1
|
Huang J, Luo Y, Wang Y, Wang S, Huang R, An Y. Silencing CCT3 induces ferroptosis through the NOD1-NF-κB signaling pathway in bladder cancer. Sci Rep 2024; 14:26188. [PMID: 39478031 PMCID: PMC11525567 DOI: 10.1038/s41598-024-76724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Bladder cancer (BCa) is a lethal malignancy of the urinary system and exhibits a poor prognosis. Chaperonin-containing tailless complex polypeptide 1 subunit 3 (CCT3) acts as an oncogene in various tumors, whereas its effect on BCa remains unknown. We identified the ferroptosis-associated differentially expressed genes through bioinformatic analysis and selected CCT3 for further verification. The levels of cell viability, apoptosis, migration, invasion, and proliferation were measured to clarify the effect of silencing CCT3 on BCa cells. Then we evaluated the role of CCT3 knockdown in vivo. Ferroptosis was assessed by the expression detection of the ferroptosis-related proteins. The underlying mechanism was predicted by RNA sequencing and verified by an agonist for nucleotide-binding and oligomerization domain 1 (NOD1). Western blotting was conducted to detect the protein expression of NOD1, nuclear factor kappa B (NF-κB) inhibitor alpha (IκBα), and phospho-IκBα (p-IκBα). In vitro, down-regulation of CCT3 suppressed the cell viability, migration, invasion, and proliferation, as well as induced apoptosis of BCa cells. In vivo, silencing CCT3 elevated the body weight of mice and suppressed the BCa progression. In addition, CCT3 knockdown could induce ferroptosis in vitro and in vivo. CCT3 knockdown suppressed the expression of NOD1 and p-IκBα/IκBα and the NOD1 agonist could reverse the effect of CCT3 suppression on BCa in vitro and in vivo. In summary, our findings demonstrate that silencing CCT3 inhibits BCa via induction of ferroptosis and suppression of the NOD1-NF-κB pathway.
Collapse
Affiliation(s)
- Jianlin Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China
| | - Yizhao Luo
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China
| | - Yu Wang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China
| | - Shize Wang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China
| | - Runhua Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China.
| | - Yu An
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu City, 610072, Sichuan Province, China.
| |
Collapse
|
2
|
Sweetat S, Shabat MB, Theotokis P, Suissa N, Karafoulidou E, Touloumi O, Abu-Fanne R, Abramsky O, Wolf G, Saada A, Lotan A, Grigoriadis N, Rosenmann H. Ovariectomy and High Fat-Sugar-Salt Diet Induced Alzheimer's Disease/Vascular Dementia Features in Mice. Aging Dis 2024; 15:2284-2300. [PMID: 38913044 PMCID: PMC11346392 DOI: 10.14336/ad.2024.03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
While the vast majority of Alzheimer's disease (AD) is non-familial, the animal models of AD that are commonly used for studying disease pathogenesis and development of therapy are mostly of a familial form. We aimed to generate a model reminiscent of the etiologies related to the common late-onset Alzheimer's disease (LOAD) sporadic disease that will recapitulate AD/dementia features. Naïve female mice underwent ovariectomy (OVX) to accelerate aging/menopause and were fed a high fat-sugar-salt diet to expose them to factors associated with increased risk of development of dementia/AD. The OVX mice fed a high fat-sugar-salt diet responded by dysregulation of glucose/insulin, lipid, and liver function homeostasis and increased body weight with slightly increased blood pressure. These mice developed AD-brain pathology (amyloid and tangle pathologies), gliosis (increased burden of astrocytes and activated microglia), impaied blood vessel density and neoangiogenesis, with cognitive impairment. Thus, OVX mice fed on a high fat-sugar-salt diet imitate a non-familial sporadic/environmental form of AD/dementia with vascular damage. This model is reminiscent of the etiologies related to the LOAD sporadic disease that represents a high portion of AD patients, with an added value of presenting concomitantly AD and vascular pathology, which is a common condition in dementia. Our model can, thereby, provide a valuable tool for studying disease pathogenesis and for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Sahar Sweetat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Moti Ben Shabat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Paschalis Theotokis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Nir Suissa
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Eleni Karafoulidou
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Olga Touloumi
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Oded Abramsky
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gilly Wolf
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Psychology, School of Psychology and Social Sciences, Achva Academic College, Be'er Tuvia, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Lotan
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| |
Collapse
|
3
|
Lan Z, Tan F, He J, Liu J, Lu M, Hu Z, Zhuo Y, Liu J, Tang X, Jiang Z, Lian A, Chen Y, Huang Y. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155635. [PMID: 38701541 DOI: 10.1016/j.phymed.2024.155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.
Collapse
Affiliation(s)
- Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Ming Lu
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410219, PR China; Hunan Provincial Key Laboratory of Neurorestoration, The Second Affiliated Hospital, Hunan Normal University, Changsha, Hunan 410081, PR China; Department of Neurosurgery, the 921st Hospital of PLA (Second Affiliated Hospital of Hunan Normal University), Changsha 410081, Hunan, PR China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yi Zhuo
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410000, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - JunJiang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Department of Geriatrics, Hunan Provincial People's Hospital(First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410011, PR China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Aojie Lian
- Hunan provincial maternal and child health care hospital, Changsha, Hunan 410008, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - Yongheng Chen
- First Clinical Department, Changsha Medical University, Changsha, Hunan 410219, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - Yan Huang
- Hunan provincial maternal and child health care hospital, Changsha, Hunan 410008, PR China; Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410219, PR China; Hunan Provincial Key Laboratory of Neurorestoration, The Second Affiliated Hospital, Hunan Normal University, Changsha, Hunan 410081, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China.
| |
Collapse
|
4
|
Gao W, Jin X, Zhou P, Zhu H, Xie K, Jin B, Du L. Relationship between Uveitis and the Differential Reactivity of Retinal Microglia. Ophthalmic Res 2023; 66:1206-1212. [PMID: 37666222 PMCID: PMC10614524 DOI: 10.1159/000531156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 09/06/2023]
Abstract
Uveitis, a complicated group of ocular inflammatory diseases, can be affected by massive pathogenic contributors such as infection, autoimmunity, and genetics. Although it is well known that many pathological changes, including disorders of the immune system and disruption of the blood-retinal barrier, count much in the onset and progression of uveitis, there is a paucity of safe and effective treatments, which has exceedingly hindered the appropriate treatment of uveitis. As innate immune cells in the retina, microglia occupy a salient position in retinal homeostasis. Many studies have reported the activation of microglia in uveitis and the mitigation of uveitis by interfering with microglial reactivity, which strongly implicates microglia as a therapeutic target. However, it has been increasingly recognized that microglia are a nonhomogeneous population under different physiological and pathological conditions, which makes it essential to thoroughly have knowledge of their specific characteristics. The paper outlines the various properties of activated microglia in uveitis, summarizes the connections between their polarization patterns and the manifestations of uveitis, and ultimately is intended to enhance the understanding of microglial versatility and expedite the exploration of promising strategies for visual protection.
Collapse
Affiliation(s)
- Wenna Gao
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemin Jin
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyi Zhou
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyan Zhu
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kunpeng Xie
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Jin
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Du
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Hespen CW, Zhao X, Hang HC. Membrane targeting enhances muramyl dipeptide binding to NOD2 and Arf6-GTPase in mammalian cells. Chem Commun (Camb) 2022; 58:6598-6601. [PMID: 35584401 DOI: 10.1039/d2cc01903e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To further understand the mechanisms of muramyl dipeptide (MDP) sensing by NOD2, we evaluated key properties involved in the formation of the Arf6-MDP-NOD2 complex in mammalian cells. We found that the conserved Arf aromatic triad is crucial for binding to MDP-NOD2. Mutation of Arf6 N-myristoylation and NOD2 S-palmitoylation also abrogated the formation of the Arf6-MDP-NOD2 complex. Notably, lipid-modified MDP (L18-MDP) increased Arf6-NOD2 assembly. Our results indicate recruitment of Arf6 may explain enhanced activity of lipidated MDP analogues and membrane targeting may be important in developing next-generation NOD2 agonists.
Collapse
Affiliation(s)
- Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| | - Xiaohui Zhao
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Williams L, Alshehri A, Robichaud B, Cudmore A, Gagnon J. The Role of the Bacterial Muramyl Dipeptide in the Regulation of GLP-1 and Glycemia. Int J Mol Sci 2020; 21:E5252. [PMID: 32722085 PMCID: PMC7432949 DOI: 10.3390/ijms21155252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
The host's intestinal microbiota contributes to endocrine and metabolic responses, but a dysbiosis in this environment can lead to obesity and insulin resistance. Recent work has demonstrated a role for microbial metabolites in the regulation of gut hormones, including the metabolic hormone, glucagon-like peptide-1 (GLP-1). Muramyl dipeptide (MDP) is a bacterial cell wall component which has been shown to improve insulin sensitivity and glucose tolerance in diet-induced obese mice by acting through the nucleotide oligomerization domain 2 (NOD2) receptor. The purpose of this study was to understand the effects of MDP on GLP-1 secretion and glucose regulation. We hypothesized that MDP enhances glucose tolerance by inducing intestinal GLP-1 secretion through NOD2 activation. First, we observed a significant increase in GLP-1 secretion when murine and human L-cells were treated with a fatty acid MDP derivative (L18-MDP). Importantly, we demonstrated the expression of the NOD2 receptor in mouse intestine and in L-cells. In mice, two intraperitoneal injections of MDP (5 mg/kg body weight) caused a significant increase in fasting total GLP-1 in chow-fed mice, however this did not lead to an improvement in oral glucose tolerance. When mice were exposed to a high-fat diet, they eventually lost this MDP-induced GLP-1 release. Finally, we demonstrated in L-cells that hyperglycemic conditions reduce the mRNA expression of NOD2 and GLP-1. Together these findings suggest MDP may play a role in enhancing GLP-1 during normal glycemic conditions but loses its ability to do so in hyperglycemia.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Gagnon
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (L.W.); (A.A.); (B.R.); (A.C.)
| |
Collapse
|