1
|
Xu D, Yao J, Zhang Y, Xiao N, Peng P, Li Z, Pan Z, Yao Z. The Effect of PEI-Mediated E1A on the Radiosensitivity of Hepatic Carcinoma Cells. Asian Pac J Cancer Prev 2020; 21:911-917. [PMID: 32334450 PMCID: PMC7445989 DOI: 10.31557/apjcp.2020.21.4.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/26/2022] Open
Abstract
Objective: The study was undertaken to investigate the effects of polyethyleneimine (PEI)-mediated adenovirus 5 early region 1A (E1A) on radiosensitivity of human hepatic carcinoma cell in vitro and to disclosure the underlying mechanism. Materials and Methods: Human hepatic carcinoma SMMC-7721 cell line was transfected with E1A gene using PEI vector. Untransfected cells (SMMC-7721 group), cells transfected with blank-vector (SMMC-7721-vect group), and cells transfected with E1A gene (SMMC-7721-E1A group) were treated with 6 MV X-ray irradiation at doses of 0, 1, 2, 4, 8 and Gy, respectively. Radiosensitivity was determined by MTT assay and quantified by calculating the cell survival rate. Cell-cycle distribution and apotosis rate were monitored by flow cytometry. Results: The survival rate of SMMC-7721-E1A was significantly lower than that of SMMC-7721 cell. Apoptosis rate of SMMC-7721-E1A group was significantly higher than that of SMMC-7721group (P<0.01).The ratio of S stage in cell cycle of SMMC-7721-E1A was significantly lower than that in SMMC-7721 cell. The ratio of G2/M stage in cell cycle of SMMC-7721-E1A was significantly higher than that in SMMC-7721 cell (P<0.01). Conclusion: PEI could transfect E1A gene into hepatic carcinoma cells PEI-mediated E1A could effectively enhance radiosensitivity of hepatic carcinoma cells which may be related to its effects on apoptosis promoting leading to S phase suppression and G2/M phase arrest.
Collapse
Affiliation(s)
- Danghui Xu
- Department of Radiology,Affiliated Hospital of Nanjing University of Chinese Medicine,Jiangsu Provincial Hospital of Traditional Chinese Medicine,Nanjing, Jiangsu Province ,China
| | - Jianxin Yao
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu Province, China
| | - Yiwen Zhang
- Department of Nursing, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Nan Xiao
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu Province, China
| | - Peng Peng
- Department of Nursing, Nanjing Health College of Jiangsu Union Technical Institute, Nanjing, Jiangsu Province, China
| | - Zhanfeng Li
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu Province, China
| | - Zhiyao Pan
- Department of Basic Medical Science, Zhejiang University Medical College, Hangzhou, Zhejiang Province, China
| | - Zhifeng Yao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Oh BY, Kim SY, Lee YS, Hong HK, Kim TW, Kim SH, Lee WY, Cho YB. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget 2018; 7:57066-57076. [PMID: 27494849 PMCID: PMC5302973 DOI: 10.18632/oncotarget.10974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) with microsatellite instability (MSI) may exhibit impaired epithelial-mesenchymal transition (EMT), but little is known about the underlying mechanisms of this phenomenon. In this study, we investigated the role of Twist1 and its downstream signaling cascades in EMT induction according to MSI status. To investigate the effects of Twist1 on EMT induction according to MSI status, MSS LS513 and MSI LoVo colon cancer cell lines, which overexpress human Twist1, were generated. Twist1-induced EMT and its downstream signaling pathways were evaluated via in vitro and in vivo experiments. We found that Twist1 induced EMT markers and stem cell-like characteristics via AKT signaling pathways. Twist1 induced activation of AKT and suppression of glycogen synthase kinase (GSK)-3β, which resulted in the activation of β-catenin, increasing CD44 expression. In addition, Twist1 activated the AKT-induced NF-κB pathway, increasing CD44 and CD166 expression. Activation of both the AKT/GSK-3β/β-catenin and AKT/NF-κB pathways occurred in MSS LS513 cells, while only the AKT/GSK-3β/β-catenin pathway was activated in MSI LoVo cells. In conclusion, Twist1 induces stem cell-like characteristics in colon cancer cell lines related to EMT via AKT signaling pathways, and those pathways depend on MSI status.
Collapse
Affiliation(s)
- Bo Young Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So-Young Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Yeo Song Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Hye Kyung Hong
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Tae Won Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Seok Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
3
|
The interrelationship between HER2 and CASP3/8 with apoptosis in different cancer cell lines. Mol Biol Rep 2014; 41:8031-6. [PMID: 25189649 DOI: 10.1007/s11033-014-3700-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
HER2/ErbB2, a known proto-oncogene (also known as HER2, neu), is among the most practiced molecules in the cancer area. Human epidermal growth factor receptor 2 (HER2) is over expressed in approximately 20-30 % of breast cancer tumors and also in a lot of other human cancer types. It is known to be related to the aggressiveness of the disease, increased mortality and higher relapse ratio. The unusual HER2 overexpression is associated with more severe disease characteristics in several cancers. In recent past, there have been remarkable advances in understanding the role of the HER2 gene in cancers. Caspases are well renowned proteases that act as essential initiators and executioners of the apoptotic process. The primary function of HER2 is suppressing apoptosis to enhance cell survival and eventually giving rise to uncontrolled proliferation and tumor growth. The objective of this work was to study the expression levels of HER2 and apoptosis related factors CASP-3 and CASP-8 in several breast and other cancer cell lines and finally to find a meaningful correlation between all these. We summed up by obtaining an increase in expression of HER2 in all cancer cell lines as compared to that of CASP-3 and CASP-8. In summary we conclude that HER2 promotes cell survival by inhibiting apoptosis i.e. by downregulating CASP-3 and CASP-8. This is a novel study comprising the expression study of HER2 and different caspases in different cancer cell lines simultaneously. It is thus expected that this study will aid in better establishment of correlation between HER2 and caspases in different malignancies.
Collapse
|
4
|
Chen Y, Yu D, Zhang H, He H, Zhang C, Zhao W, Shao RG. CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci 2012; 8:992-1004. [PMID: 22904667 PMCID: PMC3421230 DOI: 10.7150/ijbs.4454] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/24/2012] [Indexed: 12/26/2022] Open
Abstract
Background: EpCAM or CD133 has been used as the tumor initiating cells (TICs) marker in hepatocellular carcinoma (HCC). We investigated whether cells expressing with both EpCAM and CD133 surface marker were more representative for TICs in hepatocellular carcinoma Huh7 cells. Methods: Four different phenotypes of CD133+EpCAM+, CD133+EpCAM-, CD133-EpCAM+ and CD133-EpCAM- in Huh7 cells were sorted by flow cytometry. Then cell differentiation, self-renewal, drug-resistance, spheroid formation and the levels of stem cell-related genes were detected to compare the characteristics of TICs. The ability of tumorigenicity was measured in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to verify TICs. Results: CD133+EpCAM+ cells have many characteristics of TICs in Huh7 cells compared with CD133+EpCAM-, CD133-EpCAM+, CD133-EpCAM- cells, including enrichment in side population cells, higher differentiation capacity, increased colony-formation ability, preferential expression of stem cell-related genes, appearance of drug-resistant to some chemotherapeutics, more spheroid formation of culture cells and stronger tumorigenicity in NOD/SCID mice. Conclusion: CD133+EpCAM+ phenotype is precisely represented TICs in Huh7 cells. It might be useful for studying biology mechanism of TICs in hepatocellular carcinoma and screening new targets for cancer therapy.
Collapse
Affiliation(s)
- Yi Chen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Chen Y, Yu D, Zhang H, He H, Zhang C, Zhao W, Shao RG. CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci 2012. [PMID: 22904667 DOI: 10.7150/ijbs.4454ijbsv08p0992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND EpCAM or CD133 has been used as the tumor initiating cells (TICs) marker in hepatocellular carcinoma (HCC). We investigated whether cells expressing with both EpCAM and CD133 surface marker were more representative for TICs in hepatocellular carcinoma Huh7 cells. METHODS Four different phenotypes of CD133(+)EpCAM(+), CD133(+)EpCAM(-), CD133(-)EpCAM(+) and CD133(-)EpCAM(-) in Huh7 cells were sorted by flow cytometry. Then cell differentiation, self-renewal, drug-resistance, spheroid formation and the levels of stem cell-related genes were detected to compare the characteristics of TICs. The ability of tumorigenicity was measured in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to verify TICs. RESULTS CD133(+)EpCAM(+) cells have many characteristics of TICs in Huh7 cells compared with CD133(+)EpCAM(-), CD133(-)EpCAM(+), CD133(-)EpCAM(-) cells, including enrichment in side population cells, higher differentiation capacity, increased colony-formation ability, preferential expression of stem cell-related genes, appearance of drug-resistant to some chemotherapeutics, more spheroid formation of culture cells and stronger tumorigenicity in NOD/SCID mice. CONCLUSION CD133(+)EpCAM(+) phenotype is precisely represented TICs in Huh7 cells. It might be useful for studying biology mechanism of TICs in hepatocellular carcinoma and screening new targets for cancer therapy.
Collapse
Affiliation(s)
- Yi Chen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Shen LF, Chen J, Zeng S, Zhou RR, Zhu H, Zhong MZ, Yao RJ, Shen H. The Superparamagnetic Nanoparticles Carrying the E1A Gene Enhance the Radiosensitivity of Human Cervical Carcinoma in Nude Mice. Mol Cancer Ther 2010; 9:2123-30. [PMID: 20587666 DOI: 10.1158/1535-7163.mct-09-1150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Liang-Fang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | | | | | | | | | | | | | | |
Collapse
|