1
|
Zhu D, Wang P, Chen X, Wang K, Wu Y, Zhang M, Qin J. Astrocyte-Derived Interleukin 11 Modulates Astrocyte-Microglia Crosstalk via Nuclear Factor-κB Signaling Pathway in Sepsis-Associated Encephalopathy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0598. [PMID: 39886603 PMCID: PMC11780073 DOI: 10.34133/research.0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined. In this study, we aim to investigate the molecular basis of the astrocyte-microglia crosstalk underlying SAE pathogenesis and also to explore the new therapeutic strategies targeting this crosstalk in this devastating disease. We established a human astrocyte/microglia coculture system on a microfluidic device, which allows real-time and high-resolution recording of glial responses to inflammatory stimuli. Based on this microfluidic system, we can test the responses of astrocytes and microglia to lipopolysaccharide (LPS) treatment, and identify the molecular cues that mediate the astrocyte-microglia crosstalk underlying the pathological condition. In addition, the SAE mouse model was utilized to determine the state of glial cells and evaluate the therapeutic effect of drugs targeting the astrocyte-microglia crosstalk in vivo. Here, we found that activated astrocytes and microglia exhibited close spatial interaction in the SAE mouse model. Upon LPS exposure for astrocytes, we detected that more microglia migrated to the central astrocyte culture compartment on the microfluidic device, accompanied by M1 polarization and increased cell motility in microglia. Cytokine array analysis revealed that less interleukin 11 (IL11) was secreted by astrocytes following LPS treatment, which further promoted reprogramming of microglia to pro-inflammatory M1 phenotype via the nuclear factor-κB (NF-κB) signaling pathway. Intriguingly, we found that IL11 addition markedly rescued LPS-induced neuronal injuries on the microfluidic system and brain injury in the SAE mouse model. This study defines an unknown crosstalk of astrocyte-microglia mediated by IL11, which contributed to the neuropathogenesis of SAE, and suggested a potential therapeutic value of IL11 in the devastating disease.
Collapse
Affiliation(s)
- Dandan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
- Department of Critical Care Medicine,
The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Peng Wang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research,
University of Science and Technology of China, Suzhou 215123, China
| | - Xiyue Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Kaituo Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research,
University of Science and Technology of China, Suzhou 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine,
Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
2
|
Guo Y, Que H, Chen B, Chao C, Li S, Guo S, Yin Y, Wang H, Zhu M, Li P. Citronellal improves endothelial dysfunction by affecting the stability of the GCH1 protein. Acta Biochim Biophys Sin (Shanghai) 2024; 56:963-972. [PMID: 38993132 PMCID: PMC11322867 DOI: 10.3724/abbs.2024086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 07/13/2024] Open
Abstract
Endothelial dysfunction (ED) serves as the pathological basis for various cardiovascular diseases. Guanosine triphosphate cyclopyrrolone 1 (GCH1) emerges as a pivotal protein in sustaining nitric oxide (NO) production within endothelial cells, yet it undergoes degradation under oxidative stress, contributing to endothelial cell dysfunction. Citronellal (CT), a monoterpenoid, has been shown to ameliorate endothelial dysfunction induced by in atherosclerosis rats. However, whether CT can inhibit the degradation of GCH1 protein is not clear. It has been reported that ubiquitination may play a crucial role in regulating GCH1 protein levels and activities. However, the specific E3 ligase for GCH1 and the molecular mechanism of GCH1 ubiquitination remain unclear. Using data-base exploration analysis, we find that the levels of the E3 ligase Smad-ubiquitination regulatory factor 2 (Smurf2) negatively correlate with those of GCH1 in vascular tissues and HUVECs. We observe that Smurf2 interacts with GCH1 and promotes its degradation via the proteasome pathway. Interestingly, ectopic Smurf2 expression not only decreases GCH1 levels but also reduces cell proliferation and reactive oxygen species (ROS) levels, mostly because of increased GCH1 accumulation. Furthermore, we identify BH 4/eNOS as downstream of GCH1. Taken together, our results indicate that CT can obviously improve vascular endothelial injury in Type 1 diabetes mellitus (T1DM) rats and reverse the expressions of GCH1 and Smurf2 proteins in aorta of T1DM rats. Smurf2 promotes ubiquitination and degradation of GCH1 through proteasome pathway in HUVECs. We conclude that the Smurf2-GCH1 interaction might represent a potential target for improving endothelial injury.
Collapse
Affiliation(s)
- Yaqi Guo
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Huadong Que
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Bulei Chen
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Chunyan Chao
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Huang Huai UniversityZhumadian463000China
| | - Shanshan Li
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| | - Yaling Yin
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Huanhuan Wang
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Moli Zhu
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Peng Li
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| |
Collapse
|
3
|
Alanazi F, Raghunandanan S, Priya R, Yang XF. The Rrp2-RpoN-RpoS pathway plays an important role in the blood-brain barrier transmigration of the Lyme disease pathogen. Infect Immun 2023; 91:e0022723. [PMID: 37874144 PMCID: PMC10652863 DOI: 10.1128/iai.00227-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/14/2023] [Indexed: 10/25/2023] Open
Abstract
Lyme disease, caused by Borrelia (or Borreliella) burgdorferi, is a complex multisystemic disorder that includes Lyme neuroborreliosis resulting from the invasion of both the central and peripheral nervous systems. However, factors that enable the pathogen to cross the blood-brain barrier (BBB) and invade the central nervous system (CNS) are still not well understood. The objective of this study was to identify the B. burgdorferi factors required for BBB transmigration. We utilized a transwell BBB model based on human brain-microvascular endothelial cells and focused on investigating the Rrp2-RpoN-RpoS pathway, a central regulatory pathway that is essential for mammalian infection by B. burgdorferi. Our results demonstrated that the Rrp2-RpoN-RpoS pathway is crucial for BBB transmigration. Furthermore, we identified OspC, a major surface lipoprotein controlled by the Rrp2-RpoN-RpoS pathway, as a significant contributor to BBB transmigration. Constitutive production of OspC in a mutant defective in the Rrp2-RpoN-RpoS pathway did not rescue the impairment in BBB transmigration, indicating that this pathway controls additional factors for this process. Two other major surface lipoproteins controlled by this pathway, DbpA/B and BBK32, appeared to be dispensable for BBB transmigration. In addition, both the surface lipoprotein OspA and the Rrp1 pathway, which are required B. burgdorferi colonization in the tick vector, were found not required for BBB transmigration. Collectively, our findings using in vitro transwell assays uncover another potential role of the Rrp2-RpoN-RpoS pathway in BBB transmigration of B. burgdorferi and invasion into the CNS.
Collapse
Affiliation(s)
- Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1328729. [PMID: 36062193 PMCID: PMC9433216 DOI: 10.1155/2022/1328729] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Dysregulated host response to infection, which cause life-threatening organ dysfunction, was defined as sepsis. Sepsis can cause acute and long-term brain dysfunction, namely, sepsis-associated encephalopathy (SAE) and cognitive impairment. SAE refers to changes in consciousness without direct evidence of central nervous system infection. It is highly prevalent and may cause poor outcomes in sepsis patients. Cognitive impairment seriously affects the life quality of sepsis patients and increases the medical burden. The pathogenesis of sepsis-induced brain dysfunction is mainly characterized by the interaction of systemic inflammation, blood-brain barrier (BBB) dysfunction, neuroinflammation, microcirculation dysfunction, and brain dysfunction. Currently, the diagnosis of sepsis-induced brain dysfunction is based on clinical manifestation of altered consciousness along with neuropathological examination, and the treatment is mainly involves controlling sepsis. Although treatments for sepsis-induced brain dysfunction have been tested in animals, clinical treat sepsis-induced brain dysfunction is still difficult. Therefore, we review the underlying mechanisms of sepsis-induced brain injury, which mainly focus on the influence of systemic inflammation on BBB, neuroinflammation, brain microcirculation, and the brain function, which want to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating brain dysfunction.
Collapse
|
5
|
Xue B, Wang Y. Naringenin upregulates GTPCH1/eNOS to ameliorate high glucose‑induced retinal endothelial cell injury. Exp Ther Med 2022; 23:428. [PMID: 35607381 PMCID: PMC9121200 DOI: 10.3892/etm.2022.11355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Bing Xue
- Health Management Center of Dalian Second People's Hospital, Dalian, Liaoning 116011, P.R. China
| | - Yu Wang
- Medical Department of Dalian Second People's Hospital, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
6
|
Peng X, Luo Z, He S, Zhang L, Li Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front Cell Infect Microbiol 2021; 11:768108. [PMID: 34804998 PMCID: PMC8599158 DOI: 10.3389/fcimb.2021.768108] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
As a complex multicellular structure of the vascular system at the central nervous system (CNS), the blood-brain barrier (BBB) separates the CNS from the system circulation and regulates the influx and efflux of substances to maintain the steady-state environment of the CNS. Lipopolysaccharide (LPS), the cell wall component of Gram-negative bacteria, can damage the barrier function of BBB and further promote the occurrence and development of sepsis-associated encephalopathy (SAE). Here, we conduct a literature review of the direct and indirect damage mechanisms of LPS to BBB and the relationship between these processes and SAE. We believe that after LPS destroys BBB, a large number of inflammatory factors and neurotoxins will enter and damage the brain tissue, which will activate brain immune cells to mediate inflammatory response and in turn further destroys BBB. This vicious circle will ultimately lead to the progression of SAE. Finally, we present a succinct overview of the treatment of SAE by restoring the BBB barrier function and summarize novel opportunities in controlling the progression of SAE by targeting the BBB.
Collapse
Affiliation(s)
- Xiaoyao Peng
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zhixuan Luo
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shuang He
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Anisodamine Hydrobromide Protects Glycocalyx and Against the Lipopolysaccharide-Induced Increases in Microvascular Endothelial Layer Permeability and Nitric Oxide Production. Cardiovasc Eng Technol 2020; 12:91-100. [PMID: 32935201 DOI: 10.1007/s13239-020-00486-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Anisodamine hydrobromide (Ani HBr) has been used to improve the microcirculation during cardiovascular disorders and sepsis. Glycocalyx plays an important role in preserving the endothelial cell (EC) barrier permeability and nitric oxide (NO) production. We aimed to test the hypothesis that Ani HBr could protect the EC against permeability and NO production via preventing glycocalyx shedding. METHODS A human cerebral microvascular EC hCMEC/D3 injury model induced by lipopolysaccharide (LPS) was established. Ani HBr was administrated to ECs with the LPS challenge. Cell viability was performed by Cell Counting Kit-8 assay. Cell proliferation and apoptosis were detected by EdU and Hoechst 33342 staining. Apoptosis and cell cycle were also assessed by flow cytometry with annexin V staining and propidium iodide staining, respectively. Then, adherens junction integrity was evaluated basing on the immunofluorescence staining of vascular endothelial cadherin (VE-cadherin). The glycocalyx component heparan sulfate (HS) was stained in ECs. The cell permeability was evaluated by leakage of fluorescein isothiocyanate (FITC)-dextran. Cellular NO production was measured by the method of nitric acid reductase. RESULTS Ani HBr at 20 μg/mL significantly increased the viability of ECs with LPS challenge, but significantly inhibited the cell viability at 80 μg/mL, showing a bidirectional regulation of cell viability by Ani HBr. Ani HBr had not significantly change the LPS-induced EC proliferation. Ani HBr significantly reversed the induction of LPS on EC apoptosis. Ani HBr reinstated the LPS-induced glycocalyx and VE-cadherin shedding and adherens junction disruption. Ani HBr significantly alleviated LPS-induced EC layer permeability and NO production. CONCLUSION Ani HBr protects ECs against LPS-induced increase in cell barrier permeability and nitric oxide production via preserving the integrity of glycocalyx. Ani HBr is a promising drug to rescue or protect the glycocalyx.
Collapse
|