1
|
Khanbazi A, Beheshtian M, Azad M, Akbari Kelishomi M, Afroozan F, Fatehi F, Noudehi K, Zamanian Najafabadi S, Omrani M, Habibi H, Taghdiri M, Abdi Rad I, Nafissi S, Jankhah A, Yazdan H, Daneshmand P, Saberi SH, Kahrizi K, Kariminejad A, Najmabadi H. Comprehensive copy number analysis of spinal muscular atrophy among the Iranian population. Sci Rep 2024; 14:29880. [PMID: 39622884 PMCID: PMC11612469 DOI: 10.1038/s41598-024-76815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024] Open
Abstract
Copy number variations in the SMN1 gene on chromosome 5 are the primary cause of Spinal Muscular Atrophy (SMA) disease, characterized by muscle weakness and degeneration due to impaired alpha motor neurons in the spinal cord. To obtain a comprehensive molecular understanding of the SMA, including carriers, silent carriers, and patients in the Iranian population, we analyzed data from 5224 individuals referred to Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran, between 2006 and 2023 using MLPA and quantitative RT-PCR methods. The carrier frequency of SMA was estimated to be 5.55%. Furthermore, 3.06% of SMA parents (n = 24) had two copies of the SMN1 gene. Among 725 patients, those with an earlier onset of SMA were more likely to have two copies of the SMN2 gene (46.45%) and no copies of the NAIP gene (49.36%). Among the 654 fetal samples screened for SMA, 22.33% were found to be affected, while 3.46% of their parents tested normal. These findings are valuable for genetic counseling, carrier screening, and prenatal diagnosis of SMA in Iran. Furthermore, they underscore the importance of CNV analysis of SMN1, SMN2, and NAIP genes for accurate diagnosis and prognosis of SMA.
Collapse
Affiliation(s)
- Ali Khanbazi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
- Genetics Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
- Genetics Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran
| | - Maryam Azad
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Fariba Afroozan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Fatehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Khadijeh Noudehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Mohammadamin Omrani
- Urology and Nephrology Research Center (UNRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Habibi
- Dr Habibi genetic counseling center, Hamedan, Iran
| | - Maryam Taghdiri
- Shiraz Genetic Counseling Center, Welfare Office, Shiraz, Iran
| | - Isa Abdi Rad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahriar Nafissi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hilda Yazdan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | | | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran
| | | | - Hossein Najmabadi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran.
- Genetics Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ranta-Aho J, Johari M, Udd B. Current advance on distal myopathy genetics. Curr Opin Neurol 2024; 37:515-522. [PMID: 39017652 PMCID: PMC11377054 DOI: 10.1097/wco.0000000000001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW Distal myopathies are a clinically heterogenous group of rare, genetic muscle diseases, that present with weakness in hands and/or feet at onset. Some of these diseases remain accentuated in the distal muscles whereas others may later progress to the proximal muscles. In this review, the latest findings related to genetic and clinical features of distal myopathies are summarized. RECENT FINDINGS Variants in SMPX , DNAJB2, and HSPB6 have been identified as a novel cause of late-onset distal myopathy and neuromyopathy. In oculopharyngodistal myopathies, repeat expansions were identified in two novel disease-causing genes, RILPL1 and ABCD3. In multisystem proteinopathies, variants in HNRNPA1 and TARDBP , genes previously associated with amyotrophic lateral sclerosis, have been shown to cause late-onset distal myopathy without ALS. In ACTN2 -related distal myopathy, the first recessive forms of the disease have been described, adding it to the growing list of genes were both dominant and recessive forms of myopathy are present. SUMMARY The identification of novel distal myopathy genes and pathogenic variants contribute to our ability to provide a final molecular diagnosis to a larger number of patients and increase our overall understanding of distal myopathy genetics and pathology.
Collapse
Affiliation(s)
- Johanna Ranta-Aho
- Folkhälsan Research Center
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Bjarne Udd
- Folkhälsan Research Center
- Tampere Neuromuscular Center, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Li L, Menezes MP, Smith M, Forbes R, Züchner S, Burgess A, Woodcock IR, Delatycki MB, Yiu EM. Rare homozygous disease-associated sequence variants in children with spinal muscular atrophy: a phenotypic description and review of the literature. Neuromuscul Disord 2024; 37:29-35. [PMID: 38520993 DOI: 10.1016/j.nmd.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
5q-associated spinal muscular atrophy (SMA) is the most common autosomal recessive neurological disease. Depletion in functional SMN protein leads to dysfunction and irreversible degeneration of the motor neurons. Over 95 % of individuals with SMA have homozygous exon 7 deletions in the SMN1 gene. Most of the remaining 4-5 % are compound heterozygous for deletion and a disease-associated sequence variant in the non-deleted allele. Individuals with SMA due to bi-allelic SMN1 sequence variants have rarely been reported. Data regarding their clinical phenotype, disease progression, outcome and treatment response are sparse. This study describes six individuals from three families, all with homozygous sequence variants in SMN1, and four of whom received treatment with disease-modifying therapies. We also describe the challenges faced during the diagnostic process and intrafamilial phenotypic variability observed between siblings.
Collapse
Affiliation(s)
- Limin Li
- Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Division of Paediatric Neurology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Manoj P Menezes
- T.Y. Nelson Department of Neurology and Neurosurgery and Kids Neuroscience Centre, The Children's Hospital Westmead, Sydney, New South Wales, Australia; Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Melanie Smith
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Victoria, Australia
| | - Robin Forbes
- Neuroscience Research Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Stephan Züchner
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, United States of America
| | - Amber Burgess
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Victoria, Australia
| | - Ian R Woodcock
- Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Neuroscience Research Group, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Bruce Lefroy Centre, Murdoch Children's Research Institute, Australia
| | - Eppie M Yiu
- Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Neuroscience Research Group, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Sarparanta J, Jonson PH, Reimann J, Vihola A, Luque H, Penttilä S, Johari M, Savarese M, Hackman P, Kornblum C, Udd B. Extension of the DNAJB2a isoform in a dominant neuromyopathy family. Hum Mol Genet 2023; 32:3029-3039. [PMID: 37070754 PMCID: PMC10586202 DOI: 10.1093/hmg/ddad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
Recessive mutations in the DNAJB2 gene, encoding the J-domain co-chaperones DNAJB2a and DNAJB2b, have previously been reported as the genetic cause of progressive peripheral neuropathies, rarely involving pyramidal signs, parkinsonism and myopathy. We describe here a family with the first dominantly acting DNAJB2 mutation resulting in a late-onset neuromyopathy phenotype. The c.832 T > G p.(*278Glyext*83) mutation abolishes the stop codon of the DNAJB2a isoform resulting in a C-terminal extension of the protein, with no direct effect predicted on the DNAJB2b isoform of the protein. Analysis of the muscle biopsy showed reduction of both protein isoforms. In functional studies, the mutant protein mislocalized to the endoplasmic reticulum due to a transmembrane helix in the C-terminal extension. The mutant protein underwent rapid proteasomal degradation and also increased the turnover of co-expressed wild-type DNAJB2a, potentially explaining the reduced protein amount in the patient muscle tissue. In line with this dominant negative effect, both wild-type and mutant DNAJB2a were shown to form polydisperse oligomers.
Collapse
Affiliation(s)
- Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, FI-00290 Helsinki, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, FI-00290 Helsinki, Finland
| | - Jens Reimann
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, D-53127 Bonn, Germany
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, FI-00290 Helsinki, Finland
- Neuromuscular Research Center, Tampere University Hospital and Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Helena Luque
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, FI-00290 Helsinki, Finland
| | - Sini Penttilä
- Neuromuscular Research Center, Tampere University Hospital and Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, FI-00290 Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, FI-00290 Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, FI-00290 Helsinki, Finland
| | - Cornelia Kornblum
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, D-53127 Bonn, Germany
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, FI-00290 Helsinki, Finland
- Neuromuscular Research Center, Tampere University Hospital and Fimlab Laboratories, FI-33520 Tampere, Finland
| |
Collapse
|
5
|
Signoria I, van der Pol WL, Groen EJN. Innovating spinal muscular atrophy models in the therapeutic era. Dis Model Mech 2023; 16:dmm050352. [PMID: 37787662 PMCID: PMC10565113 DOI: 10.1242/dmm.050352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, monogenetic, neuromuscular disease. A thorough understanding of its genetic cause and the availability of robust models has led to the development and approval of three gene-targeting therapies. This is a unique and exciting development for the field of neuromuscular diseases, many of which remain untreatable. The development of therapies for SMA not only opens the door to future therapeutic possibilities for other genetic neuromuscular diseases, but also informs us about the limitations of such treatments. For example, treatment response varies widely and, for many patients, significant disability remains. Currently available SMA models best recapitulate the severe types of SMA, and these models are genetically and phenotypically more homogeneous than patients. Furthermore, treating patients is leading to a shift in phenotypes with increased variability in SMA clinical presentation. Therefore, there is a need to generate model systems that better reflect these developments. Here, we will first discuss current animal models of SMA and their limitations. Next, we will discuss the characteristics required to future-proof models to assist the field in the development of additional, novel therapies for SMA.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J. N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
6
|
Hu L, Mao S, Lin L, Bai G, Liu B, Mao J. Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol Dis 2022; 170:105749. [PMID: 35568100 DOI: 10.1016/j.nbd.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
Increasing genetic and biochemical evidence has broadened our view of the pathomechanisms that lead to Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases with similar symptoms and causes. Stress granules are dynamic cytosolic storage hubs for mRNAs in response to stress exposures, that are evolutionarily conserved cytoplasmic RNA granules in somatic cells. A lot of previous studies have shown that the impaired stress granules are crucial events in SMA/ALS pathogenesis. In this review, we described the key stress granules related RNA binding proteins (SMN, TDP-43, and FUS) involved in SMA/ALS, summarized the reported mutations in these RNA binding proteins involved in SMA/ALS pathogenesis, and discussed the mechanisms through which stress granules dynamics participate in the diseases. Meanwhile, we described the applications and limitation of current therapies targeting SMA/ALS. We futher proposed the promising targets on stress granules in the future therapeutic interventions of SMA/ALS.
Collapse
Affiliation(s)
- LiDan Hu
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Shanshan Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li Lin
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guannan Bai
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Bingjie Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
7
|
Holling T, Lisfeld J, Johannsen J, Matschke J, Song F, Altmeppen HC, Kutsche K. Autosomal dominantly inherited myopathy likely caused by the TNNT1 variant p.(Asp65Ala). Hum Mutat 2022; 43:1224-1233. [PMID: 35510366 DOI: 10.1002/humu.24397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/12/2022]
Abstract
Nemaline myopathies (NEM) are genetically and clinically heterogenous. Biallelic or monoallelic variants in TNNT1, encoding slow skeletal troponin T1 (TnT1), cause NEM. We report a 2-year-old patient and his mother carrying the heterozygous TNNT1 variant c.194A>C/p.(Asp65Ala) that occurred de novo in the mother. Both had muscle hypotrophy and muscle weakness. Muscle pathology in the proband's mother revealed slow twitch type 1 fiber hypotrophy and fast twitch type 2 fiber hypertrophy that was confirmed by a reduced ratio of slow skeletal myosin to fast skeletal myosin type 2a. RT-PCR and immunoblotting data demonstrated increased levels of high-molecular-weight TnT1 isoforms in skeletal muscle of the proband's mother that were also observed in some controls. In an overexpression system, complex formation of TnT1-D65A with tropomyosin 3 (TPM3) was enhanced. The previously reported TnT1-E104V and TnT1-L96P mutants showed reduced or no co-immunoprecipitation with TPM3. Our studies support pathogenicity of the TNNT1 p.(Asp65Ala) variant. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Johannsen
- Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Bagaria J, Bagyinszky E, An SSA. Genetics of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) and Role of Sacsin in Neurodegeneration. Int J Mol Sci 2022; 23:552. [PMID: 35008978 PMCID: PMC8745260 DOI: 10.3390/ijms23010552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that was originally discovered in the population from the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region in Quebec. Although the disease progression of ARSACS may start in early childhood, cases with later onset have also been observed. Spasticity and ataxia could be common phenotypes, and retinal optic nerve hypermyelination is detected in the majority of patients. Other symptoms, such as pes cavus, ataxia and limb deformities, are also frequently observed in affected individuals. More than 200 mutations have been discovered in the SACS gene around the world. Besides French Canadians, SACS genetics have been extensively studied in Tunisia or Japan. Recently, emerging studies discovered SACS mutations in several other countries. SACS mutations could be associated with pathogenicity either in the homozygous or compound heterozygous stages. Sacsin has been confirmed to be involved in chaperon activities, controlling the microtubule balance or cell migration. Additionally, sacsin may also play a crucial role in regulating the mitochondrial functions. Through these mechanisms, it may share common mechanisms with other neurodegenerative diseases. Further studies are needed to define the exact functions of sacsin. This review introduces the genetic mutations discovered in the SACS gene and discusses its pathomechanisms and its possible involvement in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
9
|
Cardenas J, Cardenas J, Lee A, Brown M, Galan F, Scimeme J, Labilloy A. Infantile Hypotonia: A Case of Spinal Muscular Atrophy With Respiratory Distress Type 1 Presenting As Infant Botulism. Cureus 2021; 13:e19006. [PMID: 34824924 PMCID: PMC8609979 DOI: 10.7759/cureus.19006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD 1) is a rare autosomal recessive disease characterized by distal muscular atrophy and respiratory distress. It presents between six weeks and six months of age, with an eventual requirement of respiratory support. To date, no curative treatment to attenuate or stop the clinical deterioration has been found; therefore, supportive treatment is the corner stone of management. We report a 12-week-old infant with SMARD1 initially diagnosed and managed as a case of infant botulism secondary to a history of significant exposure to honey. SMARD1 and infant botulism all share characteristic clinical features, namely, respiratory distress, hypotonia, and autonomic dysfunction with typical onset of less than one year of age. This case report illustrates that SMARD1, SMA Type 1, and infant botulism share common clinical features. It is important to maintain a broad differential when evaluating an infant with hypotonia, especially when there is a lack of clinical response to conventional medical interventions directed toward the working diagnosis.
Collapse
Affiliation(s)
- Juan Cardenas
- Pediatric Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Jose Cardenas
- Pediatric Critical Care, University of Florida Health, Gainesville, USA
| | - Andrew Lee
- Pediatric Medicine, University of Florida Health Jacksonville, Jacksonville, USA
| | - Martha Brown
- Genetics, University of Florida Health Jacksonville, Jacksonville, USA
| | - Fernando Galan
- Pediatric Neurology, Nemours Children's Health System, Jacksonville, USA
| | - Jason Scimeme
- Pediatric Critical Care, University of Florida Health Jacksonville, Jacksonville, USA
| | - Anatalia Labilloy
- Genetics, University of Florida Health Jacksonville, Jacksonville, USA
| |
Collapse
|
10
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|