1
|
Elgun T, Yurttas AG, Cinar K, Ozcelik S, Gul A. Effect of aza-BODIPY-photodynamic therapy on the expression of carcinoma-associated genes and cell death mode. Photodiagnosis Photodyn Ther 2023; 44:103849. [PMID: 37863378 DOI: 10.1016/j.pdpdt.2023.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer affecting women worldwide.Photodynamic therapy(PDT) has now proven to be a promising form of cancer therapy due to its targeted and low cytotoxicity to healthy cells and tissues.PDT is a technique used to create cell death localized by light after application of a light-sensitive agent.Aza-BODIPY is a promising photosensitizer for use in PDT. Our results showed that aza-BODIPY-PDT induced apoptosis, probably through p53 and caspase3 in MCF-7 cells. Future studies should delineate the molecular mechanisms underlying aza-BODIPY-PDT-induced cell death for a better understanding of the signaling pathways modulated by the therapy so that this novel technology could be implemented in the clinic for treating breast cancer. AIM In this study,we aimed to determine the change in the expression levels of 88 carcinoma-associated genes induced by aza-BODIPY-PDT were analyzed so as to understand the specific pathways that are modulated by aza-BODIPY-PDT. MATERIAL METHOD In this study,the molecular basis of the anti-cancer activity of aza-BODIPY-PDT was investigated.Induction of apoptosis and necrosis in MCF-7 breast cancer cells after treatment with aza- BODIPY derivative with phthalonitrile substituents (aza-BODIPY) followed by light exposure was evaluated by Annexin V 7- Aminoactinomycin D (7-AAD) flow cytometry. RESULTS Aza-BODIPY-PDT induced cell death in MCF-7 cells treated with aza-BODIPY-PDT; flow cytometry revealed that 28 % of the cells died by apoptosis. Seven of the 88 carcinoma-associated genes that were assayed were differentially expressed -EGF, LEF1, WNT1, TCF7, and TGFBR2 were downregulated, and CASP3 and TP53 were upregulated - in cells subjected to aza-BODIPY-PDT.This made us think that the aza-BODIPY-PDT induced caspase 3 and p53-mediated apoptosis in MCF7 cells. CONCLUSION In our study,it was determined that the application of aza-BODIPY-PDT to MCF7 cells had a negative effect on cell connectivity and cell cycle.The fact that the same effect was not observed in control cells and MCF7 cells in the dark field of aza-BODIPY indicates that aza-BODIPY has a strong phodynamic anticancer effect.
Collapse
Affiliation(s)
- Tugba Elgun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Kamil Cinar
- Department of Physics, Faculty of Basic Sciences, Gebze Technical University, Istanbul, Turkey
| | - Sennur Ozcelik
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Sprenger A, Carr HS, Ulu A, Frost JA. Src stimulates Abl-dependent phosphorylation of the guanine exchange factor Net1A to promote its cytosolic localization and cell motility. J Biol Chem 2023; 299:104887. [PMID: 37271338 PMCID: PMC10404680 DOI: 10.1016/j.jbc.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
The neuroepithelial cell transforming gene 1 (Net1) is a guanine nucleotide exchange factor for the small GTPase RhoA that promotes cancer cell motility and metastasis. Two isoforms of Net1 exist, Net1 and Net1A, both of which are sequestered in the nucleus in quiescent cells to prevent aberrant RhoA activation. Many cell motility stimuli drive cytosolic relocalization of Net1A, but mechanisms controlling this event are not fully understood. Here, we demonstrate that epithelial growth factor stimulates protein kinase Src- and Abl1-dependent phosphorylation of Net1A to promote its cytosolic localization. We show that Abl1 efficiently phosphorylates Net1A on Y373, and that phenylalanine substitution of Y373 prevents Net1A cytosolic localization. Furthermore, we found that Abl1-driven cytosolic localization of Net1A does not require S52, which is a phosphorylation site of a different kinase, c-Jun N-terminal kinase, that inhibits nuclear import of Net1A. However, we did find that MKK7-stimulated cytosolic localization of Net1A does require Y373. We also demonstrate that aspartate substitution at Y373 is sufficient to promote Net1A cytosolic accumulation, and expression of Net1A Y373D potentiates epithelial growth factor-stimulated RhoA activation, downstream myosin light chain 2 phosphorylation, and F-actin accumulation. Moreover, we show that expression of Net1A Y373D in breast cancer cells also significantly increases cell motility and Matrigel invasion. Finally, we show that Net1A is required for Abl1-stimulated cell motility, which is rescued by expression of Net1A Y373D, but not Net1A Y373F. Taken together, this work demonstrates a novel mechanism controlling Net1A subcellular localization to regulate RhoA-dependent cell motility and invasion.
Collapse
Affiliation(s)
- Ashabari Sprenger
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Heather S Carr
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Arzu Ulu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
3
|
Peng W, Yin J, Ma J, Zhou X, Chang C. Identification of hepatocellular carcinoma and paracancerous tissue based on the peak area in FTIR microspectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3115-3124. [PMID: 35920728 DOI: 10.1039/d2ay00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary hepatic malignancies across the world. The annual incidence and death rates have increased at the highest rate of all cancers in recent years. Surgical resection is a potentially curative option for solitary HCC or unilobar disease without evidence of metastases or vascular invasion. This study focuses on the molecular differences between the HCC foci and paracancerous tissues and provides some valuable biomarkers based on the vibrational spectrum. Fourier transform infrared (FTIR) spectroscopy is a non-invasive and qualitative and semi-quantitative analysis technique that has been widely applied for the identification of macromolecular changes in biological tissues. In this study, the FTIR spectra of the HCC foci and the paracancerous tissues were recorded separately, and ten areas under the absorption peaks of all the specimens were calculated. The result demonstrates that the areas of protein-related absorption peaks at 1398 cm-1, 1548 cm-1, 1654 cm-1 and 3070 cm-1 may be the key indicators of the two different regions. After coupling with the classification algorithms of k-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM), it was found that SVM with an RBF kernel performed best with the AUC (area under the ROC curve) reaching 0.997, and the performance was better than the feature based on the full spectrum. This reveals that the peak area-based FTIR spectra combined with the SVM algorithm may be a promising tool in identifying the HCC foci and the paracancerous tissues.
Collapse
Affiliation(s)
- Wenyu Peng
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Junkai Yin
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Jing Ma
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Xiaojie Zhou
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| |
Collapse
|
4
|
Yang X, Li Y, Zhang Y, Liu J. Circ_0000745 promotes acute lymphoblastic leukemia progression through mediating miR-494-3p/NET1 axis. Hematology 2021; 27:11-22. [PMID: 34957935 DOI: 10.1080/16078454.2021.2008590] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have shown important regulatory roles in tumorigenesis. However, the role and working mechanism of circ_0000745 in acute lymphoblastic leukemia (ALL) development remain largely unclear. METHODS The expression of circ_0000745, sperm antigen with calponin homology and coiled-coil domains 1 (SPECC1), microRNA-494-3p (miR-494-3p), and neuroepithelial cell transforming 1 (NET1) messenger RNA (mRNA) and protein was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Flow cytometry was performed to assess cell apoptosis and cell cycle progression. Extracellular acidification rate (ECAR) was assessed to analyze cell glycolysis. Cell viability was analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Ferroptosis was assessed through measuring the intracellular levels of iron and lipid reactive oxygen species (ROS). Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to validate the interaction between miR-494-3p and circ_0000745 or NET1. RESULTS Circ_0000745 expression was elevated in ALL patients and cell lines. Circ_0000745 knockdown restrained cell cycle progression and glycolysis and triggered cell apoptosis and ferroptosis. Circ_0000745 acted as a molecular sponge for miR-494-3p in ALL cells. miR-494-3p silencing partly diminished circ_0000745 knockdown-induced anti-tumor effects in ALL cells. NET1 was a target of miR-494-3p, and miR-494-3p overexpression-induced anti-tumor influences were partly counteracted by the accumulation of NET1 in ALL cells. Circ_0000745 can positively regulate NET1 expression by sponging miR-494-3p in ALL cells. CONCLUSION Circ_0000745 contributed to ALL development partly by binding to miR-494-3p to induce NET1 expression.0020.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pediatric, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yanbi Li
- Department of Pediatrics, The Central Hospital of Enshi Autonomous Prefecture, Enshi, People's Republic of China
| | - Yi Zhang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, People's Republic of China
| | - Jingzhen Liu
- Department of Pediatrics, The Central Hospital of Enshi Autonomous Prefecture, Enshi, People's Republic of China
| |
Collapse
|
5
|
Cai S, Deng Y, Peng H, Shen J. Role of Tetraspanins in Hepatocellular Carcinoma. Front Oncol 2021; 11:723341. [PMID: 34540692 PMCID: PMC8446639 DOI: 10.3389/fonc.2021.723341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high prevalence, morbidity, and mortality. Liver cancer is the sixth most common cancer worldwide; and its subtype, HCC, accounts for nearly 80% of cases. HCC progresses rapidly, and to date, there is no efficacious treatment for advanced HCC. Tetraspanins belong to a protein family characterized by four transmembrane domains. Thirty-three known tetraspanins are widely expressed on the surface of most nucleated cells and play important roles in different biological processes. In our review, we summarize the functions of tetraspanins and their underlying mechanism in the life cycle of HCC, from its initiation, progression, and finally to treatment. CD9, TSPAN15, and TSPAN31 can promote HCC cell proliferation or suppress apoptosis. CD63, CD151, and TSPAN8 can also facilitate HCC metastasis, while CD82 serves as a suppressor of metastasis. TSPAN1, TSPAN8, and CD151 act as prognosis indicators and are inversely correlated to the overall survival rate of HCC patients. In addition, we discuss the potential of role of the tetraspanin family proteins as novel therapeutic targets and as an approach to overcome drug resistance, and also provide suggestions for further research.
Collapse
Affiliation(s)
- Sicheng Cai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wu B, Shang H, Liu J, Liang X, Yuan Y, Chen Y, Wang C, Jing H, Cheng W. Quantitative Proteomics Analysis of FFPE Tumor Samples Reveals the Influences of NET-1 siRNA Nanoparticles and Sonodynamic Therapy on Tetraspanin Protein Involved in HCC. Front Mol Biosci 2021; 8:678444. [PMID: 34041269 PMCID: PMC8141748 DOI: 10.3389/fmolb.2021.678444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) poses a severe threat to human health. The NET-1 protein has been proved to be strongly associated with HCC proliferation and metastasis in our previous study. Here, we established and validated the NET-1 siRNA nanoparticles system to conduct targeted gene therapy of HCC xenograft in vivo with the aid of sonodynamic therapy. Then, we conducted a label-free proteome mass spectrometry workflow to analyze formalin-fixed and paraffin-embedded HCC xenograft samples collected in this study. The result showed that 78 proteins were differentially expressed after NET-1 protein inhibited. Among them, the expression of 17 proteins upregulated and the expression of 61 proteins were significantly downregulated. Of the protein abundance, the vast majority of Gene Ontology enrichment terms belong to the biological process. The KEGG pathway enrichment analysis showed that the 78 differentially expressed proteins significantly enriched in 45 pathways. We concluded that the function of the NET-1 gene is not only to regulate HCC but also to participate in a variety of biochemical metabolic pathways in the human body. Furthermore, the protein–protein interaction analysis indicated that the interactions of differentially expressed proteins are incredibly sophisticated. All the protein–protein interactions happened after the NET-1 gene has been silenced. Finally, our study also provides a useful proposal for targeted therapy based on tetraspanin proteins to treat HCC, and further mechanism investigations are needed to reveal a more detailed mechanism of action for NET-1 protein regulation of HCC.
Collapse
Affiliation(s)
- Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiayin Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China.,Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xitian Liang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
7
|
Cdk1 phosphorylation negatively regulates the activity of Net1 towards RhoA during mitosis. Cell Signal 2021; 80:109926. [PMID: 33465404 DOI: 10.1016/j.cellsig.2021.109926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
The Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily guanine nucleotide exchange factor that is overexpressed in a number of cancers and contributes to cancer cell motility and proliferation. Net1 also plays a Rho GTPase independent role in mitotic progression, where it promotes centrosomal activation of Aurora A and Pak2, and aids in chromosome alignment during prometaphase. To understand regulatory mechanisms controlling the mitotic function of Net1, we examined whether it was phosphorylated by the mitotic kinase Cdk1. We observed that Cdk1 phosphorylated Net1 on multiple sites in its N-terminal regulatory domain and C-terminus in vitro. By raising phospho-specific antibodies to two of these sites, we also demonstrated that both endogenous and transfected Net1 were phosphorylated by Cdk1 in cells. Substitution of the major Cdk1 phosphorylation sites with aliphatic or acidic residues inhibited the interaction of Net1 with RhoA, and treatment of metaphase cells with a Cdk1 inhibitor increased Net1 activity. Cdk1 inhibition also increased Net1 localization to the plasma membrane and stimulated cortical F-actin accumulation. Moreover, Net1 overexpression caused spindle polarity defects that were reduced in frequency by acidic substitution of the major Cdk1 phosphorylation sites. These data indicate that Cdk1 phosphorylates Net1 during mitosis and suggest that this negatively regulates its ability to signal to RhoA and alter actin cytoskeletal organization.
Collapse
|
8
|
Huang G, Yang Y, Lv M, Huang T, Zhan X, Kang W, Hou J. Novel lncRNA SFTA1P Promotes Tumor Growth by Down-Regulating miR-4766-5p via PI3K/AKT/mTOR Signaling Pathway in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:9759-9770. [PMID: 33061455 PMCID: PMC7533222 DOI: 10.2147/ott.s248660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignancy worldwide with a high mortality rate. lncRNA SFTA1P is highly expressed in HCC. We aimed to study the role of SFTA1P in HCC and its relationship with miR-4766-5p. Materials and Methods The levels of SFTA1P in HCC tissues and cell lines were determined. Relationship between SFTA1P and clinical features and prognosis was studied. The influence of SFTA1P on HCC cell viability, migration, invasion and apoptosis was studied in vitro. Rescue experiments were conducted after the binding site between SFTA1P and miR-4766-5p confirmed by dual-luciferase assay. The protein expression of AKT, p-AKT, mTOR and p-mTOR in HCC cells with knockdown of SFTA1P was determined by Western blotting. A tumor study in nude mice was conducted in order to assess the effects of SFTA1P on tumor growth characteristics. Results SFTA1P was up-regulated in HCC tissues and cell lines. SFTA1P expression was closely related to tumor size, vascular invasion and TNM stage. Knockdown of SFTA1P inhibited HCC cell viability, migration and invasion and promoted cell apoptosis. MiR-4766-5p was a target of SFTA1P and knockdown of SFTA1P could decrease the protein expression of p-AKT and p-mTOR. Rescue experiments showed that miR-4766-5p mimics could attenuate the promoting role of SFTA1P on HCC cell viability, invasion and migration, and inhibiting role on cell apoptosis. Moreover, we used nude mice models and also found that the knockdown of SFTA1P reduced tumor volume and weight. Conclusion lncRNA SFTA1P could promote tumor development in HCC by down-regulating miR-4766-5p expression via PI3K/AKT/mTOR signaling pathway. It may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Guohong Huang
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Yimei Yang
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Mengxin Lv
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Tian Huang
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Xiaoyan Zhan
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Wei Kang
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| | - Jianghou Hou
- Clinical Research Center of Kunming Maternal and Child Health Hospital, Kunming 650031, People's Republic of China
| |
Collapse
|
9
|
FARP1 boosts CDC42 activity from integrin αvβ5 signaling and correlates with poor prognosis of advanced gastric cancer. Oncogenesis 2020; 9:13. [PMID: 32029704 PMCID: PMC7005035 DOI: 10.1038/s41389-020-0190-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 02/01/2023] Open
Abstract
Considering the poor prognosis of most advanced cancers, prevention of invasion and metastasis is essential for disease control. Ras homologous (Rho) guanine exchange factors (GEFs) and their signaling cascade could be potential therapeutic targets in advanced cancers. We conducted in silico analyses of The Cancer Genome Atlas expression data to identify candidate Rho-GEF genes showing aberrant expression in advanced gastric cancer and found FERM, Rho/ArhGEF, and pleckstrin domain protein 1 (FARP1) expression is related to poor prognosis. Analyses in 91 clinical advanced gastric cancers of the relationship of prognosis and pathological factors with immunohistochemical expression of FARP1 indicated that high expression of FARP1 is significantly associated with lymphatic invasion, lymph metastasis, and poor prognosis of the patients (P = 0.025). In gastric cancer cells, FARP1 knockdown decreased cell motility, whereas FARP1 overexpression promoted cell motility and filopodium formation via CDC42 activation. FARP1 interacted with integrin β5, and a potent integrin αvβ5 inhibitor (SB273005) prevented cell motility in only high FARP1-expressing gastric cancer cells. These results suggest that the integrin αvβ5-FARP1-CDC42 axis plays a crucial role in gastric cancer cell migration and invasion. Thus, regulatory cascade upstream of Rho can be a specific and promising target of advanced cancer treatment.
Collapse
|
10
|
Neuroepithelial Cell Transforming Gene 1 Acts as an Oncogene and Is Mediated by miR-22 in Human Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1648419. [PMID: 32420320 PMCID: PMC7201585 DOI: 10.1155/2020/1648419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023]
Abstract
Abnormal expression of neuroepithelial cell transforming gene 1 (NET1) has been authenticated in many human cancers, including lung cancer. We have previously reported that NET1 functioned as an oncogene and promoted human non-small-cell lung cancer (NSCLC) growth and migration. However, the correlation between NET1 and its upstream miRNAs needed further illustration. Our present work demonstrated that miR-22 had a relatively low expression, and NET1 had a relatively high expression in both NSCLC samples and lung adenocarcinoma cell lines compared with corresponding normal controls. Moreover, miR-22 directly regulated NET1 and was verified to weaken cancer cell proliferation and migration, as well as enhance cell apoptosis by suppressing NET1. Furthermore, the inhibitory effect of miR-22 can be reversed via overexpressing NET1 using an ectopic expression vector in NSCLC cells. Our findings showed that miR-22/NET-1 axis may contribute to the inhibition of NSCLC growth and migration and represents a promising therapeutic target for NSCLC.
Collapse
|
11
|
Sun H, Zhang Z, Luo W, Liu J, Lou Y, Xia S. NET1 Enhances Proliferation and Chemoresistance in Acute Lymphoblastic Leukemia Cells. Oncol Res 2019; 27:935-944. [PMID: 31046876 PMCID: PMC7848433 DOI: 10.3727/096504019x15555388198071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevalent of pediatric cancers. Neuroepithelial cell-transforming 1 (NET1) has been associated with malignancy in a number of cancers, but the role of NET1 in ALL development is unclear. In the present study, we investigated the effect of NET1 gene in ALL cell proliferation and chemoresistance. We analyzed GEO microarray data comparing bone marrow expression profiles of pediatric B-cell ALL samples and those of age-matched controls. MTT and colony formation assays were performed to analyze cell proliferation. ELISA assays, Western blot analyses, and TUNEL staining were used to detect chemoresistance. We confirmed that NET1 was targeted by miR-206 using Western blot and luciferase reporter assays. We identified NET1 gene as one of the most significantly elevated genes in pediatric B-ALL. MTT and colony formation assays demonstrated that NET1 overexpression increases B-ALL cell proliferation in Nalm-6 cells. ELISA assays, Western blot analyses, and TUNEL staining showed that NET1 contributes to ALL cell doxorubicin resistance, whereas NET1 inhibition reduces resistance. Using the TargetScan database, we found that several microRNAs (miRNAs) were predicted to target NET1, including microRNA-206 (miR-206), which has been shown to regulate cancer development. To determine whether miR-206 targets NET1 in vitro, we transfected Nalm-6 cells with miR-206 or its inhibitor miR-206-in. Western blot assays showed that miR-206 inhibits NET1 expression and miR-206-in increases NET1 expression. Luciferase assays using wild-type or mutant 3′-untranslated region (3′-UTR) of NET1 confirmed these findings. We ultimately found that miR-206 inhibits B-ALL cell proliferation and chemoresistance induced by NET1. Taken together, our results provide the first evidence that NET1 enhances proliferation and chemoresistance in B-ALL cells and that miR-206 regulates these effects by targeting NET1. This study therefore not only contributes to a greater understanding of the molecular mechanisms underlying B-ALL progression but also opens the possibility for developing curative interventions.
Collapse
Affiliation(s)
- Hongbo Sun
- Department of Hematology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| | - Zhifu Zhang
- Department of Hematology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| | - Wei Luo
- Department of Hematology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| | - Junmin Liu
- Department of Hematology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| | - Ye Lou
- Department of Hematology, Daqing Oilfield General Hospital, Daqing, P.R. China
| | - Shengmei Xia
- Department of Neurology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| |
Collapse
|
12
|
Sun X, Wang M, Zhang F, Kong X. Inhibition of NET-1 suppresses proliferation and promotes apoptosis of hepatocellular carcinoma cells by activating the PI3K/AKT signaling pathway. Exp Ther Med 2019; 17:2334-2340. [PMID: 30867719 DOI: 10.3892/etm.2019.7211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to elucidate the underlying mechanism of neuroepithelial cell transforming 1 (NET-1), a member of the Ras homolog gene family, in hepatocellular carcinoma (HCC). To determine the association between the expression of NET-1 and the proliferation and migration of MHCC97-H cells, the cells were transfected with NET-1 small interfering (si)RNA and si negative control. Following transfection with NET-1 siRNA, the proliferation rate of MHCC97-H cells decreased significantly and the percentage of apoptotic cells increased. The HCC cell line MHCC97-H was used in the present study as it exhibited an increased expression level of NET-1 compared with the MHCC97-L cell line. Expression levels of apoptosis-associated proteins including apoptosis regulator Bax (Bax), cyclinD1, apoptosis regulator Bcl-2 (Bcl-2) and caspase-3 were determined. Expression levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) and their phosphorylated forms were also measured by western blotting. Following NET-1 knockdown, the expression of Bax and cyclinD1 decreased, the expression of Bcl-2 and caspase-3 increased, and the PI3K/AKT signaling pathway was inhibited. The results of the present study suggest that inhibition of NET-1 can suppress the progression of HCC by targeting the PI3K/AKT signaling pathway. NET-1 expression level in HCC cells increased compared with normal liver cells.
Collapse
Affiliation(s)
- Xiangjun Sun
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Mingchun Wang
- Department of Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Fenghua Zhang
- Department of Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Xiao Kong
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
13
|
Zuo Y, Ulu A, Chang JT, Frost JA. Contributions of the RhoA guanine nucleotide exchange factor Net1 to polyoma middle T antigen-mediated mammary gland tumorigenesis and metastasis. Breast Cancer Res 2018; 20:41. [PMID: 29769144 PMCID: PMC5956559 DOI: 10.1186/s13058-018-0966-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Background The RhoA activating protein Net1 contributes to breast cancer cell proliferation, motility, and invasion in vitro, yet little is known about its roles in mammary gland tumorigenesis and metastasis. Methods Net1 knockout (KO) mice were bred to mice with mammary gland specific expression of the polyoma middle T antigen (PyMT) oncogene. Mammary gland tumorigenesis and lung metastasis were monitored. Individual tumors were assessed for proliferation, apoptosis, angiogenesis, RhoA activation, and activation of PyMT-dependent signaling pathways. Primary tumor cells from wild-type and Net1 KO mice were transplanted into the mammary glands of wild-type, nontumor-bearing mice, and tumor growth and metastasis were assessed. Gene expression in wild-type and Net1 KO tumors was analyzed by gene ontology enrichment and for relative activation of gene expression signatures indicative of signaling pathways important for breast cancer initiation and progression. A gene expression signature indicative of Net1 function was identified. Human breast cancer gene expression profiles were screened for the presence of a Net1 gene expression signature. Results We show that Net1 makes fundamental contributions to mammary gland tumorigenesis and metastasis. Net1 deletion delays tumorigenesis and strongly suppresses metastasis in PyMT-expressing mice. Moreover, we observe that loss of Net1 reduces cancer cell proliferation, inhibits tumor angiogenesis, and promotes tumor cell apoptosis. Net1 is required for maximal RhoA activation within tumors and for primary tumor cell motility. Furthermore, the ability of PyMT to initiate oncogenic signaling to ERK1/2 and PI3K/Akt1 is inhibited by Net1 deletion. Primary tumor cell transplantation indicates that the reduction in tumor angiogenesis and lung metastasis observed upon Net1 deletion are tumor cell autonomous effects. Using a gene expression signature indicative of Net1 activity, we show that Net1 signaling is activated in 10% of human breast cancers, and that this correlates with elevated proliferation and PI3K pathway activity. We also demonstrate that human breast cancer patients with a high Net1 gene expression signature experience shorter distant metastasis-free survival. Conclusions These data indicate that Net1 is required for tumor progression in the PyMT mouse model and suggest that Net1 may contribute to breast cancer progression in humans. Electronic supplementary material The online version of this article (10.1186/s13058-018-0966-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Arzu Ulu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.,School of Biomedical Informatics, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Ulu A, Oh W, Zuo Y, Frost JA. Stress-activated MAPKs and CRM1 regulate the subcellular localization of Net1A to control cell motility and invasion. J Cell Sci 2018; 131:jcs204644. [PMID: 29361525 PMCID: PMC5826041 DOI: 10.1242/jcs.204644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022] Open
Abstract
The neuroepithelial cell transforming gene 1A (Net1A, an isoform of Net1) is a RhoA subfamily guanine nucleotide exchange factor (GEF) that localizes to the nucleus in the absence of stimulation, preventing it from activating RhoA. Once relocalized in the cytosol, Net1A stimulates cell motility and extracellular matrix invasion. In the present work, we investigated mechanisms responsible for the cytosolic relocalization of Net1A. We demonstrate that inhibition of MAPK pathways blocks Net1A relocalization, with cells being most sensitive to JNK pathway inhibition. Moreover, activation of the JNK or p38 MAPK family pathway is sufficient to elicit Net1A cytosolic localization. Net1A relocalization stimulated by EGF or JNK activation requires nuclear export mediated by CRM1. JNK1 (also known as MAPK8) phosphorylates Net1A on serine 52, and alanine substitution at this site prevents Net1A relocalization caused by EGF or JNK activation. Glutamic acid substitution at this site is sufficient for Net1A relocalization and results in elevated RhoA signaling to stimulate myosin light chain 2 (MLC2, also known as MYL2) phosphorylation and F-actin accumulation. Net1A S52E expression stimulates cell motility, enables Matrigel invasion and promotes invadopodia formation. These data highlight a novel mechanism for controlling the subcellular localization of Net1A to regulate RhoA activation, cell motility, and invasion.
Collapse
Affiliation(s)
- Arzu Ulu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wonkyung Oh
- DNA Repair Research Center, Chosun University, Gwangju 61452, Republic of Korea
| | - Yan Zuo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
15
|
Chen L, Yuan D, Zhao R, Li H, Zhu J. Suppression of TSPAN1 by RNA Interference Inhibits Proliferation and Invasion of Colon Cancer Cells in Vitro. TUMORI JOURNAL 2018; 96:744-50. [DOI: 10.1177/030089161009600517] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and background To investigate effect of TSPAN1 downregulation by RNA interference (RNAi) on proliferation and invasion of human colon cancer cells in vitro. Methods and study design RNAi was performed using the vector (pU6H1-GFP)-based small-interfering RNA (siRNA) plasmid gene silencing system to specifically knock down TSPAN1 expression in a colon cancer cell line, HCT-8. The expression of TSPAN1 mRNA was detected by reverse-transcription polymerase chain reaction. TSPAN1 protein expression was observed using Western blots and immunofluorescent microscopy. Cell proliferation and cell cycle assay were measured using methyl thiazolyl tetrazolium (MTT) and flow cytometry, respectively. The invasive ability of HCT-8 cells was examined using a duel culture chamber separated by polycarbonate membranes coated with Matrigel (8.0-μm pore size). Results After transfection with the TSPAN1 siRNA plasmid, TSPAN1 mRNA and protein expression was significantly decreased. The decrease in mRNA and protein was associated with a significant decrease in TSPAN1 fluorescent staining and a decrease in cell proliferation due to cell cycle arrest in the G1/G0 phase. A significant decrease in the number of invading HCT-8 cells was associated with these changes. Conclusion RNAi-mediated downregulation of TSPAN1 expression significantly inhibits the proliferation and invasion of colon cancer cells in vitro. This finding suggests that TSPAN1 plays an important role in colon cancer progression, and RNAi targeting of TSPAN1 may be a potential therapeutic strategy for the treatment of colon cancer. Free full text available at www.tumorionline.it
Collapse
Affiliation(s)
- Li Chen
- Department of Pathological Anatomy, Medical School of Nantong University, Nantong
| | - Daiyue Yuan
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hui Li
- Department of Pathological Anatomy, Medical School of Nantong University, Nantong
| | - Jianwei Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong
| |
Collapse
|
16
|
Focal adhesion kinase depletion reduces human hepatocellular carcinoma growth by repressing enhancer of zeste homolog 2. Cell Death Differ 2017; 24:889-902. [PMID: 28338656 PMCID: PMC5423113 DOI: 10.1038/cdd.2017.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer in humans. The focal adhesion tyrosine kinase (FAK) is often over-expressed in human HCC and FAK inhibition may reduce HCC cell invasiveness. However, the anti-oncogenic effect of FAK knockdown in HCC cells remains to be clarified. We found that FAK depletion in HCC cells reduced in vitro and in vivo tumorigenicity, by inducing G2/M arrest and apoptosis, decreasing anchorage-independent growth, and modulating the expression of several cancer-related genes. Among these genes, we showed that FAK silencing decreased transcription and nuclear localization of enhancer of zeste homolog 2 (EZH2) and its tri-methylation activity on lysine 27 of histone H3 (H3K27me3). Accordingly, FAK, EZH2 and H3K27me3 were concomitantly upregulated in human HCCs compared to non-tumor livers. In vitro experiments demonstrated that FAK affected EZH2 expression and function by modulating, at least in part, p53 and E2F2/3 transcriptional activity. Moreover, FAK silencing downregulated both EZH2 binding and histone H3K27me3 levels at the promoter of its target gene NOTCH2. Finally, we found that pharmacological inhibition of FAK activity resembled these effects although milder. In summary, we demonstrate that FAK depletion reduces HCC cell growth by affecting cancer-promoting genes including the pro-oncogene EZH2. Furthermore, we unveil a novel unprecedented FAK/EZH2 crosstalk in HCC cells, thus identifying a targetable network paving the way for new anticancer therapies.
Collapse
|
17
|
Wyse MM, Goicoechea S, Garcia-Mata R, Nestor-Kalinoski AL, Eisenmann KM. mDia2 and CXCL12/CXCR4 chemokine signaling intersect to drive tumor cell amoeboid morphological transitions. Biochem Biophys Res Commun 2017; 484:255-261. [PMID: 28115158 DOI: 10.1016/j.bbrc.2017.01.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
Abstract
Morphological plasticity in response to environmental cues in migrating cancer cells requires F-actin cytoskeletal rearrangements. Conserved formin family proteins play critical roles in cell shape, tumor cell motility, invasion and metastasis, in part, through assembly of non-branched actin filaments. Diaphanous-related formin-2 (mDia2/Diaph3/Drf3/Dia) regulates mesenchymal-to-amoeboid morphological conversions and non-apoptotic blebbing in tumor cells by interacting with its inhibitor diaphanous-interacting protein (DIP), and disrupting cortical F-actin assembly and bundling. F-actin disruption is initiated by a CXCL12-dependent mechanism. Downstream CXCL12 signaling partners inducing mDia2-dependent amoeboid conversions remain enigmatic. We found in MDA-MB-231 tumor cells CXCL12 induces DIP and mDia2 interaction in blebs, and engages its receptor CXCR4 to induce RhoA-dependent blebbing. mDia2 and CXCR4 associate in blebs upon CXCL12 stimulation. Both CXCR4 and RhoA are required for CXCL12-induced blebbing. Neither CXCR7 nor other Rho GTPases that activate mDia2 are required for CXCL12-induced blebbing. The Rho Guanine Nucleotide Exchange Factor (GEF) Net1 is required for CXCL12-driven RhoA activation and subsequent blebbing. These results reveal CXCL12 signaling, through CXCR4, directs a Net1/RhoA/mDia-dependent signaling hub to drive cytoskeleton rearrangements to regulate morphological plasticity in tumor cells. These signaling hubs may be conserved during normal and cancer cells responding to chemotactic cues.
Collapse
Affiliation(s)
- Meghan M Wyse
- Department of Biochemistry and Cancer Biology, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Silvia Goicoechea
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | - Kathryn M Eisenmann
- Department of Biochemistry and Cancer Biology, University of Toledo, Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
18
|
The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation. Cell Res 2016; 27:202-225. [PMID: 27910850 DOI: 10.1038/cr.2016.141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/18/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Wnt/β-catenin signaling is essential for the initiation of dorsal-ventral patterning during vertebrate embryogenesis. Maternal β-catenin accumulates in dorsal marginal nuclei during cleavage stages, but its critical target genes essential for dorsalization are silent until mid-blastula transition (MBT). Here, we find that zebrafish net1, a guanine nucleotide exchange factor, is specifically expressed in dorsal marginal blastomeres after MBT, and acts as a zygotic factor to promote the specification of dorsal cell fates. Loss- and gain-of-function experiments show that the GEF activity of Net1 is required for the activation of Wnt/β-catenin signaling in zebrafish embryos and mammalian cells. Net1 dissociates and activates PAK1 dimers, and PAK1 kinase activation causes phosphorylation of S675 of β-catenin after MBT, which ultimately leads to the transcription of downstream target genes. In summary, our results reveal that Net1-regulated β-catenin activation plays a crucial role in the dorsal axis formation during zebrafish development.
Collapse
|
19
|
Fang L, Zhu J, Ma Y, Hong C, Xiao S, Jin L. Neuroepithelial transforming gene 1 functions as a potential prognostic marker for patients with non-small cell lung cancer. Mol Med Rep 2015; 12:7439-46. [PMID: 26459749 DOI: 10.3892/mmr.2015.4385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 08/14/2015] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common histological cancer sub‑type worldwide. Neuroepithelial transforming gene 1 (Net-1), a Ras homolog family member A-specific guanine nucleotide exchange factor, has been shown to be upregulated in several human cancer types. However, the clinical significance of Net‑1 expression in NSCLC has remained elusive. The present study assessed Net‑1 mRNA and protein levels by reverse-transcription quantitative polymerase chain reaction and western blot analysis of 64 cases of NSCLC as well as their adjacent normal tissues. Furthermore, Net‑1 protein expression in tumor tissues derived from clinically annotated NSCLC cases at stages I‑III was detected by immunohistochemical staining. The results showed that Net‑1 mRNA and protein levels in NSCLC tissues were significantly elevated compared with those in their corresponding non‑tumor tissues. In addition, Net‑1 expression was strongly associated with the patients' pathological characteristics, including clinical stage, lymph node metastasis, distant metastasis and differentiation degree (P<0.05). In conclusion, the results of the present study suggested that Net‑1 expression has a significant role in the tumorigenesis of distinct histotypes and sub‑types of NSCLC, and may therefore be utilized as a biomarker as well as an important therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Li Fang
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jialiang Zhu
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yuchao Ma
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Cao Hong
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Sheng Xiao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
20
|
Zuo Y, Berdeaux R, Frost JA. The RhoGEF Net1 is required for normal mammary gland development. Mol Endocrinol 2015; 28:1948-60. [PMID: 25321414 DOI: 10.1210/me.2014-1128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily-specific guanine nucleotide exchange factor that is overexpressed in human breast cancer and is required for breast cancer cell migration and invasion. However, the role of Net1 in normal mammary gland development or function has never been assessed. To understand the role of Net1 in the mammary gland, we have created a conditional Net1 knockout mouse model. Whole-body deletion of Net1 results in delayed mammary gland development during puberty characterized by slowed of ductal extension and reduced ductal branching. Epithelial cells within the developing ducts show reduced proliferation that is accompanied by diminished estrogen receptor-α expression and activity. Net1-deficient mammary glands also exhibit reduced phosphorylation of regulatory subunits of myosin light chain and myosin light-chain phosphatase, indicating that RhoA-dependent actomyosin contraction is compromised. Net1 deficiency also leads to disorganization of myoepithelial and ductal epithelial cells and increased periductal collagen deposition. Mammary epithelial cell transplantation experiments indicate that reduced ductal branching and disorganization are cell autonomous. These data identify for the first time a role for NET1 in vivo and indicate that NET1 expression is essential for the proliferation and differentiation of mammary epithelial cells in the developing mammary gland.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | | | | |
Collapse
|
21
|
Oh W, Frost JA. Rho GTPase independent regulation of ATM activation and cell survival by the RhoGEF Net1A. Cell Cycle 2015; 13:2765-72. [PMID: 25486363 DOI: 10.4161/15384101.2015.945865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ATM activation following DNA damage is a critical event which is required for efficient DNA repair and cell survival, yet signaling mechanisms controlling its activation are incompletely understood. The RhoGEF Net1 has previously been reported to control Rho GTPase activation and downstream cell survival outcomes following double strand DNA damage. However the role of Net1 isoforms in controlling ATM-dependent cell signaling has not been assessed. In the present work we show that expression of the Net1A isoform is specifically required for efficient activation of ATM but not the related kinase DNA-PK after ionizing radiation. Surprisingly Net1A overexpression also potently suppresses ATM activation and phosphorylation of its substrate H2AX. This effect does not require catalytic activity towards RhoA or RhoB, and neither Rho GTPase affects ATM activation, on its own. Consistent with a role in controlling ATM activation, Net1A knockdown also impairs DNA repair and cell survival. Taken together these data indicate that Net1A plays a plays a previously unrecognized, Rho GTPase-independent role in controlling ATM activity and downstream signaling after DNA damage to impact cell survival.
Collapse
Affiliation(s)
- Wonkyung Oh
- a Department of Integrative Biology and Pharmacology ; University of Texas Health Science Center at Houston ; Houston , TX USA
| | | |
Collapse
|
22
|
Menon S, Oh W, Carr HS, Frost JA. Rho GTPase-independent regulation of mitotic progression by the RhoGEF Net1. Mol Biol Cell 2013; 24:2655-67. [PMID: 23864709 PMCID: PMC3756918 DOI: 10.1091/mbc.e13-01-0061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 02/05/2023] Open
Abstract
Neuroepithelial transforming gene 1 (Net1) is a RhoA-subfamily-specific guanine nucleotide exchange factor that is overexpressed in multiple human cancers and is required for proliferation. Molecular mechanisms underlying its role in cell proliferation are unknown. Here we show that overexpression or knockdown of Net1 causes mitotic defects. Net1 is required for chromosome congression during metaphase and generation of stable kinetochore microtubule attachments. Accordingly, inhibition of Net1 expression results in spindle assembly checkpoint activation. The ability of Net1 to control mitosis is independent of RhoA or RhoB activation, as knockdown of either GTPase does not phenocopy effects of Net1 knockdown on nuclear morphology, and effects of Net1 knockdown are effectively rescued by expression of catalytically inactive Net1. We also observe that Net1 expression is required for centrosomal activation of p21-activated kinase and its downstream kinase Aurora A, which are critical regulators of centrosome maturation and spindle assembly. These results identify Net1 as a novel regulator of mitosis and indicate that altered expression of Net1, as occurs in human cancers, may adversely affect genomic stability.
Collapse
Affiliation(s)
- Sarita Menon
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77008
| | - Wonkyung Oh
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77008
| | - Heather S. Carr
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77008
| | - Jeffrey A. Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77008
| |
Collapse
|
23
|
Lahiff C, Cotter E, Casey R, Doran P, Pidgeon G, Reynolds J, Macmathuna P, Murray D. Expression of neuroepithelial transforming gene 1 is enhanced in oesophageal cancer and mediates an invasive tumour cell phenotype. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:55. [PMID: 23945136 PMCID: PMC3751529 DOI: 10.1186/1756-9966-32-55] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/03/2013] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Neuroepithelial Transforming Gene 1 (NET1) is a well characterised oncoprotein and a proven marker of an aggressive phenotype in a number of cancers, including gastric adenocarcinoma. We aimed to investigate whether NET1 plays a functional role in oesophageal cancer (OAC) and its pre-malignant phenotype Barrett's oesophagus. METHODS Baseline NET1 mRNA levels were determined by qPCR across a panel of six cell lines, including normal oesophageal, Barrett's and OAC derived cells. Quantification of NET1 protein in OAC cells was performed using Western blot and immunofluorescence. NET1 expression was modulated by treating with lysophosphatidic acid (LPA) and NET1-specific siRNA. The functional effects of NET1 knockdown were assessed in vitro using proliferation, migration and invasion assays. RESULTS NET1 expression was increased in Barrett's and in OAC-derived cells in comparison to normal oesophageal cells. The highest expression was observed in OE33 a Barrett's-related OAC cell line. NET1 protein and mRNA expression was enhanced by LPA treatment in OAC and furthermore LPA treatment caused increased proliferation, migration and invasion in a NET1-dependent manner. NET1 knockdown resulted in reduced OAC cell proliferation and invasion. CONCLUSIONS As found in other malignancies, NET1 expression is elevated in OAC and its pre-malignant phenotype, Barrett's oesophagus. NET1 promotes OAC cell invasion and proliferation and it mediates LPA-induced OAC cell migration.
Collapse
Affiliation(s)
- Conor Lahiff
- Gastrointestinal Unit, Mater University Hospital, Dublin 7, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Carr HS, Frost JA. Timing is everything: Rac1 controls Net1A localization to regulate cell adhesion. Cell Adh Migr 2013; 7:351-6. [PMID: 23792411 DOI: 10.4161/cam.25276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion to the extracellular matrix elicits a temporal reorganization of the actin cytoskeleton that is regulated first by Rac1 and later by RhoA. The signaling mechanisms controlling late stage RhoA activation are incompletely understood. Net1A is a RhoA/RhoB-specific guanine nucleotide exchange factor that is required for cancer cell motility. The ability of Net1A to stimulate RhoA activation is negatively regulated by nuclear sequestration. However, mechanisms controlling the plasma membrane localization of Net1A had not previously been reported. Recently we have shown that Rac1 activation stimulates plasma membrane relocalization and activation of Net1A. Net1A relocalization is independent of its catalytic activity and does not require its C-terminal pleckstrin homology or PDZ interacting domains. Rac1 activation during cell adhesion stimulates a transient relocalization of Net1A that is terminated by proteasomal degradation of Net1A. Importantly, plasma membrane localization of Net1A is required for efficient myosin light chain phosphorylation, focal adhesion maturation, and cell spreading. These data show for the first time a physiological mechanism controlling Net1A relocalization from the nucleus. They also demonstrate a previously unrecognized role for Net1A in controlling actomyosin contractility and focal adhesion dynamics during cell adhesion.
Collapse
Affiliation(s)
- Heather S Carr
- Department of Integrative Biology and Pharmacology; University of Texas Health Science Center at Houston; Houston, TX USA
| | | |
Collapse
|
25
|
Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1. Mol Cell Biol 2013; 33:2773-86. [PMID: 23689132 DOI: 10.1128/mcb.00175-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Net1 is a RhoA guanine nucleotide exchange factor (GEF) that is overexpressed in a subset of human cancers and contributes to cancer cell motility and invasion in vitro. However, the molecular mechanism accounting for its role in cell motility and invasion has not been described. In the present work, we show that expression of both Net1 isoforms in breast cancer cells is required for efficient cell motility. Although loss of Net1 isoform expression only partially blocks RhoA activation, it inhibits lysophosphatidic acid (LPA)-stimulated migration as efficiently as knockdown of RhoA itself. However, we demonstrate that the Net1A isoform predominantly controls myosin light-chain phosphorylation and is required for trailing edge retraction during migration. Net1A interacts with focal adhesion kinase (FAK), localizes to focal adhesions, and is necessary for FAK activation and focal adhesion maturation during cell spreading. Net1A expression is also required for efficient invasion through a Matrigel matrix. Analysis of invading cells demonstrates that Net1A is required for amoeboid invasion, and loss of Net1A expression causes cells to shift to a mesenchymal phenotype characterized by high β1-integrin activity and membrane type 1 matrix metalloproteinase (MT1-MMP) expression. These results demonstrate a previously unrecognized role for the Net1A isoform in controlling FAK activation during planar cell movement and amoeboid motility during extracellular matrix (ECM) invasion.
Collapse
|
26
|
Dynamic characteristics of MR diffusion-weighted imaging in a rabbit liver VX-2 tumor model. Jpn J Radiol 2012; 31:105-14. [PMID: 23238965 DOI: 10.1007/s11604-012-0156-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate prospectively dynamic characteristics of the apparent diffusion coefficient (ADC) on MR diffusion-weighted imaging (DWI) in a rabbit VX-2 tumor model. MATERIALS AND METHODS Forty New Zealand rabbits were included in the study, and 47 rabbit VX-2 tumor models were developed by direct and intrahepatic implantation after opening the abdominal cavities. DWI was carried out periodically and respectively on days 7, 14 and 21 after implantation. The VX-2 tumor samples were studied by pathology. The distinction of VX-2 tumors on DWI was assessed by their ADC values by analysis of variance (ANOVA) using SPSS12.0 software. RESULTS The ADC values (mean ± SD) × 10(-3) mm(2)/s of 47 VX-2 tumors in the peripheral and central areas were 2.18 ± 0.29, 1.96 ± 0.33, 1.80 ± 0.35, 2.20 ± 0.29, 2.05 ± 0.30 and 1.96 ± 0.48, respectively, on days 7, 14 and 21 after implantation. ADC values of 47 VX-2 tumors in the area of the tumor periphery, center and normal parenchyma were higher when the b-value was 100 s/mm(2) than those when the b-value was 300 s/mm(2) (F = 17.964, p < 0.001; F = 13.986, p < 0.001; F = 128.681, p < 0.001). ADC values in the area of normal liver parenchyma were higher than those in the area of the VX-2 tumor periphery and center when the b-value was 100 or 300 s/mm(2). ADCs of viable tumor cells in VX-2 tumors were lower on DWI than those in the area of normal liver parenchyma around the tumor, and ADCs of dead tumor cells in VX-2 tumors were unequal, including high, equal and low values, but they were higher than in the area of normal liver parenchyma around tumors after dead tumor cells had been liquefied or had become cystic. CONCLUSION ADC is correlated with the tumor histology and degree of malignancy, and DWI has potential value for dynamically monitoring tumors and evaluating the degree of malignancy and therapeutic effect.
Collapse
|
27
|
Rac1 controls the subcellular localization of the Rho guanine nucleotide exchange factor Net1A to regulate focal adhesion formation and cell spreading. Mol Cell Biol 2012. [PMID: 23184663 DOI: 10.1128/mcb.00980-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RhoA is overexpressed in human cancer and contributes to aberrant cell motility and metastatic progression; however, regulatory mechanisms controlling RhoA activity in cancer are poorly understood. Neuroepithelial transforming gene 1 (Net1) is a RhoA guanine nucleotide exchange factor that is overexpressed in human cancer. It encodes two isoforms, Net1 and Net1A, which cycle between the nucleus and plasma membrane. Net1 proteins must leave the nucleus to activate RhoA, but mechanisms controlling the extranuclear localization of Net1 isoforms have not been described. Here, we show that Rac1 activation causes relocalization of Net1 isoforms outside the nucleus and stimulates Net1A catalytic activity. These effects do not require Net1A catalytic activity, its pleckstrin homology domain, or its regulatory C terminus. We also show that Rac1 activation protects Net1A from proteasome-mediated degradation. Replating cells on collagen stimulates endogenous Rac1 to relocalize Net1A, and inhibition of proteasome activity extends the duration and magnitude of Net1A relocalization. Importantly, we demonstrate that Net1A, but not Net1, is required for cell spreading on collagen, myosin light chain phosphorylation, and focal adhesion maturation. These data identify the first physiological mechanism controlling the extranuclear localization of Net1 isoforms. They also demonstrate a previously unrecognized role for Net1A in regulating cell adhesion.
Collapse
|
28
|
Vessichelli M, Ferravante A, Zotti T, Reale C, Scudiero I, Picariello G, Vito P, Stilo R. Neuroepithelial transforming gene 1 (Net1) binds to caspase activation and recruitment domain (CARD)- and membrane-associated guanylate kinase-like domain-containing (CARMA) proteins and regulates nuclear factor κB activation. J Biol Chem 2012; 287:13722-30. [PMID: 22343628 PMCID: PMC3340137 DOI: 10.1074/jbc.m111.304436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular complexes containing CARMA proteins have been recently identified as a key components in the signal transduction pathways that regulate activation of nuclear factor κB (NF-κB) transcription factor. Here, we used immunoprecipitation coupled with mass spectrometry to identify cellular binding partners of CARMA proteins. Our data indicate that the Rho guanine nucleotide exchange factor Net1 binds to CARMA1 and CARMA3 in resting and activated cells. Net1 expression induces NF-κB activation and cooperates with BCL10 and CARMA proteins in inducing NF-κB activity. Conversely, shRNA-mediated abrogation of Net1 results in impaired NF-κB activation following stimuli that require correct CARMA-BCL10-MALT1 complex formation and functioning. Microarray expression data are consistent with a positive role for Net1 on NF-κB activation. Thus, this study identifies Net1 as a CARMA-interacting molecule and brings important information on the molecular mechanisms that control NF-κB transcriptional activity.
Collapse
Affiliation(s)
- Mariangela Vessichelli
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
High co-expression of vascular endothelial growth factor receptor-1 and Snail is associated with poor prognosis after curative resection of hepatocellular carcinoma. Med Oncol 2012; 29:2750-61. [DOI: 10.1007/s12032-012-0160-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 12/12/2022]
|
30
|
Ye K, Wang Z, Zhang G, Liang S. Prognostic significance of neuroepithelial transforming protein 1 in hepatocellular carcinoma. J INVEST SURG 2010; 23:163-9. [PMID: 20590388 DOI: 10.3109/08941939.2010.481010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Recent works have demonstrated that neuroepithelial transforming protein 1 (NET-1) gene expression is associated with proliferation, metastasis, and clinical stages of human hepatocellular carcinoma (HCC). To investigate its prognostic significance in HCC, which currently is unknown, the authors examined the correlation between NET-1 expression and prognosis in patients with HCC. METHODS Immunohistochemical staining was used to determine NET-1 expression level in 368 paired HCC and normal liver tissue (NLT) specimens. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of HCC. RESULTS Among 368 specimens of HCC, the positive rate of NET-1 protein expression in HCC tissues was 86.7% (319/368), and the increased NET-1 expression was correlated significantly with high Edmondson-Steiner grade (p = .02) and TNM stage (p = .01). The expression level of NET-1 in HCC tissues was associated with intrahepatic metastasis (p = .008) and portal vein infiltration (p = .007). HCC patients with the moderate-strong NET-1 positive expression had either poorer disease-free survival or poorer overall survival than patients with negative-low positive NET-1 expression (p = .001 and .002, respectively). A multivariate Cox regression analysis revealed that NET-1 protein expression (relative risk 5.8; p = .01) was an independent prognostic factor for patients with HCC. CONCLUSION Taken together, our study suggests for the first time that NET-1 status may be a new predictor of survival for HCC patients and provides the rationale for developing a novel therapy of targeting NET-1 against this fatal malignancy.
Collapse
Affiliation(s)
- Ke Ye
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | | | | | | |
Collapse
|
31
|
Tu Y, Lu J, Fu J, Cao Y, Fu G, Kang R, Tian X, Wang B. Over-expression of neuroepithelial-transforming protein 1 confers poor prognosis of patients with gliomas. Jpn J Clin Oncol 2010; 40:388-94. [PMID: 20304779 DOI: 10.1093/jjco/hyp186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Neuroepithelial-transforming protein 1 is a member of the guanine nucleotide exchange factor family, a group of proteins which are known to activate and thereby regulate Rho family members. Deregulation of neuroepithelial-transforming protein 1 expression has been found in certain types of human tumors. To investigate its prognostic value in human gliomas, which is currently unknown, we examined the correlation between neuroepithelial-transforming protein 1 expression and prognosis in patients with gliomas. METHODS Immunohistochemical staining was performed to detect neuroepithelial-transforming protein 1 expression patterns in the biopsies from 96 patients with primary gliomas. Kaplan-Meier survival and Cox's regression analyses were performed to evaluate the prognosis of patients. RESULTS Immunohistochemical analysis with anti-neuroepithelial-transforming protein 1 antibody revealed that neuroepithelial-transforming protein 1 was significantly associated with the Karnofsky performance scale score and World Health Organization grades of patients with gliomas. Especially, the positive expression rates of neuroepithelial-transforming protein 1 were significantly higher in patients with higher grade (P = 0.001) and lower Karnofsky's performance scale score (P = 0.005). The median survival of patients with high neuroepithelial-transforming protein 1 expression was significantly shorter than that with low expression and without expression (316, 892 and 1180 days, respectively). Cox's multifactor analysis showed that the Karnofsky performance scale (P = 0.01), World Health Organization grade (P = 0.008) and neuroepithelial-transforming protein 1 (P = 0.006) were independent prognosis factors for human glioma. CONCLUSIONS Taken together, our study indicates for the first time that neuroepithelial-transforming protein 1 status may be a highly sensitive marker for glioma prognosis and suggest that the expression patterns of neuroepithelial-transforming protein 1 might be a potent tool for predicting the clinical prognosis of glioma patients.
Collapse
Affiliation(s)
- Yanyang Tu
- Department of Emergency, Tangdu Hospital, The Forth Military Medical University, Xi'an, Shanxi, China
| | | | | | | | | | | | | | | |
Collapse
|