1
|
Housini M, Zhou Z, Gutierrez J, Rao S, Jomaa R, Subasinghe K, Reid DM, Silzer T, Phillips N, O'Bryant S, Barber RC. Top Alzheimer's disease risk allele frequencies differ in HABS-HD Mexican- versus Non-Hispanic White Americans. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12518. [PMID: 38155914 PMCID: PMC10752755 DOI: 10.1002/dad2.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION: Here we evaluate frequencies of the top 10 Alzheimer's disease (AD) risk alleles for late-onset AD in Mexican American (MA) and non-Hispanic White (NHW) American participants enrolled in the Health and Aging Brain Study-Health Disparities Study cohort. METHODS: Using DNA extracted from this community-based diverse population, we calculated the genotype frequencies in each population to determine whether a significant difference is detected between the different ethnicities. DNA genotyping was performed per manufacturers' protocols. RESULTS: Allele and genotype frequencies for 9 of the 11 single nucleotide polymorphisms (two apolipoprotein E variants, CR1, BIN1, DRB1, NYAP1, PTK2B, FERMT2, and ABCA7) differed significantly between MAs and NHWs. DISCUSSION: The significant differences in frequencies of top AD risk alleles observed here across MAs and NHWs suggest that ethnicity-specific genetic risks for AD exist. Given our results, we are advancing additional projects to further elucidate ethnicity-specific differences in AD.
Collapse
Affiliation(s)
- Mohammad Housini
- Department of Pharmacology and NeuroscienceSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Zhengyang Zhou
- Department of Biostatistics and EpidemiologySchool of Public HealthUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUNT Health Science CenterFort WorthTexasUSA
| | - John Gutierrez
- Department of Internal MedicineTexas Institute for Graduate Medical Education and ResearchSan AntonioTexasUSA
| | - Sumedha Rao
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Rodwan Jomaa
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Kumudu Subasinghe
- Department of MicrobiologyImmunology and GeneticsSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Danielle Marie Reid
- Department of MicrobiologyImmunology and GeneticsSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Talisa Silzer
- Department of MicrobiologyImmunology and GeneticsSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nicole Phillips
- Institute for Translational ResearchUNT Health Science CenterFort WorthTexasUSA
- Department of MicrobiologyImmunology and GeneticsSchool of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Sid O'Bryant
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUNT Health Science CenterFort WorthTexasUSA
| | - Robert Clinton Barber
- Department of Family Medicine & Manipulative MedicineTexas College of Osteopathic MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUNT Health Science CenterFort WorthTexasUSA
| | | |
Collapse
|
2
|
Zhou X, Li YYT, Fu AKY, Ip NY. Polygenic Score Models for Alzheimer's Disease: From Research to Clinical Applications. Front Neurosci 2021; 15:650220. [PMID: 33854414 PMCID: PMC8039467 DOI: 10.3389/fnins.2021.650220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of Alzheimer's disease (AD) among the elderly population and its lack of effective treatments make this disease a critical threat to human health. Recent epidemiological and genetics studies have revealed the polygenic nature of the disease, which is possibly explainable by a polygenic score model that considers multiple genetic risks. Here, we systemically review the rationale and methods used to construct polygenic score models for studying AD. We also discuss the associations of polygenic risk scores (PRSs) with clinical outcomes, brain imaging findings, and biochemical biomarkers from both the brain and peripheral system. Finally, we discuss the possibility of incorporating polygenic score models into research and clinical practice along with potential challenges.
Collapse
Affiliation(s)
- Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, China
| | - Yolanda Y. T. Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, China
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, China
- *Correspondence: Nancy Y. Ip,
| |
Collapse
|