1
|
Qian K, Feng Q, Wang JR, Zhu JD, Wang P, Guo Y, Zhou T, Zhu QW, Cai L, Zhang Z, He GH. Identification and validation of a novel prognostic signature and key genes related to development of anaplastic thyroid carcinoma. Discov Oncol 2024; 15:680. [PMID: 39562412 DOI: 10.1007/s12672-024-01563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is a rare but the most aggressive type of thyroid carcinoma. Nevertheless, limited advances were made to reduce mortality and improve survival over the last decades. Therefore, identifying novel diagnostic biomarkers and therapeutic targets for ATC patients is still needed. MATERIALS AND METHODS RNA sequencing data and corresponding clinical features were available from GEO and TCGA databases. We integrated WGCNA and PPI network analysis to identify hub genes associated with ATC development, and RT-qPCR was employed for data verification. Univariate and LASSO Cox regression analyses were used to generate prognostic signatures. RESULTS Based on PPI and WGCNA, 6 hub genes were identified, namely KIF2C, PBK, TOP2A, CDK1, KIF20A, and ASPM, which play vital roles in ATC development. Subsequently, RT-qPCR experiments showed that most of these genes were significantly upregulated in CAL-62 cells compared to Nthy-ori 3-1 cells. Moreover, a prognostic signature featuring GPSM2, FGF5, ASXL3, CYP4B1, CLMP, and DUXAP9 was generated, which was also verified by RT-qPCR results and proved as an independent predictor of poorer prognosis of ATC. Additionally, a nomogram incorporating the risk score and clinicopathological parameters was further constructed for accurate prediction of 1-, 3- and 5-year survival probabilities of ATC. CONCLUSIONS Our study identified 6 key genes critical to ATC development and constructed a prognostic signature. These findings provide reliable biomarkers and a relatively comprehensive tumorigenesis profile of ATC, which may inform future strategies for clinical diagnosis and pharmaceutical design.
Collapse
Affiliation(s)
- Kai Qian
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Qiang Feng
- Department of Pathology, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Jia-Rui Wang
- Oncology Department, Kunming Tongren Hospital, Kunming, China
| | - Jia-De Zhu
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Ping Wang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Yu Guo
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Tao Zhou
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
| | - Qian-Wei Zhu
- College of Pharmacy, Dali University, Dali, China
| | - Liao Cai
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Zheng Zhang
- Medical Engineering Section, The 306th Hospital of People's Liberation Army (PLA), Beijing, China.
| | - Gong-Hao He
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, China.
| |
Collapse
|
2
|
Sarker A, Aziz MA, Hossen MB, Mollah MMH, Al-Amin, Mollah MNH. Discovery of key molecular signatures for diagnosis and therapies of glioblastoma by combining supervised and unsupervised learning approaches. Sci Rep 2024; 14:27545. [PMID: 39528802 PMCID: PMC11554889 DOI: 10.1038/s41598-024-79391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain cancer and one of the leading causes of cancer-related death globally. So, identifying potential molecular signatures and associated drug molecules are crucial for diagnosis and therapies of GBM. This study suggested GBM-causing ten key genes (ASPM, CCNB2, CDK1, AURKA, TOP2A, CHEK1, CDCA8, SMC4, MCM10, and RAD51AP1) from nine transcriptomics datasets by combining supervised and unsupervised learning results. Differential expression patterns of key genes (KGs) between GBM and control samples were verified by different independent databases. Gene regulatory network (GRN) detected some important transcriptional and post-transcriptional regulators for KGs. The KGs-set enrichment analysis unveiled some crucial GBM-causing molecular functions, biological processes, cellular components, and pathways. The DNA methylation analysis detected some hypo-methylated CpG sites that might stimulate the GBM development. From the immune infiltration analysis, we found that almost all KGs are associated with different immune cell infiltration levels. Finally, we recommended KGs-guided four repurposable drug molecules (Fluoxetine, Vatalanib, TGX221 and RO3306) against GBM through molecular docking, drug likeness, ADMET analyses and molecular dynamics simulation studies. Thus, the discoveries of this study could serve as valuable resources for wet-lab experiments in order to take a proper treatment plan against GBM.
Collapse
Affiliation(s)
- Arnob Sarker
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abdul Aziz
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Agricultural and Applied Statistics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Manir Hossain Mollah
- Department of Physical Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Al-Amin
- Department of Zoology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
3
|
Kato M, Ota A, Ono T, Karnan S, Hyodo T, Rahman ML, Hasan MN, Onda M, Kondo S, Ito K, Furuhashi A, Hayashi T, Konishi H, Tsuzuki S, Hosokawa Y, Kazaoka Y. PDZ-binding kinase inhibitor OTS514 suppresses the proliferation of oral squamous carcinoma cells. Oral Dis 2024; 30:223-234. [PMID: 36799330 DOI: 10.1111/odi.14533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE PDZ-binding kinase (PBK) has been reported as a poor prognostic factor and is a promising molecular target for anticancer therapeutics. Here, we aimed to investigate the effect of specific PBK inhibitor OTS514 on the survival of OSCC cells. METHODS Four OSCC cell lines (HSC-2, HSC-3, SAS, and OSC-19) were used to examine the effect of OTS514 on cell survival and apoptosis. DNA microarray analysis was conducted to investigate the effect of OTS514 on gene expression in OSCC cells. Gene set enrichment analysis was performed to identify molecular signatures related to the antiproliferative effect of OTS514. RESULTS OTS514 decreased the cell survival of OSCC cells dose-dependently, and administration of OTS514 readily suppressed the HSC-2-derived tumor growth in immunodeficient mice. Treatment with OTS514 significantly increased the number of apoptotic cells and caspase-3/7 activity. Importantly, OTS514 suppressed the expression of E2F target genes with a marked decrease in protein levels of E2F1, a transcriptional factor. Moreover, TP53 knockdown attenuated OTS514-induced apoptosis. CONCLUSION OTS514 suppressed the proliferation of OSCC cells by downregulating the expression of E2F target genes and induced apoptosis by mediating the p53 signaling pathway. These results highlight the clinical application of PBK inhibitors in the development of molecular-targeted therapeutics against OSCC.
Collapse
Affiliation(s)
- Mikako Kato
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Takayuki Ono
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Maho Onda
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sayuri Kondo
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Kunihiro Ito
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akifumi Furuhashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Tomio Hayashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiaki Kazaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
4
|
Jia C, Chen J, Wang X, Yang X, Wu H, Chen A, Li J, Zhang K. Machine learning and experimental screening of chromatin regulator signatures and potential drugs in hepatitis B related hepatocellular carcinoma. J Biomol Struct Dyn 2023:1-15. [PMID: 38111163 DOI: 10.1080/07391102.2023.2295382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 12/20/2023]
Abstract
Many evidences have confirmed that chromatin regulator factors (CRs) are involved in the progression of cancer, but its potential mechanism of affecting hepatitis B related hepatocellular carcinoma still needs to be studied. Our study detected the CRs that affect hepatitis B related hepatocellular carcinoma (HBV-HCC) through machine learning analysis, conducted the analysis of immune cells, constructed the relevant risk model and immune function infiltration, and predicted the potential therapeutic drugs. We found that these CRs were significantly related to the immune cells of Macrophages, B cells, CD8+T cells, etc., and PBK, AURKA, TOP2A and AURKB were the potential risk CRs of HBV-HCC. The expression levels of these four CRs increased in HepG2.2.15 cells and the liver of HBV-HCC patients, consistent with the predicted risk model. Subsequently, ten potential drugs closely related to the risk CRs were finally obtained, experimental research on resveratrol has shown that it can inhibit the proliferation of HepG2.2.15 cells and potentially inhibit the occurrence and development of HBV-HCC. Our study provides novel insights into the function of CRs in HBV-HCC and certain ideas for more accurate targeted therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Caixia Jia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianxin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueting Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, P. R. China
| | - Xingliang Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongxing Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingzhong Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kunlin Zhang
- Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang C, Tian Y, Yang A, Tan W, Liu X, Yang W. Antitumor Effect of Poplar Propolis on Human Cutaneous Squamous Cell Carcinoma A431 Cells. Int J Mol Sci 2023; 24:16753. [PMID: 38069077 PMCID: PMC10706191 DOI: 10.3390/ijms242316753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Propolis is a gelatinous substance processed by western worker bees from the resin of plant buds and mixed with the secretions of the maxillary glands and beeswax. Propolis has extensive biological activities and antitumor effects. There have been few reports about the antitumor effect of propolis against human cutaneous squamous cell carcinoma (CSCC) A431 cells and its potential mechanism. CCK-8 assays, label-free proteomics, RT-PCR, and a xenograft tumor model were employed to explore this possibility. The results showed that the inhibition rate of A431 cell proliferation by the ethanol extract of propolis (EEP) was dose-dependent, with an IC50 of 39.17 μg/mL. There were 193 differentially expressed proteins in the EEP group compared with the control group (p < 0.05), of which 103 proteins (53.37%) were upregulated, and 90 proteins (46.63%) were downregulated. The main three activated and suppressed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were extracellular matrix (ECM)-receptor interaction, amoebiasis, cell adhesion molecules (CAMs), nonalcoholic fatty liver disease (NAFLD), retrograde endocannabinoid signaling, and Alzheimer's disease. The tumor volume of the 100 mg/kg EEP group was significantly different from that of the control group (p < 0.05). These results provide a theoretical basis for the potential treatment of human CSCC A431 cell tumors using propolis.
Collapse
Affiliation(s)
- Chuang Zhang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (Y.T.); (A.Y.); (X.L.)
| | - Yuanyuan Tian
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (Y.T.); (A.Y.); (X.L.)
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (Y.T.); (A.Y.); (X.L.)
| | - Weihua Tan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaoqing Liu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (Y.T.); (A.Y.); (X.L.)
| | - Wenchao Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (Y.T.); (A.Y.); (X.L.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
6
|
Chen Q, Zhao H, Hu J. A robust six-gene prognostic signature based on two prognostic subtypes constructed by chromatin regulators is correlated with immunological features and therapeutic response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:12330-12368. [PMID: 37938151 PMCID: PMC10683604 DOI: 10.18632/aging.205183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Accumulating evidence has demonstrated that chromatin regulators (CRs) regulate immune cell infiltration and are correlated with prognoses of patients in some cancers. However, the immunological and prognostic roles of CRs in lung adenocarcinoma (LUAD) are still unclear. Here, we systematically revealed the correlations of CRs with immunological features and the survival in LUAD patients based on a cohort of gene expression datasets from the public TCGA and GEO databases and real RNA-seq data by an integrative analysis using a comprehensive bioinformatics method. Totals of 160 differentially expressed CRs (DECRs) were identified between LUAD and normal lung tissues, and two molecular prognostic subtypes (MPSs) were constructed and evaluated based on 27 prognostic DECRs using five independent datasets (p =0.016, <0.0001, =0.008, =0.00038 and =0.00055, respectively). Six differentially expressed genes (DEGs) (CENPK, ANGPTL4, CCL20, CPS1, GJB3, TPSB2) between two MPSs had the most important prognostic feature and a six-gene prognostic model was established. LUAD patients in the low-risk subgroup showed a higher overall survival (OS) rate than those in the high-risk subgroup in nine independent datasets (p <0.0001, =0.021, =0.016, =0.0099, <0.0001, =0.0045, <0.0001, =0.0038 and =0.00013, respectively). Six-gene prognostic signature had the highest concordance index of 0.673 compared with 19 reported prognostic signatures. The risk score was significantly correlated with immunological features and activities of oncogenic signaling pathways. LUAD patients in the low-risk subgroup benefited more from immunotherapy and were less sensitive to conventional chemotherapy agents. This study provides novel insights into the prognostic and immunological roles of CRs in LUAD.
Collapse
Affiliation(s)
- Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbo Zhao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Jing Hu
- Department of Medical Oncology, First People’s Hospital of Yunnan Province, Kunming, China
- Department of Medical Oncology, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Martins S, Coletti R, Lopes MB. Disclosing transcriptomics network-based signatures of glioma heterogeneity using sparse methods. BioData Min 2023; 16:26. [PMID: 37752578 PMCID: PMC10523751 DOI: 10.1186/s13040-023-00341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/13/2023] [Indexed: 09/28/2023] Open
Abstract
Gliomas are primary malignant brain tumors with poor survival and high resistance to available treatments. Improving the molecular understanding of glioma and disclosing novel biomarkers of tumor development and progression could help to find novel targeted therapies for this type of cancer. Public databases such as The Cancer Genome Atlas (TCGA) provide an invaluable source of molecular information on cancer tissues. Machine learning tools show promise in dealing with the high dimension of omics data and extracting relevant information from it. In this work, network inference and clustering methods, namely Joint Graphical lasso and Robust Sparse K-means Clustering, were applied to RNA-sequencing data from TCGA glioma patients to identify shared and distinct gene networks among different types of glioma (glioblastoma, astrocytoma, and oligodendroglioma) and disclose new patient groups and the relevant genes behind groups' separation. The results obtained suggest that astrocytoma and oligodendroglioma have more similarities compared with glioblastoma, highlighting the molecular differences between glioblastoma and the others glioma subtypes. After a comprehensive literature search on the relevant genes pointed our from our analysis, we identified potential candidates for biomarkers of glioma. Further molecular validation of these genes is encouraged to understand their potential role in diagnosis and in the design of novel therapies.
Collapse
Affiliation(s)
- Sofia Martins
- NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Roberta Coletti
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
| | - Marta B Lopes
- NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal.
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
- NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
| |
Collapse
|
8
|
Fadaei M, Kohansal M, Akbarpour O, Sami M, Ghanbariasad A. Network and functional analyses of differentially expressed genes in gastric cancer provide new biomarkers associated with disease pathogenesis. J Egypt Natl Canc Inst 2023; 35:8. [PMID: 37032412 DOI: 10.1186/s43046-023-00164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/13/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Gastric cancer is a dominant source of cancer-related death around the globe and a serious threat to human health. However, there are very few practical diagnostic approaches and biomarkers for the treatment of this complex disease. METHODS This study aimed to evaluate the association between differentially expressed genes (DEGs), which may function as potential biomarkers, and the diagnosis and treatment of gastric cancer (GC). We constructed a protein-protein interaction network from DEGs followed by network clustering. Members of the two most extensive modules went under the enrichment analysis. We introduced a number of hub genes and gene families playing essential roles in oncogenic pathways and the pathogenesis of gastric cancer. Enriched terms for Biological Process were obtained from the "GO" repository. RESULTS A total of 307 DEGs were identified between GC and their corresponding normal adjacent tissue samples in GSE63089 datasets, including 261 upregulated and 261 downregulated genes. The top five hub genes in the PPI network were CDK1, CCNB1, CCNA2, CDC20, and PBK. They are involved in focal adhesion formation, extracellular matrix remodeling, cell migration, survival signals, and cell proliferation. No significant survival result was found for these hub genes. CONCLUSIONS Using comprehensive analysis and bioinformatics methods, important key pathways and pivotal genes related to GC progression were identified, potentially informing further studies and new therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Mousa Fadaei
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
- Department of Biology, Payame Noor University, Tehran, Iran
| | | | - Mahsa Sami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
9
|
Identification of Prognostic Biomarkers for Suppressing Tumorigenesis and Metastasis of Hepatocellular Carcinoma through Transcriptome Analysis. Diagnostics (Basel) 2023; 13:diagnostics13050965. [PMID: 36900109 PMCID: PMC10001411 DOI: 10.3390/diagnostics13050965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is one of the deadliest diseases developed through tumorigenesis and could be fatal if it reaches the metastatic phase. The novelty of the present investigation is to explore the prognostic biomarkers in hepatocellular carcinoma (HCC) that could develop glioblastoma multiforme (GBM) due to metastasis. The analysis was conducted using RNA-seq datasets for both HCC (PRJNA494560 and PRJNA347513) and GBM (PRJNA494560 and PRJNA414787) from Gene Expression Omnibus (GEO). This study identified 13 hub genes found to be overexpressed in both GBM and HCC. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation, causing aneuploidy. A 13-gene predictive model was obtained and validated using a KM plot. These hub genes could be prognostic biomarkers and potential therapeutic targets, inhibition of which could suppress tumorigenesis and metastasis.
Collapse
|
10
|
Chen X, Tian F, Wu Z. A Genomic Instability-Associated Prognostic Signature for Glioblastoma Patients. World Neurosurg 2022; 167:e515-e526. [PMID: 35977679 DOI: 10.1016/j.wneu.2022.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Genomic instability and aberrant tumor mutation burden are widely accepted hallmarks of cancer. Glioblastoma (GBM) is a common brain tumor in adults, and survival of patients with GBM is poor. This study aimed to investigate the prognostic value of genomic instability-derived genes in GBM. METHODS GBM data were downloaded from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Differential expression analysis of all samples with different tumor mutation burden was performed. Univariate Cox and LASSO Cox regression analyses were integrated to determine the optimal genes for constructing a risk score model. Multivariate Cox regression analysis and survival analysis determined independent prognostic indicators. Immune cell infiltration was analyzed by CIBERSORT algorithm. RESULTS In GMB patients with high and low tumor mutation burden, we identified 154 differentially expressed genes, which were significantly enriched in 47 Gene Ontology terms and 6 Kyoto Encyclopedia of Genes and Genomes pathways. To establish a risk score, 9 genes were further screened, including SDC1, CXCL1, CXCL6, RGS4, PCDHGB2, CA9, ZAR1, CHRM3, and SLN. High-risk patients had worse prognosis in two databases. The performance of a nomogram including prognostic factors (risk score and age) was good. Moreover, mast cells resting was significantly differentially infiltrated between high- and low-risk GBM samples. CONCLUSIONS The risk score constructed by 9 genomic instability-derived genes could reliably predict prognosis of GBM patients. The nomogram based on age and risk score also had a good prognostic predictive value.
Collapse
Affiliation(s)
- Xiaodong Chen
- Neurosurgery Department, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Fen Tian
- Nephrology Department, The Affiliated Hospital of Qingdao University, Shandong, China.
| | - Zeyu Wu
- Neurosurgery Department, The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
11
|
Gong X, Tian X, Xie H, Li Z. The structural maintenance of chromosomes 5 is a possible biomarker for individualized treatment of colorectal cancer. Cancer Med 2022; 12:3276-3287. [PMID: 35894836 PMCID: PMC9939147 DOI: 10.1002/cam4.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 07/03/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Although the understanding of resistance to oxaliplatin (OXA) chemotherapy in colorectal cancer (CRC) has been sought for many years, drug tolerance remains a major challenge for cancer therapy. Revealing the molecular mechanism of OXA resistance could help to explain the poor prognosis of patients. METHODS Gene expression omnibus (GEO) database was searched, GSE83129, which contains RNA profiling in metastatic CRC patients treated first-line with OXA, was chosen for the following analysis. Differential expressed genes (DEGs) between the adenocarcinoma and adjacent_normal team, respectively, in the OXA responders and no-responders were analyzed. The Gene Ontology (GO) and hub genes in the protein-protein interaction (PPI) network were used for the molecular mechanism of OXA resistance. Tumor-related databases were used for the clinical relevance of the structural maintenance of chromosomes 5 (SMC5) in CRC. The in vitro assays were used to detect the molecular function of SMC5 in CRC cells. Quantitative real-time PCR (qRT-PCR) and western blot were used to detect the expression of the structural maintenance of chromosomes 5/6 (SMC5/6) complex components upon OXA and raltitrexed (RTX) treatment. CCK-8 was used to detect the cell viability of cells with different treatment. RESULTS SMC5 was downregulated in CRC tissues of OXA no-response patients. Lower expression of SMC5 was correlated with a poor prognosis in CRC patients, improved this gene expression, inhibited the CRC cell growth and invasion in vitro. Furthermore, SMC5 was downregulated upon OXA treatment in CRC cells, while RTX would reverse its expression, and the combination of these two drugs restored the SMC5 level to the normal situation. Finally, RTX treatment enhanced the OXA cytotoxicity. CONCLUSION SMC5 is a tumor suppressor, that low expression of this gene is benefit for the development of CRC. Combination treatment with RTX and OXA may be more suitable for those OXA no-responders with lower SMC5.
Collapse
Affiliation(s)
- Xiaoxia Gong
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human DiseasesSoutheast UniversityNanjingChina
| | - Xiaowei Tian
- General Surgery DepartmentQingdao Municipal Hospital affiliated to Qingdao UniversityQingdaoChina
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human DiseasesSoutheast UniversityNanjingChina
| | - Zhaoshui Li
- Qingdao Medical CollegeQingdao UniversityQingdaoChina
| |
Collapse
|
12
|
Lee DH, Jeong YJ, Won JY, Sim HI, Park Y, Jin HS. PBK/TOPK Is a Favorable Prognostic Biomarker Correlated with Antitumor Immunity in Colon Cancers. Biomedicines 2022; 10:biomedicines10020299. [PMID: 35203508 PMCID: PMC8869639 DOI: 10.3390/biomedicines10020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitor therapy has proven efficacy in a subset of colon cancer patients featuring a deficient DNA mismatch repair system or a high microsatellite instability profile. However, there is high demand for more effective biomarkers to expand the colon cancer population responding to ICI therapy. PBK/TOPK, a serine/threonine kinase, plays a role in cell cycle regulation and mitotic progression. Here, we investigated the correlation between PBK/TOPK expression and tumor immunity and its prognostic value in colon cancer. Based on large-scale bioinformatics analysis, we discovered that elevated PBK/TOPK expression predicted a favorable outcome in patients with colon cancer and was positively associated with immune infiltration levels of CD8+ T cells, CD4+ T cells, natural killer cells, and M1 macrophages. In contrast, a negative correlation was found between PBK/TOPK expression and immune suppressor cells, including regulatory T cells and M2 macrophages. Furthermore, the expression of PBK/TOPK was correlated with the expression of T-cell cytotoxicity genes in colon cancer. Additionally, high PBK/TOPK expression was associated with mutations in DNA damage repair genes, and thus with increased tumor mutation and neoantigen burden. These findings suggest that PBK/TOPK may serve as a prognostic and predictive biomarker for immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
| | - Yu-Jeong Jeong
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
| | - Ju-Young Won
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
| | - Hye-In Sim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Yoon Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Correspondence: (Y.P.); (H.-S.J.)
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
- Correspondence: (Y.P.); (H.-S.J.)
| |
Collapse
|
13
|
High expression of PDZ-binding kinase is correlated with poor prognosis and immune infiltrates in hepatocellular carcinoma. World J Surg Oncol 2022; 20:22. [PMID: 35065633 PMCID: PMC8783494 DOI: 10.1186/s12957-021-02479-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background PDZ-binding kinase (PBK) encodes a serine/threonine protein kinase related to the dual specific mitogen-activated protein kinase kinase (MAPKK) family. There is evidence that overexpression of this gene is associated with tumorigenesis. However, the role of PBK in hepatocellular carcinoma (HCC) remains unclear. Therefore, we evaluated the prognostic role of PBK and its correlation with immune infiltrates in hepatocellular carcinoma. Methods The expression of PBK in pan-cancers was studied by Onconmine and TIMER. The expression of PBK in HCC patients and its relationship with clinicopathological characteristics were analyzed using The Gene Expression Profiling Interactive Analysis (GEPIA), The human protein atlas database (HPA), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases. Receiver operating characteristic (ROC) curve was used to determine the diagnostic value of PBK in HCC patients. The relationship between PBK and prognosis of HCC was performed by GEPIA and Kaplan Meier plotter web tool. The correlations between the clinical characteristics and overall survival were analyzed by Univariate Cox regression and Multivariate Cox hazards regression to identify possible prognostic factors for HCC patients. LinkedOmics was applied to investigate co-expression associated with PBK and to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The network map of PBK and related genes is constructed by GeneMANIA. Finally, TIMER and TISIDB were used to analyze the correlations between PBK and tumor-infiltrating immune cells. Results Multiple database analysis shows that PBK was highly expressed in many types of tumors, including hepatocellular carcinoma, and was significantly related to tumor stage (P=0.0089), age (P=0.0131), and race (P=0.0024) of HCC patients. The receiver operating characteristic (ROC) curve analysis showed that PBK had high diagnostic potential to HCC in GSE76427 (AUC=0.8799), GSE121248 (AUC=0.9224), GSE62232 (AUC=0.9975), and GSE84402 (AUC=0.9541). Multivariate Cox hazards regression showed that high expression of PBK may be an independent risk factor for overall survival in HCC patients (HR = 1.566, 95% CI=1.062–2.311, P= 0.024). The Protein–protein interaction network showed that PBK significantly interacted with LRRC47, ARAF, LGALS9B, TTK, DLG1, and other essential genes. Furthermore, enrichment analysis showed that PBK and co-expressed genes participated in many biological processes, cell composition, molecular functions, and pathways in HCC. Finally, the immune infiltration analysis by TIMER and TISIDB indicated that a significant tightly correlation between PBK and macrophages, neutrophils, as well as chemokines and receptors. Conclusions High expression of PBK is significantly correlated with poor survival and immune infiltrates in hepatocellular carcinoma. Our study suggests that PBK can be used as a biomarker of poor prognosis and potential immune therapy target in hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02479-w.
Collapse
|
14
|
Liu HQ, Li WX, An YW, Wu T, Jiang GY, Dong Y, Chen WX, Wang JC, Wang C, Song S. Integrated analysis of the genomic and transcriptional profile of gliomas with isocitrate dehydrogenase-1 and tumor protein 53 mutations. Int J Immunopathol Pharmacol 2022; 36:3946320221139262. [PMID: 36377597 PMCID: PMC9669701 DOI: 10.1177/03946320221139262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The gene mutation of isocitrate dehydrogenase-1 (IDH1)
is commonly found in LGG and some GBM patients and usually carries tumor protein
53 (TP53) mutations. However, the underlying mechanisms on both mutations of
glioma patients in IDH1 and TP53 are still unclear. Aim: To find
the potential target markers in GBM and LGG patients with IDH1 and TP53
mutation.Method: A total of 1122 glioma patients from The
Cancer Genome Atlas were enrolled and divided as wild-type (without IDH1 and
TP53 mutations) or both mutant (both IDH1 and TP53 mutations). The data of
clinicopathological characteristics, mRNA, mutations, and copy number alteration
were analyzed. Results: IDH1 and TP53 mutations, not gene
expression, affect the survival probability of GBM and LGG patients, which might
be related to neuron function, immune function, tumor invasion, and metastasis.
The effects of the selected gene (EMILIN3, SAA1, VSTM2A, HAMP, IFT80, and CHIC2)
on glioma patients could be regulated by IDH1 and TP53 mutations and had a
higher survival possibility in these patients. Conclusions: The
selected genes in GBM and LGG patients with IDH1 and TP53 mutations could be a
potential prognosis marker in the future.
Collapse
Affiliation(s)
- Han-Qing Liu
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, P.R. China
| | - Wei-Xin Li
- Department of Neurosurgery, Shenzhen Samii Medical Center, Shenzhen, P.R. China
| | - Ya-Wen An
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, P.R. China
| | - Tao Wu
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, P.R. China
| | - Guang-Yu Jiang
- Department of Neurosurgery, Shenzhen Samii Medical Center, Shenzhen, P.R. China
| | - Yu Dong
- Department of Neurosurgery, Shenzhen Samii Medical Center, Shenzhen, P.R. China
| | - Wei-Xin Chen
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, P.R. China
| | - Jian-Chun Wang
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, P.R. China
| | - Cheng Wang
- Department of Neurosurgery, Shenzhen Samii Medical Center, Shenzhen, P.R. China
| | - Shuo Song
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, P.R. China
| |
Collapse
|
15
|
Thanindratarn P, Wei R, Dean DC, Singh A, Federman N, Nelson SD, Hornicek FJ, Duan Z. T-LAK cell-originated protein kinase (TOPK): an emerging prognostic biomarker and therapeutic target in osteosarcoma. Mol Oncol 2021; 15:3721-3737. [PMID: 34115928 PMCID: PMC8637563 DOI: 10.1002/1878-0261.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
T-lymphokine-activated killer (T-LAK) cell-originated protein kinase (TOPK) is an emerging target with critical roles in various cancers; however, its expression and function in osteosarcoma remain unexplored. We evaluated TOPK expression using RNA sequencing and gene expression data from public databases (TARGET-OS, CCLE, GTEx, and GENT2) and immunohistochemistry in an osteosarcoma tissue microarray (TMA). TOPK gene expression was significantly higher in osteosarcoma than normal tissues and directly correlated with shorter overall survival. TOPK was overexpressed in 83.3% of the osteosarcoma specimens within our TMA and all osteosarcoma cell lines, whereas normal osteoblast cells had no aberrant expression. High expression of TOPK associated with metastasis, disease status, and shorter overall survival. Silencing of TOPK with small interfering RNA (siRNA) decreased cell viability, and inhibition with the selective inhibitor OTS514 suppressed osteosarcoma cell proliferation, migration, colony-forming ability, and spheroid growth. Enhanced chemotherapeutic sensitivity and a synergistic effect were also observed with the combination of OTS514 and either doxorubicin or cisplatin in osteosarcoma cell lines. Taken together, our study demonstrated that TOPK is a potential prognostic biomarker and therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Pichaya Thanindratarn
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Department of Orthopedic SurgeryChulabhorn HospitalHRH Princess Chulabhorn College of Medical ScienceChulabhorn Royal AcademyBangkokThailand
| | - Ran Wei
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Musculoskeletal Tumor CenterBeijing Key Laboratory of Musculoskeletal TumorPeking University People’s HospitalBeijingChina
| | - Dylan C. Dean
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Arun Singh
- Sarcoma ServiceDivision of Hematology‐OncologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Noah Federman
- Department of PediatricsMattel Children’s HospitalDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- UCLA’s Jonsson Comprehensive Cancer CenterLos AngelesCAUSA
| | - Scott D. Nelson
- Department of PathologyUniversity of CaliforniaLos AngelesCAUSA
| | - Francis J. Hornicek
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Zhenfeng Duan
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
16
|
PDZ Binding Kinase/T-LAK Cell-Derived Protein Kinase Plays an Oncogenic Role and Promotes Immune Escape in Human Tumors. JOURNAL OF ONCOLOGY 2021; 2021:8892479. [PMID: 34603451 PMCID: PMC8486520 DOI: 10.1155/2021/8892479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Background PDZ binding kinase (PBK)/T-LAK cell-derived protein kinase (TOPK) is an important mitotic kinase that promotes tumor progression in some cancers. However, the pan-cancer analysis of PBK/TOPK and its role in tumor immunity are limited. Methods The oncogenic and immune roles of PBK in various cancers were explored using multiple databases, including Oncomine, Human Protein Atlas, ULCAN, Tumor Immune Estimation Resource 2.0, STRING, and Gene Expression Profiling Interactive Analysis 2, and data collected from The Cancer Genome Atlas and Genotype-Tissue Expression Project. Several bioinformatics tools and methods were used for quantitative analyses and panoramic descriptions, such as the DESeq2 and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Results PBK was expressed at higher levels in most solid tumors than in normal tissues in multiple databases. PBK was associated with an advanced tumor stage and grade and a poor prognosis in most cases. PBK was associated with tumor immune cell infiltration in most cases and was especially positively correlated with TAMs, Tregs, MDSCs, and T cell exhaustion in KIRC, LGG, and LIHC. PBK was closely related to TMB, MSI, and immune checkpoint genes in various cancers, and patients with higher expression of PBK in KIRC, LGG, and LIHC had higher TIDE scores and lower immune responses in the predicted results. PBK was closely related to cell cycle regulation and immune-related processes in LIHC and LGG according to GO and KEGG enrichment analyses. Conclusions PBK may play an oncogenic role in most solid tumors and promotes immune escape, especially in KIRC, LGG, and LIHC. This study suggests the potential value of PBK inhibitors combined with immunotherapy.
Collapse
|
17
|
Chu Y, Zhu Y, Zhang Y, Liu X, Guo Y, Chang L, Yun X, Wei Z, Xia Y, Dai Y. Tetrandrine attenuates intestinal epithelial barrier defects caused by colitis through promoting the expression of Occludin via the AhR-miR-429 pathway. FASEB J 2021; 35:e21502. [PMID: 33811696 DOI: 10.1096/fj.202002086rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022]
Abstract
The elevated intestinal permeability due to mucosal barrier defects is not only secondary to inflammatory bowel disease but also precedes enteritis. Tetrandrine, a bisbenzyl isoquinoline alkaloid isolated from the dried roots of Stephamis tetlandra S. Moor, was previously demonstrated to ameliorate colitis induced by dextran sulfate sodium (DSS) in mice. Here, we investigate whether and how tetrandrine protects against the disruption of the intestinal epithelial barrier under colitis condition. The data show that oral administration of tetrandrine significantly counteracted the increase of intestinal permeability in DSS-treated mice, enhanced the mRNA and protein expression of Occludin and Claudin1 in the colon, but hardly affected the expression of ZO-1 and Mucin2. In vitro, tetrandrine treatment rescued the decrease of monolayer transmembrane resistance and the increase of epithelial cell permeability induced by TNF-α, upregulated the expression of Occludin, and downregulated the expression of Claudin1 but did not affect the expression of ZO-1. The siRNA of Occludin largely weakened the protective effect of tetrandrine on the epithelial barrier function in Caco-2 cells. MiR-429 mimic obviously counteracted the upregulation of tetrandrine on the expression of Occludin and the amelioration on epithelial barrier defects, in contrast, miR-429 inhibitor showed the opposite effects. The antagonist (CH223191) and siAhR of aryl hydrocarbon receptor (AhR) nearly completely diminished the effects of tetrandrine, including inhibition of the miR429 expression, the upregulation of Occludin expression, and amelioration of intestinal epithelial barrier defects in Caco-2 cells. In colitis mice, CH223191 significantly weakened the protective effect of tetrandrine on colitis and intestinal mucosal barrier and diminished the downregulation on miR-429 expression and the promotion on Occludin expression in the colon. In summary, tetrandrine can attenuate the intestinal epithelial barrier defects in colitis through promoting Occludin expression via the AhR/miR-429 pathway, and it might be used to treat colitis as a barrier protector.
Collapse
Affiliation(s)
- Yuyao Chu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanrong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaojing Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lan Chang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinming Yun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Zhao J, Yu SZ, Cai Q, Ma D, Jiang L, Yang LP, Yu ZY. Identifying the Key Genes in Mouse Liver Regeneration After Partial Hepatectomy by Bioinformatics Analysis and in vitro/ vivo Experiments. Front Genet 2021; 12:670706. [PMID: 34249092 PMCID: PMC8260846 DOI: 10.3389/fgene.2021.670706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background The liver is the only organ that can completely regenerate after various injuries or tissue loss. There are still a large number of gene functions in liver regeneration that have not been explored. This study aimed to identify key genes in the early stage of liver regeneration in mice after partial hepatectomy (PH). Materials and Methods We first analyzed the expression profiles of genes in mouse liver at 48 and 72 h after PH from Gene Expression Omnibus (GEO) database. Gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analysis were performed to identify key genes in liver regeneration. Finally, we validated key genes in vivo and in vitro. Results We identified 46 upregulated genes and 19 downregulated genes at 48 h after PH, and 223 upregulated genes and 40 downregulated genes at 72 h after PH, respectively. These genes were mainly involved in cell cycle, DNA replication, and p53 signaling pathway. Among of these genes, cycle-related genes (Ccna2, Cdkn1a, Chek1, and Mcm5) and Ube2c were highly expressed in the residual liver both at 48 and 72 h after PH. Furthermore, Ube2c knockdown not only caused abnormal expression of Ccna2, Cdkn1a, Chek1, and Mcm5, but also inhibited transition of hepatocytes from G1 to S phase of the cell cycle in vitro. Conclusion Mouse hepatocytes enter the proliferation phase at 48 h after PH. Ube2c may mediate cell proliferation by regulating or partially regulating Ccna2, Cdkn1a, Chek1, and Mcm5.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Shi-Zhe Yu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Cai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Duo Ma
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Long Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Ling-Peng Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Zhi-Yong Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
19
|
Expression and clinical significance of organic cation transporter family in glioblastoma multiforme. Ir J Med Sci 2021; 191:1115-1121. [PMID: 34080124 DOI: 10.1007/s11845-021-02675-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Solute carrier (SLC) 22 A1, A2, and A3 are polyspecific transporters transporting organic cations like histamine, serotonin, norepinephrine, dopamine, MPP + , and toxins. The expression of SLC22A1-A3 in cancer is seldom investigated, and the function of SLC22A1-A3 in glioblastoma multiforme (GBM) is never elucidated. MATERIALS In our study, we detected the expression of SLC22A1-A3 in 11 fresh GBMs and tumor-adjacent brain tissues with qPCR, and in 129 paraffin-embedded GBMs with immunohistochemistry (IHC). With chi-square test, we investigated the correlation between expression of SLC22A1-A3 and the clinicopathological factors including patients' age, sex, tumor size, and KPS score. With Kaplan-Meier method and Cox-regression model, we estimated the prognostic significance of SLC22A1-A3 in GBM. RESULTS SLC22A3 was significantly downregulated in GBMs compared with the tumor-adjacent normal tissues. With univariate survival analyses, we showed that SLC22A3, instead of SLC22A1 and A2, was an independent biomarker predicting favorable prognosis. With multivariate analyses, SLC22A3 was identified as an independent prognostic biomarker indicating the favorable outcome of GBM. CONCLUSIONS SLC22A3 is an independent favorable prognostic biomarker of GBM. Patients with low SLC22A3 may be more high-risk and should receive more intensive post-operational supervision and treatments.
Collapse
|
20
|
Cao H, Yang M, Yang Y, Fang J, Cui Y. PBK/TOPK promotes chemoresistance to oxaliplatin in hepatocellular carcinoma cells by regulating PTEN. Acta Biochim Biophys Sin (Shanghai) 2021; 53:584-592. [PMID: 33772548 DOI: 10.1093/abbs/gmab028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 11/14/2022] Open
Abstract
Oxaliplatin (OXA) resistance limits the efficiency of treatment for hepatocellular carcinoma (HCC). Studies have shown that the PDZ-binding kinase (PBK) plays important roles in tumors. However, the role of PBK in HCC is still a problem. In this study, we explored whether PBK is involved in the chemoresistance to OXA in HCC. Expressions of PBK in six HCC cell lines and one human hepatocytes line were determined by real-time quantitative PCR and western blot analysis. SNU-182 and HepG2 cells were chosen to induce OXA resistance. PBK was silenced or overexpressed in OXA-resistant and sensitive cell lines. Then, cell proliferation, migration, and invasion were measured by cholecystokinin-8 assay and Transwell assay, respectively. The Cancer Genome Atlas dataset showed that PBK is highly expressed in HCC and signifies poor prognosis to patient with HCC. Results showed that expression of PBK in HCC cells was significantly higher than that in THLE2 cells, and it was further increased in OXA-resistant HCC cells. Silencing of PBK promoted the sensitivity of drug-resistant HCC cells to OXA. Overexpression of PBK relieved the apoptosis induced by OXA and promoted the migration and invasion of OXA-sensitive HCC cells. Thus, this study revealed that high PBK expression is correlated with OXA resistance in HCC cells, which may provide a promising therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Hongmin Cao
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Mei Yang
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Yufeng Yang
- Department of Pathology, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Jiayan Fang
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Yejia Cui
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| |
Collapse
|
21
|
Thanindratarn P, Dean DC, Nelson SD, Hornicek FJ, Duan Z. T-LAK cell-originated protein kinase (TOPK) is a Novel Prognostic and Therapeutic Target in Chordoma. Cell Prolif 2020; 53:e12901. [PMID: 32960500 PMCID: PMC7574876 DOI: 10.1111/cpr.12901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives To assess the expression, prognostic value, and functionality of T‐lymphokine‐activated killer (T‐LAK) cell‐originated protein kinase (TOPK) in chordoma pathogenesis. Materials and Methods TOPK expression in chordoma was assessed via immunohistochemical staining of a tissue microarray (TMA) and correlated with patient clinicopathology. TOPK expression in chordoma cell lines and fresh patient tissues was then evaluated by Western blot. TOPK small interfering RNA (siRNA) and the specific inhibitor OTS514 were applied to determine the roles of TOPK in chordoma pathogenicity. The effect of TOPK expression on chordoma cell clonogenicity was also investigated using clonogenic assays. A 3D cell culture model was utilized to mimic in vivo environment to validate the effect of TOPK inhibition on chordoma cells. Results TOPK was highly expressed in 78.2% of the chordoma specimens in the TMA and all chordoma cell lines. High TOPK expression significantly correlated with metastasis, recurrence, disease status and shorter overall survival. Knockdown of TOPK with specific siRNA resulted in significantly decrease chordoma cell viability. Inhibition of TOPK with OTS514 significantly inhibited chordoma cell growth and proliferation, colony‐forming capacity and ex vivo spheroid growth. Conclusions High expression of TOPK is an important predictor of poor prognosis in chordoma. Inhibition of TOPK resulted in significantly decrease chordoma cell proliferation and increase apoptosis. Our results indicate TOPK as a novel prognostic biomarker and therapeutic target for chordoma.
Collapse
Affiliation(s)
- Pichaya Thanindratarn
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Dylan C Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|