1
|
Rodkin S, Nwosu C, Kirichenko E. The Role of Hydrogen Sulfide in iNOS and APP Localization and Expression in Neurons and Glial Cells Under Traumatic Effects: An Experimental Study with Bioinformatics Analysis and Biomodeling. Int J Mol Sci 2024; 25:11892. [PMID: 39595962 PMCID: PMC11593695 DOI: 10.3390/ijms252211892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogen sulfide (H2S) donors are emerging as promising candidates for neuroprotective agents. However, H2S-dependent neuroprotective mechanisms are not yet fully understood. We have demonstrated that an H2S donor (sodium sulfide, Na2S) reduces the expression of inducible NO synthase (iNOS) and amyloid-beta precursor protein (APP) in damaged neural tissue at 24 h and 7 days following traumatic brain injury (TBI). The application of aminooxyacetic acid (AOAA), an inhibitor of cystathionine β-synthase (CBS), produced the opposite effect. Seven days after TBI, iNOS expression was observed not only in the cytoplasm but also in some neuronal nuclei, while APP was exclusively localized in the cytoplasm and axons of damaged neurons. It was also shown that iNOS and APP were present in the cytoplasm of mechanoreceptor neurons (MRNs) in the crayfish, in axons, as well as in certain glial cells 8 h after axotomy. Na2S and AOAA had opposing effects on axotomized MRNs and ganglia in the ventral nerve cord (VNC). Multiple sequence alignments revealed a high degree of identity among iNOS and APP amino acid residues in various vertebrate and invertebrate species. In the final stage of this study, biomodeling identified unique binding sites for H2S, hydrosulfide anion (HS-), and thiosulfate (S2O32-) with iNOS and APP.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Research Laboratory "Medical Digital Images Based on the Basic Model", Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don 344000, Russia
| | | | | |
Collapse
|
2
|
Rodkin S, Nwosu C, Raevskaya M, Khanukaev M, Bekova K, Vasilieva I, Vishnyak D, Tolmacheva A, Efremova E, Gasanov M, Tyurin A. The Role of Hydrogen Sulfide in the Localization and Expression of p53 and Cell Death in the Nervous Tissue in Traumatic Brain Injury and Axotomy. Int J Mol Sci 2023; 24:15708. [PMID: 37958692 PMCID: PMC10650615 DOI: 10.3390/ijms242115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide. It is characterized by various molecular-cellular events, with the main ones being apoptosis and damage to axons. To date, there are no clinically effective neuroprotective drugs. In this study, we examined the role of hydrogen sulfide (H2S) in the localization and expression of the key pro-apoptotic protein p53, as well as cell death in the nervous tissue in TBI and axotomy. We used a fast donor (sodium sulphide, Na2S) H2S and a classic inhibitor (aminooxyacetic acid, AOAA) of cystathionine β-synthase (CBS), which is a key enzyme in H2S synthesis. These studies were carried out on three models of neurotrauma in vertebrates and invertebrates. As a result, it was found that Na2S exhibits a pronounced neuroprotective effect that reduces the number of TUNEL-positive neurons and glial cells in TBI and apoptotic glia in axotomy. This effect could be realized through the Na2S-dependent decrease in the level of p53 in the cells of the nervous tissue of vertebrates and invertebrates, which we observed in our study. We also observed the opposite effect when using AOAA, which indicates the important role of CBS in the regulation of p53 expression and death of neurons and glial cells in TBI and axotomy.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Maxim Khanukaev
- Department of Instrumentation and Biomedical Engineering, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Khava Bekova
- Department of Nervous Diseases and Neurosurgery, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- Department of Polyclinic Therapy, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Diana Vishnyak
- Department of Internal Diseases, Surgut State University, Lenina, 1, Nephrology Department, Surgut District Clinical Hospital, Energetikov, 24/3, 628400 Surgut, Russia
| | - Anastasia Tolmacheva
- Department of Faculty Therapy Named after Professor G.D. Zalessky, Novosibirsk State Medical University, Krasny Prospekt, 52, Department of Medical Rehabilitation, Novosibirsk Regional Clinical Hospital of War Veterans No. 3, Demyan the Poor, 71, 630005 Novosibirsk, Russia
| | - Elena Efremova
- Department of Therapy and Occupational Diseases, Ulyanovsk State University, Lev Tolstoy Street 42, 432017 Ulyanovsk, Russia;
| | - Mitkhat Gasanov
- Internal Medicine Department, Institute of Medical Education, The Yaroslav-the-Wise Novgorod State University, Derzhavina St. 6, 173020 Veliky Novgorod, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
3
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
4
|
Rodkin S, Dzreyan V, Bibov M, Ermakov A, Derezina T, Kirichenko E. NO-Dependent Mechanisms of p53 Expression and Cell Death in Rat’s Dorsal Root Ganglia after Sciatic-Nerve Transection. Biomedicines 2022; 10:biomedicines10071664. [PMID: 35884967 PMCID: PMC9313305 DOI: 10.3390/biomedicines10071664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral-nerve injury is a frequent cause of disability. Presently, no clinically effective neuroprotectors have been found. We have studied the NO-dependent expression of p53 in the neurons and glial cells of the dorsal root ganglia (DRG) of a rat’s spinal cord, as well as the role of NO in the death of these cells under the conditions of axonal stress, using sciatic-nerve axotomy as a model. It was found out that axotomy led to the nuclear–cytoplasmic redistribution of p53 in neurons, 24 h after trauma. The NO donor led to a considerable increase in the level of p53 in nuclei and, to a smaller degree, in the cytoplasm of neurons and karyoplasm of glial cells 4 and 24 h after axotomy. Application of a selective inhibitor of inducible NO-synthase (iNOS) provided the opposite effect. Introduction of the NO donor resulted in a significant increase in cell death in the injured ipsilateral DRG, 24 h and 7 days after trauma. The selective inhibitor of iNOS demonstrated a neuroprotective effect. Axotomy was shown to upregulate the iNOS in nuclei and cytoplasm of DRG cells. The NO-dependent expression of p53, which is particularly achieved through iNOS activation, is believed to be a putative signaling mechanism of neural and glial-cell death after axotomy.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (A.E.); (T.D.); (E.K.)
- Correspondence: ; Tel.: +7-(918)-576-2390
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, 344090 Rostov-on-Don, Russia;
| | - Mikhail Bibov
- Department of General and Clinical Biochemistry No. 2, Rostov State Medical University, Nakhichevansky, 29, 344022 Rostov-on-Don, Russia;
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (A.E.); (T.D.); (E.K.)
| | - Tatyana Derezina
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (A.E.); (T.D.); (E.K.)
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (A.E.); (T.D.); (E.K.)
| |
Collapse
|
5
|
E2F1 Expression and Apoptosis Initiation in Crayfish and Rat Peripheral Neurons and Glial Cells after Axonal Injury. Int J Mol Sci 2022; 23:ijms23084451. [PMID: 35457270 PMCID: PMC9026502 DOI: 10.3390/ijms23084451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrauma is among the main causes of human disability and mortality. The transcription factor E2F1 is one of the key proteins that determine the fate of cells. The involvement of E2F1 in the regulation of survival and death of peripheral nerve cells after axotomy has not been previously studied. We, for the first time, studied axotomy-induced changes in the expression and localization of E2F1 following axonal injury in rats and crayfish. Immunoblotting and immunofluorescence microscopy were used for the analysis of the expression and intracellular localization of E2F1 and its changes after axotomy. To evaluate whether this transcription factor promotes cell apoptosis, we examined the effect of pharmacological inhibition of E2F activity in axotomized rat models. In this work, axotomy caused increased expression of E2F1 as early as 4 h and even 1 h after axotomy of mechanoreceptor neurons and ganglia of crayfish ventral nerve cord (VNC), as well as rat dorsal root ganglia (DRG). The level of E2F1 expression increased both in the cytoplasm and the nuclei of neurons. Pharmacological inhibition of E2F demonstrated a pronounced neuroprotective activity against axotomized DRGs. E2F1 and downstream targets could be considered promising molecular targets for the development of potential neuroprotective agents.
Collapse
|
6
|
The Role of p53 Protein in the Realization of the Exogenous Heat Shock Protein 70 Anti-Apoptotic Effect during Axotomy. Cells 2021; 11:cells11010093. [PMID: 35011655 PMCID: PMC8750896 DOI: 10.3390/cells11010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
The search for effective neuroprotective agents for the treatment of neurotrauma has always been of great interest to researchers around the world. Extracellular heat shock protein 70 (eHsp70) is considered a promising agent to study, as it has been demonstrated to exert a significant neuroprotective activity against various neurodegenerative diseases. We showed that eHsp70 can penetrate neurons and glial cells when added to the incubation medium, and can accumulate in the nuclei of neurons and satellite glial cells after axotomy. eHsp70 reduces apoptosis and necrosis of the glial cells, but not the neurons. At the same time, co-localization of eHsp70 with p53 protein, one of the key regulators of apoptosis, was noted. eHsp70 reduces the level of the p53 protein apoptosis promoter both in glial cells and in the nuclei and cytoplasm of neurons, which indicates its neuroprotective effect. The ability of eHsp70 to reverse the proapoptotic effect of the p53 activator WR1065 may indicate its ability to regulate p53 activity or its proteosome-dependent degradation.
Collapse
|
7
|
Demyanenko S, Nikul V, Rodkin S, Davletshin A, Evgen'ev MB, Garbuz DG. Exogenous recombinant Hsp70 mediates neuroprotection after photothrombotic stroke. Cell Stress Chaperones 2021; 26:103-114. [PMID: 32870479 PMCID: PMC7736593 DOI: 10.1007/s12192-020-01159-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ischaemic stroke is an acute interruption of the blood supply to the brain, which leads to rapid irreversible damage to nerve tissue. Ischaemic stroke is accompanied by the development of neuroinflammation and neurodegeneration observed around the affected brain area. Heat shock protein 70 (Hsp70) facilitates cell survival under a variety of different stress conditions. Hsp70 may be secreted from cells and exhibits cytoprotective activity. This activity most likely occurs by decreasing the levels of several proinflammatory cytokines through interaction with a few receptors specific to the innate immune system. Herein, we demonstrated that intranasal administration of recombinant human Hsp70 shows a significant twofold decrease in the volume of local ischaemia induced by photothrombosis in the mouse prefrontal brain cortex. Our results revealed that intranasal injections of recombinant Hsp70 decreased the apoptosis level in the ischaemic penumbra, stimulated axonogenesis and increased the number of neurons producing synaptophysin. Similarly, in the isolated crayfish stretch receptor, consisting of a single sensory neuron surrounded by the glial envelope, exogenous Hsp70 significantly decreased photoinduced apoptosis and necrosis of glial cells. The obtained data enable one to consider human recombinant Hsp70 as a promising compound that could be translated from the bench into clinical therapies.
Collapse
Affiliation(s)
- S Demyanenko
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - V Nikul
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - S Rodkin
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - A Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia.
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|