients undergoing endovascular treatment experiencing ischemia‐reperfusion (I/R) injury, which exacerbates cerebrovascular diseases. Circulating extracellular vesicles (EVs) have shown potential for treating cerebral I/R injury. In this study, the therapeutic effect of human plasma‐derived EVs and protective mechanisms in cerebral I/R injury is explored. An oxygen‐glucose deprivation/reperfusion (OGD/R) model is used to treat SH‐SY5Y cells in vitro, and an I/R injury model is constructed by transient middle cerebral artery occlusion (tMCAO) in mice. Human plasma‐derived EVs are extracted by size exclusion chromatography. Western blot, Immunofluorescence Staining, and 2,3,5‐Triphenyltetrazolium Chloride (TTC) Staining are employed to observe the effects of EVs on the neuroinflammatory response and infarct volumes in tMCAO mice, while TUNEL Staining, Flow Cytometry, and Western Blot are employed to assess cell apoptosis. Human plasma‐derived EVs alleviated apoptosis in SH‐SY5Y cells under OGD/R stress and exerted a protective effect against brain I/R injury in tMCAO mice. Mechanistically, EVs protected against cerebral I/R injury via HSP27 phosphorylation, and the HSP27 phosphorylation inhibitor KRIBB3 attenuated the anti‐apoptotic effects of EVs. Human plasma‐derived EVs activated the phosphorylation of HSP27, thereby inhibiting cell apoptosis and protecting against cerebral I/R injury.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Neurology Fourth Affiliated Hospital of Harbin Medical University Harbin Heilongjiang 150001 China
| | - Hongxia Yang
- Department of Neurology Fourth Affiliated Hospital of Harbin Medical University Harbin Heilongjiang 150001 China
| | - Linlin Zhao
- Department of Neurology Fourth Affiliated Hospital of Harbin Medical University Harbin Heilongjiang 150001 China
| | - Xiaohang Yin
- Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Songwei Ai
- Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Meiyu Hu
- Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Xue Pan
- Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Yonghui Zheng
- Department of Neurology Fourth Affiliated Hospital of Harbin Medical University Harbin Heilongjiang 150001 China
| | - Shuxian Shi
- Department of Neurology Fourth Affiliated Hospital of Harbin Medical University Harbin Heilongjiang 150001 China
| | - Genjie Li
- Department of Neurology Fourth Affiliated Hospital of Harbin Medical University Harbin Heilongjiang 150001 China
| | - Yonghui Pan
- Fourth Ward of Neurology Department First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang 150001 China
| | - Tingting Yang
- Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Jingyu Zhang
- Department of Neurology Fourth Affiliated Hospital of Harbin Medical University Harbin Heilongjiang 150001 China
| |
Collapse
|
5
|
Chuang YT, Yen CY, Chien TM, Chang FR, Tsai YH, Wu KC, Tang JY, Chang HW. Ferroptosis-Regulated Natural Products and miRNAs and Their Potential Targeting to Ferroptosis and Exosome Biogenesis. Int J Mol Sci 2024; 25:6083. [PMID: 38892270 PMCID: PMC11173094 DOI: 10.3390/ijms25116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Ferroptosis, which comprises iron-dependent cell death, is crucial in cancer and non-cancer treatments. Exosomes, the extracellular vesicles, may deliver biomolecules to regulate disease progression. The interplay between ferroptosis and exosomes may modulate cancer development but is rarely investigated in natural product treatments and their modulating miRNAs. This review focuses on the ferroptosis-modulating effects of natural products and miRNAs concerning their participation in ferroptosis and exosome biogenesis (secretion and assembly)-related targets in cancer and non-cancer cells. Natural products and miRNAs with ferroptosis-modulating effects were retrieved and organized. Next, a literature search established the connection of a panel of ferroptosis-modulating genes to these ferroptosis-associated natural products. Moreover, ferroptosis-associated miRNAs were inputted into the miRNA database (miRDB) to bioinformatically search the potential targets for the modulation of ferroptosis and exosome biogenesis. Finally, the literature search provided a connection between ferroptosis-modulating miRNAs and natural products. Consequently, the connections from ferroptosis-miRNA-exosome biogenesis to natural product-based anticancer treatments are well-organized. This review sheds light on the research directions for integrating miRNAs and exosome biogenesis into the ferroptosis-modulating therapeutic effects of natural products on cancer and non-cancer diseases.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan;
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Wang X, Nie X, Xu G, Gao J, Wang B, Yang J, Song G. miR-450b promotes cell migration and invasion by inhibiting SERPINB2 in oral squamous cell carcinoma. Oral Dis 2024; 30:376-389. [PMID: 36251494 DOI: 10.1111/odi.14407] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/04/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE microRNA-450b (miR-450b) plays an important role in cancer progression; however, its function in oral squamous cell carcinoma (OSCC) remains largely unknown. This study aimed to investigate the action mechanisms of miR-450b in OSCC. MATERIALS AND METHODS OSCC animal model was established via continuous induction with single-drug 7, 12-dimethylbenzo[a]anthracene (DMBA). Animal tissue samples were pathologically typed using haematoxylin-eosin (HE) staining. The Cancer Genome Atlas (TCGA) database was used to predict miR-450b and SERPINB2 expression in head and neck squamous cell carcinoma (HNSCC). qRT-PCR and Western blotting were used to detect gene and protein expression in OSCC tissue and cells, respectively. OSCC cell proliferation, growth, migration and invasion were detected using CCK-8, colony formation, transwell migration and matrigel invasion assays, respectively. Bioinformatic tools were used to predict miR-450b target genes. Dual-luciferase reporter assay was used to verify targeting between miR-450b and SERPINB2. Finally, small interfering RNA (siRNA) was used to reduce SERPINB2 expression to detect its effect on tumourigenesis. RESULTS Four stages of OSCC carcinogenesis (normal oral epithelium, simple epithelial hyperplasia, dysplasia and OSCC) were identified. miR-450b was found to be overexpressed in OSCC animal samples, HNSCC samples and human OSCC cells. Upregulation of miR-450b significantly promoted OSCC cell proliferation, colony formation, migration and invasion, while its downregulation had the opposite effect. SERPINB2 was found to be a miR-450b target gene, and its expression was negatively correlated with miR-450b expression. Altering SERPINB2 expression effectively inhibited OSCC cell invasion, metastasis and epithelial-mesenchymal transition (EMT). CONCLUSIONS miR-450b plays a key role in OSCC tumourigenesis by regulating OSCC cell migration, invasion and EMT via SERPINB2.
Collapse
Affiliation(s)
- Xiaotang Wang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaocui Nie
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoqiang Xu
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiping Gao
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Binhong Wang
- School of Mental Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junting Yang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Lai Z, Liang J, Zhang J, Mao Y, Zheng X, Shen X, Lin W, Xu G. Exosomes as a delivery tool of exercise-induced beneficial factors for the prevention and treatment of cardiovascular disease: a systematic review and meta-analysis. Front Physiol 2023; 14:1190095. [PMID: 37841310 PMCID: PMC10570527 DOI: 10.3389/fphys.2023.1190095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
Exercise-derived exosomes have been identified as novel players in mediating cell-to-cell communication in the beneficial effects of improving cardiovascular disease (CVD). This review aimed to systematically investigate exosomes as delivery tools for the benefits of exercise in the prevention and treatment of CVD and summarize these outcomes with an overview of their therapeutic implications. Among the 1417 articles obtained in nine database searches (PubMed, EBSCO, Embase, Web of Science, CENTRAL, Ovid, Science Direct, Scopus, and Wiley), 12 articles were included based on eligibility criteria. The results indicate that exercise increases the release of exosomes, increasing exosomal markers (TSG101, CD63, and CD81) and exosome-carried miRNAs (miR-125b-5p, miR-122-5p, miR-342-5p, miR-126, miR-130a, miR-138-5p, and miR-455). These miRNAs mainly regulate the expression of MAPK, NF-kB, VEGF, and Caspase to protect the cardiovascular system. Moreover, the outcome indicators of myocardial apoptosis and myocardial infarction volume are significantly reduced following exercise-induced exosome release, and angiogenesis, microvessel density and left ventricular ejection fraction are significantly increased, as well as alleviating myocardial fibrosis following exercise-induced exosome release. Collectively, these results further confirm that exercise-derived exosomes have a beneficial role in potentially preventing and treating CVD and support the use of exercise-derived exosomes in clinical settings.
Collapse
Affiliation(s)
- Zhijie Lai
- Department of School of Physical Education, Guangzhou College of Commerce, Guangzhou, China
| | - Jiling Liang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jingfeng Zhang
- College of Humanities Education, Foshan University, Foshan, China
| | - Yuheng Mao
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Xinguang Zheng
- Department of School of Physical Education, Guangzhou College of Commerce, Guangzhou, China
| | - Xiang Shen
- Department of School of Physical Education, Guangzhou College of Commerce, Guangzhou, China
| | - Wentao Lin
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
- Department of School of Physical Education, Zhuhai College of Science and Techology, Zhuhai, China
| | - Guoqin Xu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
8
|
Liu J, Chen J, Zhang J, Fan Y, Zhao S, Wang B, Wang P. Mechanism of Resveratrol Improving Ischemia-Reperfusion Injury by Regulating Microglial Function Through microRNA-450b-5p/KEAP1/Nrf2 Pathway. Mol Biotechnol 2023; 65:1498-1507. [PMID: 36656498 DOI: 10.1007/s12033-022-00646-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
Alterations in the M1/M2 polarization phenotype significantly affect disease progression. Antioxidant and anti-inflammatory protective effects of resveratrol (Res) have been demonstrated. This paper tested the hypothesis that Res could protect against cerebral ischemia-reperfusion injury (CI/RI) by modulating microglial polarization via the miR-450b-5p/KEAP1/Nrf2 pathway. Rats were first treated with Res and adenovirus that interfered with miR-450b-5p or KEAP1, and then established a middle cerebral artery occlusion-reperfusion model using modified nylon sutures. Rats were then evaluated for neurological and behavioral functions, and markers of M2 microglia were detected by immunofluorescence staining. Additionally, the signature patterns of miR-450b-5p, KEAP1, and Nrf2 were determined. The collected data demonstrated that Res exerted neuroprotective effects in CI/RI by promoting microglial M2 polarization. Additionally, Res could regulate the Nrf2 pathway by targeting KEAP1 by up-regulating miR-450b-5p. Up-regulating miR-450b-5p or down-regulating KEAP1 could further promote the protective effect of Res, while down-regulating miR-450b-5p or up-regulating KEAP1 worked oppositely. Our study demonstrates that Res exerts neuroprotective effects on microglial M2 polarization through the miR-450b-5p/KEAP1/Nrf2 pathway during CI/RI.
Collapse
Affiliation(s)
- JiaHui Liu
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - JinYu Chen
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - JinFeng Zhang
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Yu Fan
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - ShiJun Zhao
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - BaoJun Wang
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Po Wang
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
9
|
Fang J, Kuang J, Hu S, Yang X, Wan W, Li J, Fan X. Upregulated microRNA-450b-5p represses the development of acute liver failure via modulation of liver function, inflammatory response, and hepatocyte apoptosis. Immun Inflamm Dis 2023; 11:e767. [PMID: 36840487 PMCID: PMC9950875 DOI: 10.1002/iid3.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 02/26/2023] Open
Abstract
OBJECTIVE It has been evidenced that microRNAs (miRs) exert crucial effects on acute liver failure (ALF), while the detailed function of miR-450b-5p in ALF progression remained obscure. The purpose of this research was to unravel the regulatory mechanism of miR-450b-5p in ALF via modulating Mouse Double Minute 2 protein (MDM2). METHODS ALF was induced in mice by intraperitoneal injection of d-galactosamine ( d-GalN) and lipopolysaccharide (LPS). Adenoviruses containing overexpressed miR-450b-5p, MDM2 shRNA, and overexpressed MDM2 sequences were utilized to manipulate miR-450b-5p and MDM2 expression in the liver before the mice were treated with d-GalN/LPS-induced ALF. Subsequently, miR-450b-5p and MDM2 expression levels in liver tissues of ALF mice were examined. Serum biochemical parameters of liver function were tested, serum inflammatory factors were assessed, and the histopathological changes and hepatocyte apoptosis in liver tissues were observed. The relation between miR-450b-5p and MDM2 was verified. RESULTS In ALF mice, miR-450b-5p was low-expressed while MDM2 was high-expressed. The upregulation of miR-450b-5p or downregulation of MDM2 could alleviate liver function, mitigate the serum inflammatory response and pathological changes in liver tissues, as well as inhibit the apoptosis of hepatocytes. MiR-450b-5p targeted MDM2. MDM2 overexpression reversed the repressive effects of elevated miR-450b-5p on ALF. CONCLUSION The upregulated miR-450b-5p blocks the progression of ALF via targeting MDM2. This study contributes to affording novel therapeutic targets for ALF treatment.
Collapse
Affiliation(s)
- Jun Fang
- Department of Liver‐Gallbladder and Gastric DiseasesWu Han Hospital of Traditional Chinese MedicineWuhanHubeiPeople's Republic of China
| | - Jing Kuang
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Shuli Hu
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Xiuhong Yang
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Weibo Wan
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Jing Li
- Department of Internal Medicine‐CardiovascularWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Xuepeng Fan
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| |
Collapse
|
10
|
Exosomes as biomarkers and therapeutic measures for ischemic stroke. Eur J Pharmacol 2023; 939:175477. [PMID: 36543286 DOI: 10.1016/j.ejphar.2022.175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Ischemic stroke (IS) is the leading cause of long-term disability in the world and characterized by high morbidity, recurrence, complications, and mortality. Due to the lack of early diagnostic indicators, limited therapeutic measures and inadequate prognostic indicators, the diagnosis and treatment of IS remains a particular challenge at present. It has recently been reported that exosomes (EXOs) play a significant role in the pathogenesis and treatment of IS. The purpose of this paper is to probe the role of EXOs in diagnostic biomarkers and therapeutic measures for IS and to provide innovative ideas for improving the prognosis of IS.
Collapse
|
11
|
Lee SJ, Kim JM, Lee ES, Park KY, Kim HR. Relationship Between MicroRNA Signature and Arterial Stiffness in Patients With Ischemic Stroke. J Clin Neurol 2023; 19:28-35. [PMID: 36606643 PMCID: PMC9833874 DOI: 10.3988/jcn.2023.19.1.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated whether circulating microRNAs (miRNAs) is associated with arterial stiffness in patients with acute ischemic stroke. METHODS We recruited patients with acute ischemic stroke who were admitted to a university hospital stroke center and underwent carotid-femoral pulse wave velocity (cfPWV) measurement using SphygmoCor (AtCor Medical, Sydney, Australia) and brachial-ankle PWV using a volume-plethysmography device (VP-1000, Omron Colin, Komaki, Japan). Circulating miRNAs were measured in venous blood samples stored in EDTA. We selected five miRNAs (miR-17, miR-93, miR-450, miR-629, and let-7i) related to atherosclerosis based on a literature review. Pearson's correlation analysis was applied to the correlations between miRNAs and arterial stiffness parameters. Finally, multivariable linear regression analysis was performed to identify the independent factors for cfPWV. RESULTS This study included 70 patients (age=71.1±10.3 years [mean±SD], 29 females). The expression levels of miR-93 (r=-0.27, p=0.049) and let-7i (r=-0.27, p=0.039) were inversely correlated with cfPWV. Multivariable linear regression analysis including age, hypertension, and estimated glomerular filtration rate showed that let-7i was independently related with cfPWV (standardized coefficient=-0.262, p=0.036). Correlation analysis indicated that let-7i was positively associated with visceral muscle Hounsfield units on computed tomography (r=0.264, p=0.043). CONCLUSIONS The expression level of let-7i was independently related to arterial stiffness in patients with cerebral infarction, suggesting that it plays a pathophysiological role in atherosclerosis.
Collapse
Affiliation(s)
- Sang-Jin Lee
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jeong-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Sun Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kwang-Yeol Park
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hye Ryoun Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Lu Z, Tang H, Li S, Zhu S, Li S, Huang Q. Role of Circulating Exosomes in Cerebrovascular Diseases: A Comprehensive Review. Curr Neuropharmacol 2023; 21:1575-1593. [PMID: 36847232 PMCID: PMC10472809 DOI: 10.2174/1570159x21666230214112408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 03/01/2023] Open
Abstract
Exosomes are lipid bilayer vesicles that contain multiple macromolecules secreted by the parent cells and play a vital role in intercellular communication. In recent years, the function of exosomes in cerebrovascular diseases (CVDs) has been intensively studied. Herein, we briefly review the current understanding of exosomes in CVDs. We discuss their role in the pathophysiology of the diseases and the value of the exosomes for clinical applications as biomarkers and potential therapies.
Collapse
Affiliation(s)
- Zhiwen Lu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haishuang Tang
- Department of Nerurosurgery, Naval Medical Center of PLA, Navy Medical University, Shanghai, 200050, China
| | - Sisi Li
- Department of Cerebrovascular Intervention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shijie Zhu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Siqi Li
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qinghai Huang
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
13
|
Cui J, Li Y, Zhu M, Liu Y, Liu Y. Analysis of the Research Hotspot of Exosomes in Cardiovascular Disease: A Bibliometric-based Literature Review. Curr Vasc Pharmacol 2023; 21:316-345. [PMID: 37779407 DOI: 10.2174/0115701611249727230920042944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To investigate the current status and development trend of research on exosomes in cardiovascular disease (CVD) using bibliometric analysis and to elucidate trending research topics. METHODS Research articles on exosomes in CVD published up to April 2022 were retrieved from the Web of Science database. Data were organized using Microsoft Office Excel 2019. CiteSpace 6.1 and VOSviewer 1.6.18 were used for bibliometric analysis and result visualization. RESULTS Overall, 256 original research publications containing 190 fundamental research publications and 66 clinical research publications were included. "Extracellular vesicle" was the most frequent research keyword, followed by "microrna," "apoptosis," and "angiogenesis." Most publications were from China (187, 73.05%), followed by the United States (57, 22.27%), the United Kingdom (7, 2.73%), and Japan (7, 2.73%). A systematic review of the publications revealed that myocardial infarction and stroke were the most popular topics and that exosomes and their contents, such as microRNAs (miRNAs), play positive roles in neuroprotection, inhibition of autophagy and apoptosis, promotion of angiogenesis, and protection of cardiomyocytes. CONCLUSION Research on exosomes in CVD has attracted considerable attention, with China having the most published studies. Fundamental research has focused on CVD pathogenesis; exosomes regulate the progression of CVD through biological processes, such as the inflammatory response, autophagy, and apoptosis. Clinical research has focused on biomarkers for CVD; studies on using miRNAs in exosomes as disease markers for diagnosis could become a future trend.
Collapse
Affiliation(s)
- Jing Cui
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Chen T, Li L, Ye B, Chen W, Zheng G, Xie H, Guo Y. Knockdown of hsa_circ_0005699 attenuates inflammation and apoptosis induced by ox-LDL in human umbilical vein endothelial cells through regulation of the miR-450b-5p/NFKB1 axis. Mol Med Rep 2022; 26:290. [PMID: 35904173 PMCID: PMC9366159 DOI: 10.3892/mmr.2022.12806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Atherosclerosis (AS) remains the leading cause of mortality throughout the world, and vascular endothelial cell dysfunction is one of the key events leading to this pathology. In recent years, there has been an increased interest in the role of circulating RNAs in various diseases; these noncoding RNAs can regulate gene products by acting as microRNA (miR) sponges. Furthermore, it has been shown that foam cells exhibit high expression levels of hsa_circ_0005699 (circ_0005699); however, to the best of our knowledge, no previous study has investigated the role of circ_0005699 in the regulation of vascular endothelial function. The present study employed human umbilical vein endothelial cells (HUVECs), which have been widely used to study vascular endothelial cell function. In addition, apolipoprotein E (ApoE)-deficient mice were used, which have been shown to rapidly develop AS and are widely used as a model of this disease. Cellular and biochemical techniques were performed, including gene transfection and short hairpin RNA-mediated gene silencing for cell transfection, luciferase reporter gene assay to confirm predicted genes, Cell Counting Kit-8 assay and flow cytometry to assess cell viability and apoptosis, and reverse transcription-quantitative PCR and western blotting for detection of mRNA and protein expression. In the present study, the expression levels of circ_0005699 were increased by oxidized low-density lipoprotein in a time- and dose-dependent manner in HUVECs; this was also associated with increased apoptosis of these cells. In addition, the expression levels of circ_0005699 were elevated, along with increased levels of inflammatory cytokines, in ApoE-deficient mice. An RNA pull-down assay indicated that circ_0005699 can bind miR-450b-5p to decrease its expression, whereas silencing of circ_0005699 resulted in increased expression of miR-450b-5p. In addition, the online bioinformatics tool starBase predicted NFKB1 as a target gene of miR-450b-5p, which was further confirmed by the luciferase reporter gene assay. Notably, knockdown of circ_0005699 resulted in the increased survival of HUVECs, which was associated with decreased protein expression levels of NFKB1 and inflammatory cytokines. By contrast, the effects of circ-0005699 silencing on survival were reversed by miR-450b-5p inhibition or NFKB1 overexpression. In conclusion, knockdown of circ_0005699 may ameliorate endothelial cell injury through regulation of the miR-450b-5P/NFKB1 signaling axis.
Collapse
Affiliation(s)
- Tao Chen
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Bo Ye
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Weiqing Chen
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Guofu Zheng
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Hailiang Xie
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yi Guo
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
15
|
Dias A, Silva L, Moura J, Gabriel D, Maia LF. Fluid biomarkers in stroke: From animal models to clinical care. Acta Neurol Scand 2022; 146:332-347. [PMID: 35838031 DOI: 10.1111/ane.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. Stroke prevention, early diagnosis, and efficient acute treatment are priorities to successfully impact stroke death and disability. Fluid biomarkers may improve stroke differential diagnostic, patient stratification for acute treatment, and post-stroke individualized rehabilitation. In the present work, we characterized the use of stroke animal models in fluid biomarker research through a systematic review of PubMed and Scopus databases, followed by a literature review on the translation to the human stroke care setting and future perspectives in the field. We found increasing numbers of publications but with limited translation to the clinic. Animal studies are very heterogeneous, do not account for several human features present in stroke, and, importantly, only a minority of such studies used human cohorts to validate biomarker findings. Clinical studies have found appealing candidates, both protein and circulating nucleic acids, to contribute to a more personalized stroke care pathway. Still, brain tissue complexity and the fact that different brain pathologies share lesion biomarkers make this task challenging due to biomarker low specificity. Moreover, the study design and lack of validation cohorts may have precluded a formal integration of biomarkers in different steps of stroke diagnosis and treatment. To overcome such issues, recent pivotal studies on biomarker dynamics in individual patients are providing added value to diagnosis and anticipating patients' early prognosis. Presently, the most consistent protein biomarkers for stroke diagnosis and short- and long-term prognosis are associated with tissue damage at neuronal (TAU), axonal (NFL), or astroglial (GFAP and S100β) levels. Most promising nucleic acids are microRNAs (miR), due to their stability in plasma and ease of access. Still, clinical validation and standardized quantitation place them a step behind compared protein as stroke biomarkers. Ultimately, the definition of clinically relevant biomarker panels and optimization of fast and sensitive biomarker measurements in the blood, together with their combination with clinical and neuroimaging data, will pave the way toward personalized stroke care.
Collapse
Affiliation(s)
- Alexandre Dias
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Lénia Silva
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - João Moura
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Denis Gabriel
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luis F Maia
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Xiong Y, Song J, Huang X, Pan Z, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Exosomes Derived From Mesenchymal Stem Cells: Novel Effects in the Treatment of Ischemic Stroke. Front Neurosci 2022; 16:899887. [PMID: 35585925 PMCID: PMC9108502 DOI: 10.3389/fnins.2022.899887] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is defined as an infarction in the brain, caused by impaired cerebral blood supply, leading to local brain tissue ischemia, hypoxic necrosis, and corresponding neurological deficits. At present, revascularization strategies in patients with acute ischemic stroke include intravenous thrombolysis and mechanical endovascular treatment. However, due to the short treatment time window (<4.5 h) and method restrictions, clinical research is focused on new methods to treat ischemic stroke. Exosomes are nano-sized biovesicles produced in the endosomal compartment of most eukaryotic cells, containing DNA, complex RNA, and protein (30-150 nm). They are released into surrounding extracellular fluid upon fusion between multivesicular bodies and the plasma membrane. Exosomes have the characteristics of low immunogenicity, good innate stability, high transmission efficiency, and the ability to cross the blood-brain barrier, making them potential therapeutic modalities for the treatment of ischemic stroke. The seed sequence of miRNA secreted by exosomes is base-paired with complementary mRNA to improve the microenvironment of ischemic tissue, thereby regulating downstream signal transduction activities. With exosome research still in the theoretical and experimental stages, this review aims to shed light on the potential of exosomes derived from mesenchymal stem cells in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Jianping Song
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurosurgery, National Regional Medical Center, Fudan University Huashan Hospital Fujian Campus, The First Affiliated Hospital Binhai Campus, Fujian Medical University, Fuzhou, China
| | - Xinyue Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, “Attikon” University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
- Department of Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
17
|
Zhou X, Xu C, Chao D, Chen Z, Li S, Shi M, Pei Y, Dai Y, Ji J, Ji Y, Ji Q. Acute Cerebral Ischemia Increases a Set of Brain-Specific miRNAs in Serum Small Extracellular Vesicles. Front Mol Neurosci 2022; 15:874903. [PMID: 35571371 PMCID: PMC9094043 DOI: 10.3389/fnmol.2022.874903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) miRNAs are promising diagnosis and prognosis biomarkers for ischemic stroke (IS). This study aimed to determine the impact of IS on the serum sEVs miRNA profile of IS patients and a transient middle cerebral artery occlusion (tMCAO) mouse model. Small RNAseq was used to define the serum sEVs miRNA profile in IS patients and healthy controls (HC), and tMCAO mice and sham controls. Among the 1,444 and 1,373 miRNAs identified in human and mouse serum sEVs, the expression of 424 and 37 miRNAs was significantly altered in the IS patients and tMCAO mice, respectively (| Log2FC| ≥ 1, p < 0.01). Notably, five of the top 25 upregulated miRNAs in IS patients were brain-specific or enriched, including hsa-miR-9-3p, hsa-miR-124-3p, hsa-miR-143-3p, hsa-miR-98-5p, and hsa-miR-93-5p. Upregulation of these four miRNAs was further validated by qPCR. Nine of the 20 upregulated miRNAs in tMCAO mice were also brain-specific or enriched miRNAs. Temporal analysis indicated that the dynamics of mmu-miR-9-5p, mmu-miR-124-3p, mmu-miR-129-5p, and mmu-miR-433-3p were closely correlated with the evolution of ischemic brain injury, as their expression increased at 0.5 days after the onset of ischemia, peaked at day 1 or 3, and returned to normal levels at day 7 and 14. Notably, with the exceptions of mmu-miR-128-3p, the expression of the other eight miRNAs in the mouse serum sEVs was unaffected in the lipopolysaccharide (LPS)-induced neuroinflammation model. Together, in this study, we provided a comprehensive view of the influences of IS on the serum sEVs miRNA profile of IS patients and tMCAO mice and demonstrated the increment of a set of brain-specific miRNAs in serum sEVs after acute cerebral ischemia, which could be promising candidates directly reflecting the ischemic brain injury.
Collapse
Affiliation(s)
- Xin Zhou
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chenxue Xu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dachong Chao
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Zixin Chen
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Shuyuan Li
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
| | - Miaomiao Shi
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuqiang Pei
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yujuan Dai
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Yuhua Ji
- College of Life Science and Technology, Institute of Immunology, Jinan University, Guangzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
- Yuhua Ji,
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Qiuhong Ji,
| |
Collapse
|
18
|
Kim JM, Byun JS, Kim J, Park MS, Hong SA, Nam TK, Choi HH, Hong S, Han SH, Jeong HB, Park KY, Kim HR. Analysis of microRNA signatures in ischemic stroke thrombus. J Neurointerv Surg 2021; 14:neurintsurg-2021-017597. [PMID: 34244338 DOI: 10.1136/neurintsurg-2021-017597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND We investigated the microRNA expression pattern from thrombus retrieved by mechanical thrombectomy in acute stroke patients to understand the stroke mechanism. METHODS This study included acute ischemic stroke patients who had undergone intra-arterial thrombectomy at Chung-Ang University Hospital in Seoul, Korea between February 2016 and March 2019. The thrombus was retrieved and stored at -70℃ after obtaining informed consent. MicroRNA microarray analysis was performed for the patients with identified stroke mechanisms including (1) large artery atherosclerosis, (2) cardioembolism with atrial fibrillation, and (3) cardioembolism with valvular heart disease. The microRNAs derived from microarray analysis were validated by quantitative real-time polymerase chain reaction (qRT-PCR) from different patient populations. The correlation analysis was performed between microRNA levels and laboratory data to understand the functional relevance of the altered microRNA. RESULTS In total, 55 thrombi were obtained from 74 patients, and the microRNAs were analyzed in 45 samples. Microarray analysis of 2578 microRNAs revealed that 50 microRNAs were significantly altered among the three groups. Validation using qRT-PCR showed that miR-378f and miR-450b-5p were significantly elevated among the cardioembolic thrombi; both microRNAs were inversely correlated with the ejection fraction from echocardiography. Thrombi from patients with early neurological deterioration exhibited higher levels of miR-93-5p and lower levels of miR-629-5p than those from neurologically stable patients. CONCLUSIONS The microRNA expression pattern can provide information regarding the mechanism of stroke by reflecting the underlying pathological status of the organ from which the thrombus was derived.
Collapse
Affiliation(s)
- Jeong-Min Kim
- Department of Neurology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Jun-Soo Byun
- Department of Neurology, Chung-Ang University, Seoul, Seoul, Korea (the Republic of)
| | - Jiah Kim
- Department of Neurology, Samsung Medical Center, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Moo-Seok Park
- Department of Neuroradiology, Ewha Women's University Hospital, Seoul, Korea (the Republic of)
| | - Soon Auck Hong
- Department of Pathology, Chung-Ang University, Seoul, Korea (the Republic of)
| | - Taek-Kyun Nam
- Department of Neurosurgery, Chung-Ang University, Seoul, Korea (the Republic of)
| | - Hyun Ho Choi
- Department of Neurosurgery, Chung-Ang University, Seoul, Korea (the Republic of)
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, Seoul, Korea (the Republic of)
| | - Su-Hyun Han
- Department of Laboratory Medicine, Chung-Ang University, Seoul, Korea (the Republic of)
| | - Hae-Bong Jeong
- Department of Neurology, Chung-Ang University, Seoul, Seoul, Korea (the Republic of)
| | - Kwang-Yeol Park
- Department of Neurology, Chung-Ang University, Seoul, Seoul, Korea (the Republic of)
| | - Hye Ryoun Kim
- Department of Laboratory Medicine, Chung-Ang University, Seoul, Korea (the Republic of)
| |
Collapse
|
19
|
Extracellular Vesicle Application as a Novel Therapeutic Strategy for Ischemic Stroke. Transl Stroke Res 2021; 13:171-187. [PMID: 33982152 DOI: 10.1007/s12975-021-00915-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Ischemic stroke (IS) accounts for most of the cases of stroke onset, and due to short therapeutic time window for thrombolysis and numerous limited treatment measures and contraindications, lots of patients cannot receive satisfying therapeutic effects resulting in high disability and mortality worldly. In recent years, extracellular vesicles (EVs), as nanosized membrane-structured vesicles secreted from almost all cells, especially from stem/progenitor cells, have been reported to exert significant beneficial effects on IS from multiple approaches and notably ameliorate neurological outcome. Moreover, based on nano-size and lipid bilayer structure, EVs can easily penetrate the blood-brain barrier and migrate into the brain. In this review, we mainly systematically summarize the therapeutic effects of EVs on IS and explore their potential applications. Simultaneously, we also discuss administration routines, dosages, experimental observation time, and some key issues of EV application during IS treatment. It contributes to a comprehensive understanding of the progress of EV treatment for IS and providing confident evidence for further EV clinical application widely.
Collapse
|
20
|
Yu Y, Hou K, Ji T, Wang X, Liu Y, Zheng Y, Xu J, Hou Y, Chi G. The role of exosomal microRNAs in central nervous system diseases. Mol Cell Biochem 2021; 476:2111-2124. [PMID: 33528706 DOI: 10.1007/s11010-021-04053-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNA), endogenous non-coding RNAs approximately 22 nucleotides long, regulate gene expression by mediating translational inhibition or mRNA degradation. Exosomes are a tool for intercellular transmission of information in which miRNA exchange plays an important role. Under pathophysiological conditions in the central nervous system (CNS), cellular transmission of exosomal miRNAs can regulate signaling pathways. Exosomal miRNAs are involved in the occurrence and development of diverse CNS diseases, such as traumatic brain injury, spinal cord injury, stroke, neurodegenerative diseases, epilepsy, and glioma. The use of exosomes as transport vehicles for certain miRNAs provides a novel therapeutic strategy for CNS diseases. Furthermore, the exosomes in body fluids change with the occurrence of diseases, indicating that subtle changes in physiological and pathological processes in vivo could be recognized by analyzing exosomes. Exosomal analysis is expected to act as a novel tool for diagnosis and prediction of neurological diseases. In this review, we present the current understanding of the implications of miRNAs in CNS diseases and summarize the role and mechanism of action of exosomal miRNA in nervous system disease models.
Collapse
Affiliation(s)
- Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Tong Ji
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Xishu Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yining Liu
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Yi Hou
- Department of Regeneration Medicine, School of Pharmaceutical Science of Jilin University, Changchun, 130000, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
21
|
Yousif G, Qadri S, Haik M, Haik Y, Parray AS, Shuaib A. Circulating Exosomes of Neuronal Origin as Potential Early Biomarkers for Development of Stroke. Mol Diagn Ther 2021; 25:163-180. [DOI: 10.1007/s40291-020-00508-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
|
22
|
Cai G, Cai G, Zhou H, Zhuang Z, Liu K, Pei S, Wang Y, Wang H, Wang X, Xu S, Cui C, Sun M, Guo S, Jia K, Wang X, Zhang D. Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarction. Stem Cell Res Ther 2021; 12:2. [PMID: 33407827 PMCID: PMC7786953 DOI: 10.1186/s13287-020-02030-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Cerebral infarction ranks as the second leading cause of disability and death globally, and inflammatory response of glial cells is the main cause of brain damage during cerebral infarction. METHODS Studies have shown that mesenchymal stem cells (MSCs) can secrete exosomes and contribute to cerebral disease. Here, we would explore the function of MSC-derived exosome in cerebral infarction. RESULTS Microarray indicated a decrease of miR-542-3p and an increase of Toll-Like Receptor 4 (TLR4) in middle cerebral artery occlusion (MCAO) mice comparing with sham mice. And luciferase and RIP analysis indicated a binding of miR-542-3p and TLR4. Then, we injected AAV9-miR-542-3p into paracele of sham or MCAO mice. Functional analysis showed that AAV9-miR-542-3p inhibited infarction area and the number of degenerating neurons and suppressed inflammatory factors' expression and inflammatory cell infiltration. As well, transfection of miR-542-3p mimics into HA1800 cells underwent oxygen and glucose deprivation (OGD). Similarly, overexpression of miR-542-3p alleviated OGD induced cell apoptosis, ROS, and activation of inflammation response. Moreover, miR-542-3p could be packaged into MSCs and secreted into HA1800 cells. The extractive exosome-miR-21-3p treatment relieved MCAO- or OGD-induced cerebral injury and inflammation through targeting TLR4. CONCLUSION These results confirmed that MSC-derived exosome miR-542-3p prevented ischemia-induced glial cell inflammatory response via inhibiting TLR4. These results suggest possible therapeutic strategies for using exosome delivery of miR-542-3p to cure cerebral ischemic injury.
Collapse
Affiliation(s)
- Guofeng Cai
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Guoliang Cai
- Postdoctoral Research Workstation of Harbin Sport University, Harbin, China ,Department of Sport Science and Health, Harbin Sport University, Harbin, 150008 China
| | - Haichun Zhou
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Zhe Zhuang
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Kai Liu
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Siying Pei
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Yanan Wang
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Hong Wang
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Xin Wang
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Shengnan Xu
- grid.412068.90000 0004 1759 8782Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Cheng Cui
- grid.412068.90000 0004 1759 8782Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Manchao Sun
- grid.412068.90000 0004 1759 8782Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Sihui Guo
- grid.412068.90000 0004 1759 8782Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Kunping Jia
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Xiuzhen Wang
- grid.412068.90000 0004 1759 8782Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001 China
| | - Dianquan Zhang
- Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province China
| |
Collapse
|
23
|
Jiang Y, He R, Shi Y, Liang J, Zhao L. Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS. Life Sci 2020; 256:117987. [PMID: 32569778 DOI: 10.1016/j.lfs.2020.117987] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
AIMS Ischemic stroke is the leading cause of severe disability and death worldwide. As the pathogenesis of stroke has not been clearly elucidated and the ability of current therapeutic drugs on crossing the blood-brain barrier (BBB) is extremely low, there is no effective strategy to treat stroke. We aim at investigating the specific advantages of using plasma exosomes (Pla-Exo) for targeting ischemic brain and exploring its underlying mechanism in neuroprotection. MAIN METHODS Pla-Exo was obtained by a gradient ultracentrifugation of fresh plasma. The quantification of penetrated Pla-Exo through BBB was investigated in vitro BBB model, furthermore, the effects of Pla-Exo and exosomal HSP70 on cerebral ischemia/reperfusion injury were evaluated. KEY FINDINGS Pla-Exo enhanced BBB crossing by specific interaction between Pla-Exo inherited heat shock protein 70 (HSP70) and endothelial Toll-like receptor 4 (TLR4). As expected, Pla-Exo increased HSP70 expression in the ischemic region through the transfer of HSP70, and led to HSP70 mediated suppression of ROS, thus alleviating cerebral ischemia/reperfusion (I/R) injury by attenuating the deterioration of BBB and preventing mitochondria damage. SIGNIFICANCE These findings indicated that Pla-Exo can provide protection against ischemia-reperfusion injury via the regulation of HSP70 and it should be further studied as a potential candidate for protection against ischemic injury.
Collapse
Affiliation(s)
- Yibing Jiang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Ruyi He
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Jia Liang
- Life Science Institution, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| |
Collapse
|
24
|
Inhibition of miR-450b-5p ameliorates hepatic ischemia/reperfusion injury via targeting CRYAB. Cell Death Dis 2020; 11:455. [PMID: 32532961 PMCID: PMC7293338 DOI: 10.1038/s41419-020-2648-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is an unavoidable course in liver transplantation, during which the immune response of inflammation plays a leading part. MicroRNA-450b-5p (miR-450b-5p), which has been reported to participate in several inflammatory diseases, was investigated in this study. The purpose of this study is to identify the potential function of miR-450b-5p toward remission of hepatic IRI and elucidate the specific mechanism. Herein we found that expression of miR-450b-5p, interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and IL-6 was stimulated in hepatic IRI. Inhibition of miR-450b-5p could remarkably alleviate mouse hepatic IRI and improve liver function measured by hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA). We further assessed protein expression undergoing Western blot and immunofluorescence, and discovered that miR-450b-5p suppressed alpha B-crystallin (CRYAB), thus restraining the inhibitory κB kinase (IKK) β-mediated canonical nuclear factor-κB (NF-κB) signaling, instead of the noncanonical path guided by IKKα in hepatic IRI. In addition, we demonstrated CRYAB as an activator of M2 polarization through protein kinase B (Akt) 1/mammalian target of rapamycin (mTOR), thus resulting in relief of liver IRI. Combination treatment containing both paths revealed a better antidamage efficacy than adjusting either path alone, suggesting that the joint therapy might be a promising solution in hepatic IRI.
Collapse
|