1
|
Gao JM, Xia SY, Hide G, Li BH, Liu YY, Wei ZY, Zhuang XJ, Yan Q, Wang Y, Yang W, Chen JH, Rao JH. Multiomics of parkinsonism cynomolgus monkeys highlights significance of metabolites in interaction between host and microbiota. NPJ Biofilms Microbiomes 2024; 10:61. [PMID: 39060267 PMCID: PMC11282307 DOI: 10.1038/s41522-024-00535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota has been demonstrated to play a significant role in the pathogenesis of Parkinson's disease (PD). However, conflicting findings regarding specific microbial species have been reported, possibly due to confounding factors within human populations. Herein, our current study investigated the interaction between the gut microbiota and host in a non-human primate (NHP) PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a multi-omic approach and a self-controlled design. Our transcriptomic sequencing of peripheral blood leukocytes (PBL) identified key genes involved in pro-inflammatory cytokine dysregulation, mitochondrial function regulation, neuroprotection activation, and neurogenesis associated with PD, such as IL1B, ATP1A3, and SLC5A3. The metabolomic profiles in serum and feces consistently exhibited significant alterations, particularly those closely associated with inflammation, mitochondrial dysfunctions and neurodegeneration in PD, such as TUDCA, ethylmalonic acid, and L-homophenylalanine. Furthermore, fecal metagenome analysis revealed gut dysbiosis associated with PD, characterized by a significant decrease in alpha diversity and altered commensals, particularly species such as Streptococcus, Butyrivibrio, and Clostridium. Additionally, significant correlations were observed between PD-associated microbes and metabolites, such as sphingomyelin and phospholipids. Importantly, PDPC significantly reduced in both PD monkey feces and serum, exhibiting strong correlation with PD-associated genes and microbes, such as SLC5A3 and Butyrivibrio species. Moreover, such multi-omic differential biomarkers were linked to the clinical rating scales of PD monkeys. Our findings provided novel insights into understanding the potential role of key metabolites in the host-microbiota interaction involved in PD pathogenesis.
Collapse
Affiliation(s)
- Jiang-Mei Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Geoff Hide
- Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Bi-Hai Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yi-Yan Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiao-Ji Zhuang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing Yan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Yun Wang
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Yang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, Guangdong, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson's disease. Exp Mol Pathol 2023; 129:104846. [PMID: 36436571 DOI: 10.1016/j.yexmp.2022.104846] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Parkinson's disease is a common progressive and multifactorial neurodegenerative disease, characterized by the loss of midbrain dopaminergic neurons. Numerous pathological processes including, inflammation, oxidative stress, mitochondrial dysfunction, neurotransmitter imbalance, and apoptosis as well as genetic factors may lead to neuronal degeneration. With the emergence of aging population, the health problem and economic burden caused by PD also increase. Phosphatidylinositol 3-kinases-protein kinase B (PI3K-AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K-AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. The current review provides an overview of the PI3K-AKT signaling pathway and review the relationship between this signaling pathway and PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
4
|
Nebie O, Buée L, Blum D, Burnouf T. Can the administration of platelet lysates to the brain help treat neurological disorders? Cell Mol Life Sci 2022; 79:379. [PMID: 35750991 PMCID: PMC9243829 DOI: 10.1007/s00018-022-04397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates (HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifically based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
Collapse
Affiliation(s)
- Ouada Nebie
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France.
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre, Taipei Medical University Shuang-Ho Hospital, New Taipei City, 23561, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Takase N, Inden M, Murayama Y, Mishima A, Kurita H, Hozumi I. PDGF-BB is involved in phosphate regulation via the phosphate transporters in human neuroblastoma SH-SY5Y cells. Biochem Biophys Res Commun 2022; 593:93-100. [PMID: 35063775 DOI: 10.1016/j.bbrc.2022.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Inorganic phosphate (Pi) is the second most abundant inorganic ion in the body. Since abnormalities in Pi metabolism are risk factors for various diseases, serum Pi levels are strictly controlled. Type-III sodium-dependent Pi transporters, PiT-1 (encoded by SLC20A1) and PiT-2 (encoded by SLC20A2), are distributed throughout the tissues of the body, including the central nervous system, and are known to be responsible for extracellular to intracellular Pi transport. Platelet-derived growth factor (PDGF) is a major growth factor of mesenchymal cells. PDGF-BB, a homodimer of PDGF-B, regulates intracellular Pi by increasing PiT-1 expression in vascular smooth muscle cells. However, the effects of PDGF-BB on Pi transporters in neurons have yet to be reported. Here, we investigated the effect of PDGF-BB on Pi transporters in human neuroblastoma SH-SY5Y cells. PDGF-BB did not induce SLC20A1 mRNA expression, but it increased the intracellular uptake of Pi via PiT-1 in SH-SY5Y cells. Among the signaling pathways associated with PDGF-BB, AKT signaling was shown to be involved in the increase in Pi transport. In addition, the PDGF-BB-induced increase in Pi mediated neuroprotective effects in SLC20A2-suppressed cells, in an in vitro model of the pathological condition found in idiopathic basal ganglia calcification. Moreover, the increase in Pi uptake was found to occur through promotion of intracellular PiT-1 translocation to the plasma membrane. Overall, these results indicate that PDGF-BB exerts neuroprotective effects via Pi transport, and they demonstrate the potential utility of PDGF-BB against abnormal Pi metabolism in neurons.
Collapse
Affiliation(s)
- Naoko Takase
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan.
| | - Yuto Murayama
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan
| | - Ayane Mishima
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan.
| |
Collapse
|
7
|
Chen H, Teng Y, Chen X, Liu Z, Geng F, Liu Y, Jiang H, Wang Z, Yang L. Platelet-derived growth factor (PDGF)-BB protects dopaminergic neurons via activation of Akt/ERK/CREB pathways to upregulate tyrosine hydroxylase. CNS Neurosci Ther 2021; 27:1300-1312. [PMID: 34346167 PMCID: PMC8504523 DOI: 10.1111/cns.13708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Aims The neurotropic growth factor PDGF‐BB was shown to have vital neurorestorative functions in various animal models of Parkinson's disease (PD). Previous studies indicated that the regenerative property of PDGF‐BB contributes to the increased intensity of tyrosine hydroxylase (TH) fibers in vivo. However, whether PDGF‐BB directly modulates the expression of TH, and the underlying mechanism is still unknown. We will carefully examine this in our current study. Method MPTP‐lesion mice received PDGF‐BB treatment via intracerebroventricular (i.c.v) administration, and the expression of TH in different brain regions was assessed by RT‐PCR, Western blot, and immunohistochemistry staining. The molecular mechanisms of PDGF‐BB‐mediated TH upregulation were examined by RT‐PCR, Western blot, ChIP assay, luciferase reporter assay, and immunocytochemistry. Results We validated a reversal expression of TH in MPTP‐lesion mice upon i.c.v administration of PDGF‐BB for seven days. Similar effects of PDGF‐BB‐mediated TH upregulation were also observed in MPP+‐treated primary neuronal culture and dopaminergic neuronal cell line SH‐SY5Y cells. We next demonstrated that PDGF‐BB rapidly activated the pro‐survival PI3K/Akt and MAPK/ERK signaling pathways, as well as the downstream CREB in SH‐SY5Y cells. We further confirmed the significant induction of p‐CREB in PDGF‐BB‐treated animals in vivo. Using a genetic approach, we demonstrated that the transcription factor CREB is critical for PDGF‐BB‐mediated TH expression. The activation and nucleus translocation of CREB were promoted in PDGF‐BB‐treated SH‐SY5Y cells, and the enrichment of CREB on the promoter region of TH gene was also increased upon PDGF‐BB treatment. Conclusion Our data demonstrated that PDGF‐BB directly regulated the expression of TH via activating the downstream Akt/ERK/CREB signaling pathways. Our finding will further support the therapeutic potential of PDGF‐BB in PD, and provide the possibility that targeting PDGF signaling can be harnessed as an adjunctive therapy in PD in the future.
Collapse
Affiliation(s)
- Huan Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xingmin Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhihao Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fan Geng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yanzhuo Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haisong Jiang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ziyan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|